
 

 

 

 

 

 

 

CRR DISCUSSION PAPER SERIES  B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Center for Risk Research  
Faculty of Economics  

SHIGA UNIVERSITY 
 

1-1-1 BANBA, HIKONE,  

SHIGA 522-8522, JAPAN 

 

Discussion Paper No. B-18 
 

A Global Joint Pricing Model of Stocks and Bonds 
Based on the Quadratic Gaussian Approach 

 

Kentaro KIKUCHI 
 

 2019 December 
  

 
 
 
 
 
 
 
 



A Global Joint Pricing Model of Stocks and Bonds

Based on the Quadratic Gaussian Approach *

Kentaro Kikuchi�

Abstract

This work presents a joint model for bond prices, stock prices, and exchange
rates within multi-currency economies. The model includes three types of la-
tent factors: systematic factors that determine the domestic and foreign interest
rates, stock-specific factors, and currency-specific factors. By incorporating the
stochastic discount factor reflecting these three risk factors, we derive an analyt-
ical formula for bond prices and stock prices, and exchange rates based on the
quadratic Gaussian approach studied primarily in term structure modeling. Our
model has the distinctive feature of capturing market rates in a low interest rate
environment. Furthermore, the model not only enables a simultaneous estimation
of bond, equity and currency risk premiums but also provides a foundation for
solving an investment problem reflecting realistic market conditions.
Keywords: Stochastic discount factor, No arbitrage condition, Quadratic Gaus-
sian term structure model, Algebraic Riccati equation
JEL Classification E43, F31, G10, G12

1 Introduction

Increased co-movements of financial asset prices are often seen across countries. To capture
these co-movements, it is desirable to simultaneously model financial asset prices including
currency rates in a unified framework. In this study, we construct a joint model bond prices,
stock prices, and exchange rates within multi-currency economies.

A factor model can be useful in capturing co-movements in prices across various financial
assets. Such a model is based on the premise that the origin of price movements is attributable
to the dynamics of common factors across the assets. There is an extensive body of literature
on factor-based asset pricing. For example, factor-based modeling has been frequently used
in the context of modeling the term structure of interest rates such as Duffie and Kan[8] and
Dai and Singleton[6].

In contrast to the literature on term structure modeling, there are fewer studies on a
joint pricing model across different asset classes. In one study, Bakshi and Chen[3] derive an
analytical formula for stock and bond prices in a single currency economy based on a market
equilibrium approach. They introduce systematic and idiosyncratic factors that follow a
mean-reverting square root process. The systematic factors are assumed to determine the
stochastic discount factor. Thus, zero coupon bond prices are represented as the function of
the systematic factors by taking the expectation of the stochastic discount factor. The stock

*This work was supported by Grant-in-Aid for Scientific Research C JP17K03802 from Japan Society for
the Promotion of Science.

�Shiga University, Faculty of Economics. Email:kentaro-kikuchi@biwako.shiga-u.ac.jp
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dividend in the model is determined by both idiosyncratic factors as well as the systematic
factors. Taking the expectation of the stochastic discount factor multiplied by dividend cash
flows leads to the stock price representation as the function of the systematic and idiosyncratic
factors.

As with Bakshi and Chen[3], Mamaysky[14] constructs a joint pricing model of stocks
and bonds in a single currency economy under the no-arbitrage framework. In the model,
the short rate is assumed to be an affine function of systematic factors following a mean-
reverting square root process. This leads to analytical expressions for bond prices represented
as the exponential of the affine function of the systematic factors. To model the stock
price, Mamaysky[14] also models stock dividends as a function of systematic factors and
idiosyncratic factors. The idiosyncratic factors in his model follow non-stationary processes
whose drift terms depend on the systematic factors. Under these settings, he derives a
stock price representation in the form of an exponential-affine function of systematic and
idiosyncratic factors. Mamaysky[15] also constructs a joint pricing model of stocks and bonds
in line with Mamaysky[14]. The difference is that Mamaysky[15] assumes the systematic
factors follow Ornstein-Uhlenbeck processes rather than a square root process. Mamaysky[15]
conducts an empirical analysis using monthly data for zero coupon interest rates of U.S.
treasury bonds and the value-weighted equity market index.

Kikuchi[11] extends the model in Mamaysky[15] by incorporating the quadratic Gaussian
term structure model (QGTM) used in Ahn et al.[1] and Leippold and Wu[12]. In Kikuchi’s
model, the short rate is defined as the quadratic function of systematic factors and the divi-
dend is defined as a function that depends on both systematic and idiosyncratic factors. The
assumptions imposed on the systematic and idiosyncratic factors in his model are the same
as in Mamaysky[15]’s ones where systematic factors follow an Ornstein-Uhlenbeck process
and idiosyncratic factors are non-stationary processes whose drift terms depend only on sys-
tematic factors. He derives the closed form formula for pricing zero coupon bonds and stocks
under the no-arbitrage condition. In addition, he estimates bond and equity risk premia
based on the proposed model using data from Japanese market.

Other than Kikuchi[11], there are studies on the nonlinear joint pricing model for stocks
and bonds in a single currency economy. Bäuerle and Pfeiffer[5] construct a joint pricing
model of stocks and bonds by introducing the hyperbolic Gaussian stochastic discount factor.
Filipović and Willems[10] derive pricing formula not only for stocks and bonds but also
for futures contracts whose payoff is determined by future dividends, by incorporating the
polynomial jump-diffusion process studied in Filipović and Larsson[9].

There are some studies of factor-based asset pricing in multi-currency economies. One
of them is Backus et al.[2]. Under the assumption of a complete market, they introduce
stochastic discount factors for each economy and provide changes in exchange rates as the
ratio of foreign and domestic stochastic discount factors. Leippold et al.[13] draw on the
QGTM framework to construct the model dealing jointly with zero coupon interest rates and
exchange rates. They add idiosyncratic factors to capture currency factors in addition to
systematic factors that play a role in determining zero coupon bond prices for foreign and
domestic economies. All factors follow Ornstein-Uhlenbeck processes. They estimate factors
and parameters using U.S. and Japanese LIBOR and swap rates and the foreign exchange
rates between the U.S. and Japan.

Bakshi et al.[4] derive a currency option pricing formula using the generalized Fourier
transform in a setting where the stochastic discount factor is provided as a function of the
short rate, global diffusion factors, and country-specific jump-diffusion factors. Using market
data for exchange rates and currency options’ implied volatilities among the U.S. dollar,
Euro, and Japanese Yen, they estimate risk premia for interest rates, and for global and
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country-specific factors.
In terms of studies on factor based asset pricing in multi-currency economies, much less

work has been on constructing a joint pricing model for assets belonging to different asset
classes while including exchange rate dynamics. In this article, we propose a joint model
for bond prices, stock prices, and exchange rates in multi-currency economies under a no-
arbitrage condition. We extend Kikuchi[11] by incorporating domestic and foreign stochastic
discount factors as shown in Leippold et al.[13]. Our model includes three types of factors:
systematic factors, stock-specific factors and currency risk factors. The systematic factors
are assumed to follow Ornstein-Uhlenbeck processes and their quadratic functions determine
short rates and stock dividends in domestic and foreign countries. Stock-specific factors can
be either stationary or non-stationary processes whose drift terms depend on them. This
setting is different from Mamaysky[14][15] and Kikuchi[11] whose drift terms depend only on
systematic factors, not on stock-specific factors. Although Mamaysky[14] and [15] insist that
stock price dynamics follow a non-stationary process, this viewpoint is still controversial in
finance. For this reason, we adopt a more general model for stock-specific factors. One of
the features of our model is that it is based on the quadratic Gaussian approach. This allows
interest rates and dividend yields the model implies to capture market rates more accurately
in a low interest rate environment such as what has been observed in European countries and
in Japan in the recent years.

The rest of this paper is organized as follows. In Section 2, we present the model setup.
In Section 3, we derive an analytical bond pricing formula. In Section 4, we model cash flows
paid by a stock and provide the formula for stock prices. In addition, we prove a theorem on
sufficient conditions for obtaining a well-defined price. In Section 5, we formulate exchange
rates using each country’s stochastic discount factor. In Section 6, we indicate the invariant
transformation to play a role in making the model simpler. Conclusions are presented in
Section 7.

2 Setup

We fix l countries associated with a filtered probability space (Ω,F , (Ft)0≦t,P) satisfying
the usual condition that (Ft)0≦t is complete and right continuous. P denotes the physical
measure. We assume that each country issues its own currency and the financial markets in
each country are complete. This assumption ensures the unique existence of the risk neutral
measure equivalent to P for each country. We denote the risk neutral measure corresponding
to the jth country as Qj . Suppose that W x

t ∈ Rl, W y
t ∈ Rm and W z

t ∈ Rn are Ft-adapted
standard Brownian motions under P and are independent of each other.

Our model incorporates three types of factors. First, we introduce a vector of systematic
factors, Xt that takes values in a domain DX ⊆ Rl and follows the multivariate Ornstein-
Uhlenbeck process:

dXt = KX(θX −Xt)dt+ΣXdW x
t . (2.1)

where all eigenvalues of KX are assumed to take positive values. This assumption implies
that Xt follows a stationary process. Xt determines the risk-free short rate in every country;
consequently, Xt becomes the determinant of all financial asset prices. We define the risk-free
short rate rjt in the jth country’s currency as

rjt = X ′
tΨ

jXt + φj ′Xt + ηj , (2.2)

where the superscript of Xt and φj represents their transpositions. We assume that Ψj is a
positive definite matrix. Hereafter, we sometimes denote rjt by rjt (Xt) to emphasize that rjt
depends on Xt.
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As previous studies (Backus et al.[2], Leippold and Wu[13]) have already pointed out, cur-
rency dynamics are determined not only by interest rate-related factors but also by currency-
specific factors related to currency risk premiums. We denote a vector of currency-specific
factors as Yt. This vector takes values in a domain DY ⊆ Rm and follows the multivariate
Ornstein-Uhlenbick process:

dYt = KY (θY − Yt)dt+ΣY dW
y
t . (2.3)

where all eigenvalues ofKY are assumed to take positive values. This assumption is essentially
the same as in Leippold and Wu[13].

In this study, we derive an analytical representation for stock prices. Zt denotes a vector of
stock-specific factors that affect stock prices aside from the systematic and currency-specific
factors. Stock-specific factors are assumed to have the following dynamics

dZt = µZ(Xt, Yt, Zt)dt+ΣZ,1dW
x
t +ΣZ,2dW

y
t +ΣZ,3dW

z
t , (2.4)

where ΣZ,1 ∈ Rn×l, ΣZ,2 ∈ Rn×m and ΣZ,3 ∈ Rn×n. Later, we will provide the specification
of the drift term µZ(Xt, Yt, Zt) and the volatilities of Zt.

If we denote the Radon-Nikodym derivative of the jth country’s risk neutral measure with
respect to the physical measure by

Rj =
dQj

dP
,

then Girsanov’s theorem tells us that there exist the adapted processes Λj,x
t , Λj,y

t , and Λj,z
t

such that the Radon-Nikodym derivative process Rj
t=E[Rj |Ft] is provided as

Rj
t = exp

{
−
∫ t

0
Λj,x
u · dW x

u − 1

2

∫ t

0
||Λj,x

u ||2du
}

· exp
{
−
∫ t

0
Λj,y
u · dW y

u − 1

2

∫ t

0
||Λj,y

u ||2du
}

· exp
{
−
∫ t

0
Λj,z
u · dW z

u − 1

2

∫ t

0
||Λj,z

u ||2du
}

≡ ξj,xt · ξj,yt · ξj,zt .

(2.5)

From equation (2.5), the stochastic discount factor of the jth country, Mj
t is provided as

Mj
t = exp

(
−
∫ t

0
rjsds

)
Rt = exp

(
−
∫ t

0
rjsds

)
ξj,xt ξj,yt ξj,zt . (2.6)

Girsanov’s theorem leads to the fact that W̃ j,x
t , W̃ j,y

t , and W̃ j,z
t defined in equation (2.7)

as indicated below follow the standard Brownian motions under Qj .

W̃ j,x
t := W x

t +

∫ t

0
Λj,x
u du, W̃ j,y

t := W y
t +

∫ t

0
Λj,y
u du, W̃ j,z

t := W z
t +

∫ t

0
Λj,z
u du. (2.7)

Furthermore, we assume the essentially affine setting introduced by Duffee[7] for Λj,x
t ,

Λj,y
t, , and Λj,z

t :

Λj,x
t = λj

x + Λj
xXt, Λj,y

t = λj
y + Λj

yYt, Λj,z
t = λj

z + Λj
zZt. (2.8)
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3 Bond Price Representation

In this section, we derive the zero coupon bond pricing formula based on the setup indicated
in the previous section. P T−t,j

t denotes the price at time t of the jth country’s zero coupon
bond with maturity date T . With T -t = τ , we denote the bond price by P τ,j

t . P τ,j
t is given

by

P τ,j
t = Et

[
Mj

T

Mj
t

]
= EQ,j

t

[
exp

(
−
∫ T

t
rju(Xu)du

)]
, (3.1)

where EQ,j
t [·] is the conditional expectation operator under Qj with respect to the filtration

Ft.
Equations (2.1), (2.7), and (2.8) provide the dynamics of Xt under Q:

dXt = K̃j
X(θ̃j −Xt)dt+ΣXdW̃ j,x

t , (3.2)

where the coefficients of the above equation satisfy the following relationship:

K̃j
X = KX +ΣXΛj

x,

K̃j
X θ̃jX = KXθX − ΣXλj

x.

Applying the Feynman-Kac theorem to equation (3.1), we obtain the following partial
differential equation for P τ,j

t :

∂P τ,j
t

∂t
+ κ̃j(Xt)

′∂P
τ,j
t

∂Xt
− rjt (Xt)P

τ,j
t +

1

2
Tr

(
ΣXΣ

′
X

∂2P τ,j
t

∂X ′
t∂Xt

)
= 0,

P 0,j
T = 1,

(3.3)

where κ̃j(Xt) = K̃j
X(θ̃j −Xt).

To find a solution to equation (3.3), we make a guess at the following form:

P τ,j
t = exp

(
X ′

tA
j
τXt + bj′τ Xt + cjτ

)
. (3.4)

Without loss of generality, Aj
τ is assumed to be symmetric.

Substituting equation (3.4) into equation (3.3) and applying coefficient comparison, we
obtain the system of ordinary differential equations:

dAj
τ

dτ
= −2K̃j′

XAj
τ + 2Aj

τΣXΣ′
XAj

τ −Ψj , Aj
0 = 0l×l,

dbjτ
dτ

= 2Aj
τ K̃

j
X θ̃jX − K̃j′

Xbjτ + 2Aj
τΣXΣ′

Xbjτ − φj , bj0 = 0l×1,

dcjτ
dτ

= (K̃j
X θ̃jX)′bjτ +

1

2
Tr(2ΣXΣ

′
XAj

τ + bjτ b
j′
τ )− ηj , cj0 = 0.

(3.5)

We can solve equation (3.5) by a numerical method such as the Runge-Kutta method.
Bond price dynamics under the physical measure P are given by

dP τ,j
t

P τ,j
t

=
{
X ′

t

(
Ψj + 2Aj

τΣXΛj
x

)
Xt +

(
φj′ + 2λj′

xΣ
′
XAj

τ + bj′τ ΣXΛj
X

)
Xt + bj′τ ΣXλj

X + ηj
}
dt

+ (2X ′
tA

j
τ + bj′τ )ΣXdW x

t .

(3.6)
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4 Stock Price Representation

In this section, we derive an analytical representation for the stock price denominated in
the jth county’s currency. No-arbitrage asset pricing theory tells us that the stock price is
obtained as the expectation of the integration of the discounted cash flows the stock pays
under the risk neutral measure corresponding to the jth country. We apply the Feynman-Kac
theorem to obtain the partial differential equation followed by the stock price. We solve the
resulting partial differential equation to derive the analytical representation for stock prices.

4.1 Specification of Stock-Specific Factors

Before proceeding, we specify the drift term and the volatility term of Zt in equation (2.4).
To retain computational tractability, one of the candidates for the specification is provided
as follows:

dZt = (µZ +KZZt)dt+ΣZ,zdW
z
t , (4.1)

where we make no assumptions for KZ other than that it is invertible. To allow the formu-
lation of a more general model, we formulate Zt in the way that it can be either stationary
or non-stationary.

The formulation in equation (4.1) is different from the one provided in Mamaysky[14][15]
and Kikuchi[11]. Mamaysky[14] emphasized the importance of considering the non-stationarity
of stock price dynamics and Mamaysky[15] showed an empirical analysis using U.S. market
data with his proposed model. However, it cannot be stated that the result has the robust
validity of a non-stationary model for stock dynamics. Therefore, whether or not stock prices
follow a non-stationary process is still controversial. Thus, in this paper, we formulate Zt

such that it can be stationary or non-stationary.
The process for Zt in equation (4.1) provided under P is represented under the measure

Qj using equation (2.7) and (2.8) as follows:

dZt =
(
µZ +KZZt − ΣZ,z(Λ

j
zZt + λj

z)
)
dt+ΣZ,zdW̃

j,z
t

= (µ̃j
Z + K̃j

ZZt)dt+ΣZ,zdW̃
j,z
t ,

(4.2)

where K̃j
Z = KZ − ΣZ,zΛ

j
z and µ̃j

Z = µZ − ΣZ,zλ
j
z.

4.2 Pricing a Dividend-Paying Security with a Finite Maturity

Here, we assume that the stock denominated by the jth country’s currency is non-defaultable
and pays a dividend Dj

t (Xt, Zt) per unit of time.
In this subsection, we suppose a security pays Dj

t (Xt, Zt) per unit of time continuously

until maturity date T , and D
j
T at T . We model the dividend Dj

t (Xt, Zt) as

Dj
t (Xt, Zt) =(X ′

tΦ
j
XXt + δj′XXt + Z ′

tΦ
j
ZZt + δj′ZZt + δj0)

exp
(
X ′

tE
j
XXt + f j′

XXt + Z ′
tE

j
ZZt + f j′

ZZt + gjt+ hj
)
,

(4.3)

where Φj
X , Φj

Z , E
j
X and Ej

Z are assumed to be symmetric positive definite. At maturity date
T ,

D
j
T = exp

(
X ′

TE
j
XXT + f j′

XXT + Z ′
TE

j
ZZT + f j′

ZZT + gjT + hj
)

(4.4)

is paid to the security holder.
ST,j
t denotes the price of this security at t.
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The cumulative discounted gain from time 0 to time t denotes Gj
t , formulated as

Gj
t =

∫ t

0
exp

(
−
∫ s

0
rju(Xu)du

)
Dj

s(Xs, Ys)ds+ exp

(
−
∫ t

0
rju(Xu)du

)
ST,j
t . (4.5)

Under Qj , Gj
t must be a martingale process, so that Gj

t=EQ,j
t [Gj

T ]. This equation and

equation (4.5) lead to the following equation for ST,j
t :

ST,j
t = EQ,j

t

[∫ T

t
exp

(
−
∫ s

t
rju(Xu)du

)
Dj

s(Xs, Zs)ds+ exp

(
−
∫ T

t
rju(Xu)du

)
D

j
T

]
. (4.6)

Applying the Feynman-Kac theorem to equations (4.3), (4.4), and (4.6), we obtain the
following PDE:

∂ST,j
t

∂t
+ κ̃jX(Xt)

′∂S
T,j
t

∂Xt
+ κ̃jZ(Zt)

′∂S
T,j
t

∂Zt
+

1

2
Tr

(
ΣXΣ

′
X

∂2ST,j
t

∂X ′
t∂Xt

)

+
1

2
Tr

(
ΣZ,zΣ

′
Z,z

∂2ST,j
t

∂Zt
′∂Zt

)
− rjt (Xt)S

T,j
t +Dj

t = 0, ST,j
T = D

j
T ,

(4.7)

where κ̃jX(X) = K̃j
X(θ̃jX −X) and κ̃jZ(Z) = µ̃j

Z + K̃j
ZZ.

We guess at a solution to equation (4.7) in the following form:

ST,j
t = exp

(
X ′

tE
j
XXt + f j′

XXt + Z ′
tE

j
ZZt + f j′

ZZt + gjt+ hj
)
. (4.8)

Substituting equation (4.8) into equation (4.7) and applying the coefficient comparison,
we obtain the following system of equations:

2Ej
XΣXΣ′

XEj
X − 2K̃j′

XEj
X +Φj

X −Ψj = 0,

2Ej
ZΣZ,zΣ

′
Z,zE

j
Z + 2K̃j′

ZE
j
Z +Φj

Z = 0,

− f j′
X(K̃j

X − 2ΣXΣ′
XEj

X) + 2θ̃j′XK̃j′
XEj

X + δjX − φj = 0,

f j′
Z (K̃j

Z + 2ΣZ,zΣ
′
Z,zE

j
Z) + 2µ̃j′

ZE
j
Z + δjZ = 0,

gj +
1

2
Tr(ΣXΣ′

X(2Ej
X + f j

Xf j′
X)) +

1

2
Tr(ΣZ,zΣ

′
Z,z(2E

j
Z + f j

Zf
j′
Z ))

+ f j′
XK̃j

X θ̃jX + f j′
Z µ̃Z + δj0 − ηj = 0.

(4.9)

Note that the variables in equation (4.9) are Ej
X , Ej

Z , f
j
X , f j

Z , and gj , and hj is a normalized
constant.

We argue a sufficient condition for the existence of a solution to the equations shown in

(4.9) later. If a solution exists, then we find that ST,j
t =ST ′,j

t for T ̸=T ′ because Ej
X , Ej

Z , f
j
X ,

f j
Z , and gj are computed from equation (4.9) independently of the maturity of the security.

Hence, we abbreviate this security’s price ST,j
t as Sj

t by eliminating T .

Since D
j
T=ST,j

T =Sj
T by equations (4.4) and (4.8), we can rewrite equation (4.6) as follows:

Sj
t = EQ,j

t

[∫ T

t
exp

(
−
∫ s

t
rju(Xu)du

)
Dj

s(Xs, Zs)ds+ exp

(
−
∫ T

t
rju(Xu)du

)
Sj
T

]
. (4.10)

Equation (4.10) implies that if the following equation called the transversality condition:

lim
T→∞

EQ,j
t

[
exp

(
−
∫ T

t
rju(Xu)du

)
Sj
T

]
= 0 (4.11)
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holds, then

Sj
t = lim

T→∞
EQ,j

t

[∫ T

t
exp

(
−
∫ s

t
rju(Xu)du

)
Dj

s(Xs, Zs)ds

]
. (4.12)

Equation (4.12) shows us that Sj
t uniquely exists in the case where Sj

t exists and the
transversality condition holds.

4.3 Stock Prices

In this subsection, we derive the price representation for a non-defaultable stock paying the
dividend Dj

t (Xt, Zt) defined in equation (4.3) continuously per unit of time. We denote the
stock price by S∞,j

t .
The cumulative discounted gain Gj

t for the stock from time 0 to time t is provided as

Gj
t =

∫ t

0
exp

(
−
∫ s

0
rju(Xu)du

)
Dj

s(Xs, Zs)ds+ exp

(
−
∫ t

0
rju(Xu)du

)
S∞,j
t . (4.13)

Under Qj , Gj
t must be a martingale so that Gj

t = EQ,j
t [Gj

T ] for T > t. Applying this
equation to equation (4.13) leads to the following equation:

S∞,j
t = EQ,j

t

[∫ T

t
exp

(
−
∫ s

t
rju(Xu)du

)
Dj

s(Xs, Zs)ds+ exp

(
−
∫ T

t
rju(Xu)du

)
S∞,j
T

]
.

(4.14)
Here, we prove a theorem on S∞,j

t .

Theorem 1. Suppose that Sj
t exists and the transversality condition shown in equation

(4.11) holds. Then, S∞,j
t =Sj

t .

Proof. As shown above, when Sj
t exists and the transversality condition holds, Sj

t uniquely
exists. On the other hand, equation (4.6) holds for S∞,j

t according to equation (4.14). If
Sj
t ̸= S∞,j

t , then this contradicts the fact that Sj
t uniquely exists. Hence, S∞,j

t =Sj
t .

Theorem 1 and equation (4.14) provide the following corollary.

Corollary 1. When Sj
t exists and equation (4.11) holds,

lim
T→∞

EQ,j
t

[
exp

(
−
∫ T

t
rju(Xu)du

)
S∞,j
T

]
= 0. (4.15)

4.4 Sufficient Condition for a Well-defined Stock Price

In order for a stock price to be well-defined, the tansversality condition (equation (4.11))
must hold and Sj

t must exist. In this subsection, we first prove the sufficient condition of
the transversality condition for the stock price. The existence of Sj

t depends on whether a
solution to equation (4.9) exists or not. We present the conditions of the model parameters
to be satisfied for a solution to equation (4.9) to exist.

Regarding the transversality condition for the well-defined stock price, Mamaysky[14]
provides a sufficient condition in the affine framework. Even in the quadratic framework
used in this study, the sufficient condition is consistent with that of Mamaysky[14].

Theorem 2. If there exists ϵ>0 such that Dj
t (Xt, Zt)≥ ϵSj

t>0 for any t, then the transversal-
ity condition for the stock price denominated in the jth county’s currency, shown in equation
(4.11), holds.
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Proof. We denote X ′
tΦ

j
XXt + δj′XXt + Z ′

tΦ
j
ZZt + δj′ZZt + δj0 as δj(Xt, Zt) and provide ζjt as

follows:

ζjt = exp

(∫ t

0
δj(Xu, Zu)du

)
exp

(
−
∫ t

0
rj(Xu)du

)
Sj
t .

Ito’s lemma leads to the following equation:

(Dj
X +Dj

Z)S
j +

∂Sj

∂t
= (rj − δj)Sj ,

where Dj
X and Dj

Z are defined as follows:

Dj
X = (K̃j

X(θ̃j −Xt))
′ ∂

∂Xt
+

1

2
Tr

(
ΣXΣ′

X

∂2

∂Xt∂X ′
t

)
,

Dj
Z = (µ̃j

Z + K̃j
ZZt)

′ ∂

∂Zt
+

1

2
Tr

(
ΣZ,zΣ

′
Z,z

∂2

∂Zt∂Z ′
t

)
.

Applying Ito’s lemma to ζjt ,

dζjt =exp

(∫ t

0
(δj(Xu, Zu)− rj(Xu))du

)
·{(

Dj
X +Dj

Z +
∂

∂t

)
Sj
t dt+ (δj(Xt, Zt)− rj(Xt))dt+

∂Sj
t

∂X ′
t

ΣXdW̃ j
t +

∂Sj
t

∂Z ′
t

ΣZ,zdW̃
j
t

}
dt

=exp

(∫ t

0
(δj(Xu, Zu)− rj(Xu))du

)
·

(
∂Sj

t

∂X ′
t

ΣXdW̃ j
t +

∂Sj
t

∂Z ′
t

ΣZ,zdW̃
j
t

)
.

This leads to the following equation:

ζjt = ζjs+

∫ t

s
exp

(∫ h

s
(δj(Xh, Zu)− rj(Xu))du

)
·

(
∂Sj

h

∂X ′
h

ΣXdW̃ j
h +

∂Sj
h

∂Z ′
h

ΣZ,zdW̃
j
h

)
≡ ζjs+Ij

s(t).

(4.16)
Since ζjt>0, we find that Ij

s(t)>−ζjs , that is, Ij
s(t) has the lower bound −ζjs . In addition,

Ij
s(t) is a local martingale; hence, Ij

s(t) becomes a supermartingale.
Taking the expectation of equation (4.16) conditional on time Fs under the risk neutral

measure of the jth currency’s economy, we obtain the following inequality:

EQ,j
s [ζjt ] = ζjs + EQ,j

s [Ij
s(t)] < ζjs + Ij

s(s) < eϵs exp

(∫ s

0
−rj(Xu)du

)
Sj
s ,

where we use δj(Xt, Zt)≥ϵ for any t due to the relationship Dj
t (Xt, Zt)≥ϵSj

t seen in the above
inequality.

This inequality leads to the following relationship:

0 < EQ,j
s

[
exp

(∫ t

0
−rj(Xu)du

)
Sj
t

]
< e−ϵ(t−s) exp

(∫ s

0
−rj(Xu)du

)
Sj
s . (4.17)

Using equation (4.17),

lim
t→∞

EQ,j
s

[
exp

(∫ t

0
−rj(Xu)du

)
Sj
t

]
= 0. (4.18)

Equation (4.18) indicates that the transversality condition for the stock price holds.
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The existence of Sj
t is guaranteed by the existence of the solution to equation (4.9). First,

we prove the following proposition regarding the first equations in (4.9).

Proposition 1. When Ψj−Φj
X are positive definite, a matrix pair (K̃j

X ,ΣX) is observable

and a matrix pair (K̃j
X , I) is controllable where I is the identity matrix, the first equation in

(4.9) has a unique symmetric positive definite matrix solution for Ej
X .

Proof. By adding the transposition of the first equation in (4.9) to itself and multiplying it
by 1

2 , we obtain the algebraic Riccati equation as follows:

−2Ej
XΣXΣ′

XEj
X + K̃j′

XEj
X + Ej

XK̃j
X +Ψj − Φj

X = 0.

When Ψj−Φj
X are positive definite, a matrix pair (K̃j

X ,ΣX) is observable and a matrix pair

(K̃j
X , I) is controllable, the above algebraic Riccati equation has a unique symmetric positive

definite matrix solution for Ej
X (refer to Wonham[16]).

The following proposition guarantees the existence of solution f j
X for the third equation

in (4.9).

Proposition 2. When Ψj−Φj
X are positive definite, a matrix pair (K̃j

X ,ΣX) is observable

and a matrix pair (K̃j
X , I) is controllable where I is the identity matrix, the third equation

in (4.9) has a solution for f j
X .

Proof. When Ψj−Φj
X are positive definite and a matrix pair (K̃j

X ,ΣX) is observable and a

matrix pair (K̃j
X , I) is controllable, the solution Ej

X of the equation exists from Proposition

1. We must confirm that the coefficient matrix K̃j
X−2ΣXΣ′

XEj
X of f j

X in the third equation

is invertible. Here we set K̃j
X−2ΣXΣ′

XEj
X by A. Then,

Ej
XA = Ej

XK̃j
X − 2Ej

XΣXΣ′
XEj

X = −K̃j′
XEj

X +Φj
X −Ψj .

Since Ej
X is invertible by Proposition 1, we only have to confirm that −K̃j′

XEj
X+Φj

X−Ψj is

invertible to confirm that A is invertible. We denote −K̃j′
XEj

X+ Φj
X−Ψj by B. By adding B

to its transposition, B′, we obtain the following:

B+B′ = −K̃j′
XEj

X−Ej
XK̃j

X+2(Φj
X−Ψj) = −2Ej

XΣXΣ′
XEj

X = −2Ej
XΣXΣ′

XEj
X+Φj

X−Ψj .

This indicates that B+B′ is a negative definite matrix; therefore, B is invertible.

Unfortunately, we have not yet found proper sufficient conditions to guarantee the exis-
tence of solution Ej

Z in the second equation of (4.9). Moreover, even if the second equation

has a solution, that does not guarantee the existence of the solution f j
Z in the fourth equation.

In other words, the matrix Kj
Z+2ΣZ,zΣ

′
Z,zE

j
Z is not always invertible.

We suppose a class of model parameters satisfying the case where the second equation has
a solution and Kj

Z +2ΣZ,zΣ
′
Z,zE

j
Z is invertible. Then, from Proposition 1 and Proposition 2,

we can prove the following theorem on the existence of the well-defined S∞,j
t and its analytical

representation.

Theorem 3. We suppose a class of model parameters satisfying the case where the second
equation of (4.9) has a solution Ej

Z and Kj
Z + 2ΣZ,zΣ

′
Z,zE

j
Z is invertible. Furthermore, we

assume the following:

� Φj
X , Φj

Z and Ψj−Φj
X are positive definite,
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� a matrix pair (K̃j
X ,ΣX) is observable,

� a matrix pair (K̃j
X , I) is controllable where I is the identity matrix,

� δj0 > 1
4δ

′j
XΦ′−1

X δjX + 1
4δ

′j
ZΦ

′−1
Z δjZ .

Then, the non-defaultable stock price is well-defined and has the following representation:

S∞,j
t = exp

(
X ′

tE
j
XXt + f j′

XXt + Z ′
tE

j
ZZt + f j′

ZZt + gjt+ hj
)
, (4.19)

where Ej
X , Ej

Z , f
j
X , f j

Z and gj are solutions of equation (4.9) and Ej
X becomes symmetric

positive definite.

Proof. Φj
X , Φj

Z , and δj0>
1
4δ

′j
XΦ′−1

X δjX+1
4δ

′j
ZΦ

′−1
Z δjZ imply 0<Dj

t (Xt, Zt)/S
j
t . Therefore, the

transversality condition for Sj
t holds from Theorem 2. Thus, S∞,j

t =Sj
t according to Theorem

1. Consequently,

S∞,j
t = exp

(
X ′

tE
j
XXt + f j′

XXt + Z ′
tE

j
ZZt + f j′

ZZt + gjt+ hj
)
.

In the above equation, Proposition 1 guarantees the existence of the symmetric positive
definite solution Ej

X . Furthermore, at this time, the solution f j
X exists. Once we have

solutions Ej
X , Ej

Z , f
j
X , and f j

Z , g
j in the fifth equation is easily computed.

4.5 Stock Price Dynamics

We denote the well-defined stock price as defined in Theorem 3 by St. Stock price dynamics
under the physical measure P are given by

dSt

St
=
{
X ′

t

(
Ψj − Φj

X + 2Ej
XΣXΛj

x

)
Xt + Z ′

t

(
2Ej

ZΣZΛ
j
z − Φj

Z

)
Zt

}
dt

+
{(

φj′ + 2λj′
xΣ

′
XEj

X + f j′
XΣXΛj

X − δj′X

)
Xt +

(
2λj′

z Σ
′
ZE

j
Z + f j′

ZΣZΛ
j
Z − δj′Z

)
Zt

}
dt

+(f j′
ZΣZλ

j
Z + f j′

XΣXλj
X + ηj − δj0)dt+ (2X ′

tE
j
X + f j′

X)ΣXdW x
t + (2Z ′

tE
j
Z + f j′

Z )ΣZdW
z
t .

(4.20)

5 Exchange Rate Modeling

In this section, we model the dynamics of exchange rates.
When j=1, the jst country (the first and only country) is, by definition, its own home

country. When j≥2, the jth country is a foreign country.
By equation (2.5), stochastic discount factor of the jth country, Mj

t is provided as

Mj
t = exp

(
−
∫ t

0
rjsds

)
Rt = exp

(
−
∫ t

0
rjsds

)
ξj,1t ξj,2t ξj,3t . (5.1)

Here suppose that j ≥ 2. We denote the value of the jth country’s currency per the value
of one unit of the home country’s currency by F j

t . Backus et al.[2] prove that in a complete
market, F j

t is provided as the ratio of the stochastic discount factors corresponding to the
foreign and home countries as follows:

F j
t =

Mj
t

M1
t

. (5.2)
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To model exchange rate dynamics, we derive the stochastic discount factor dynamics by
applying Ito’s lemma to equation (5.1) and using equation (2.5). The process is given as
follows:

dMj
t

Mj
t

= −rjt − Λj,x
t dW x

t − Λj,y
t dW y

t − Λj,z
t dW z

t . (5.3)

By applying Ito’s lemma to equation (5.2) and using equation (5.3), we obtain the ex-
change rate dynamics as follows:

dF j
t

F j
t

=
{
r1t − rjt + (Λ1,x′

t ,Λ1,y′
t ,Λ1,z′

t )(Λ1,x′
t − Λj,x′

t ,Λ1,y′
t − Λj,y′

t ,Λ1,z′
t − Λj,z′

t )′
}
dt

+ (Λ1,x′
t − Λj,x′

t ,Λ1,y′
t − Λj,y′

t ,Λ1,z′
t − Λj,z′

t )(dW x′
t , dW y′

t , dW z′
t )′.

(5.4)

The representation given in equation (5.4) clarifies that the volatility term of exchange
rate dynamics depends on the difference between the domestic and foreign currency’s market
prices of risks corresponding to Xt, Yt, and Zt respectively. Moreover, we find that the
drift term consists of the gap between domestic and foreign interest rates and the term that
depends on the difference between the domestic and foreign currencies’ market prices of risks.

6 Invariant Transformation

When factors are unobservable, the invariant transformation gives the model a simpler form.
In this section, we demonstrate the invariant transformation to our model where it does not
change the bond and stock prices; moreover, the model becomes simpler. The transformation
also allows us to avoid over-fitting or under-fitting in implementing the estimation of param-
eters and latent factors. Dai and Singleton[6] derive the canonical form of the affine term
structure model using the invariant transformation. Regarding the QGTM, Ahn et al.[1] and
Leippold and Wu[12] provide the canonical form of their models.

First, we deal with the parallel shift transformation for Xt. We consider the transforma-
tion: X̂ = X + a for any constant vector a. This new vector of factors X̂ has the following
dynamics under P:

dX̂t = dXt = KX(θX −Xt) + ΣXdW x
t = KX((θX + a)− X̂t) + ΣXdW x

t .

As a result, θX is transformed into θ̂X=θX+a and KX and ΣX remain unchanged. From
equation (2.2), this parallel shift transforms φj into φ̂j = φj−2Ψja, ηj to η̂j=ηj+ a′Ψja−φj′a
and makes Ψj invariant. From equation (2.8), the shift transforms λj

X into λ̂j
x = λj

X−Λj
xa

with Λj
x unchanged. As for the dividend yield of stock in equation (4.3), the shift transforms

δjX into δ̂jX = δjX−2Φj
Xa, δj0 into δ̂j0=δj0+a′Φj

Xa−δj′Xa and Φj
X is invariant.

We must first confirm that the value of equation (3.4) does not change based on the above
parameter changes. In other words, we have to confirm the following equation:

X ′
tA

j
τXt + bj′τ Xt + cjτ = X̂ ′

tÂ
j
τ X̂t + b̂j′τ X̂t + ĉjτ , (6.1)

where Âj
τ , b̂

j
τ , and ĉjτ satisfy the system of ordinary differential equations (3.5), likewise Aj

τ ,
bjτ , and cjτ satisfy the same system of ordinary differential equations. Using the relationship
X̂t = Xt+a and the parameter changes as indicated above, we can prove that equation (6.1)
always holds.

We must also confirm the value of equation (4.19); specifically, we confirm whether or not
the following equation holds:

exp
(
X ′

tE
j
XXt + f j′

XXt + gjt
)
= exp

(
X̂ ′

tÊ
j
XX̂t + f̂ j′

XX̂t + ĝjt
)
. (6.2)
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where Êj
X , f̂ j

X , and ĝj satisfy the system of algebraic equations (4.9), likewise Ej
X , f j

X , and
gj satisfy the same system of equations. We can prove that equation (6.2) holds based on
the relationship X̂t = Xt+a and the parameter changes indicated above.

In this way, the parallel shift X̂=X+a does not change the model. The choice of a =−θX
leads to the dynamics of X given by

dXt = −KXXt +ΣXdW x
t . (6.3)

Next, we consider a linear transformation for Xt, or X̂ = LX for any invertible square
matrix L. Here, we assume equation (6.3) as X’s dynamics. This linear transformation
changes model parameters as follows: Ψ̂j = L′−1ΨjL−1, φ̂j = L′−1φj , K̂X = LKXL−1,
Σ̂X = LΣX , Φ̂j

X = L′−1Φj
XL−1, δ̂jX = L′−1δjX , and Λ̂j

x = Λj
xL−1. Other parameters remain

unchanged by the linear transformation of X. We also note that Ψ̂j and Φ̂j
X become positive

definite and all of the eigenvalues of K̂X are positive.
In the same way as in the case of a parallel shift, we can prove that equations (6.1)

and (6.2) hold under X̂ = LX and the parameter changes indicated above according to this
transformation. Consequently, a linear transformation X̂ = LX does not change the model.
Thus, the choice of L as Σ−1

X leads to the dynamics of X being given by

dXt = −KXXt + dW x
t , (6.4)

where all of the eigenvalues of KX are positive.
For X’s dynamics provided in equation (6.4), we demonstrate a transformation X̂ = UX

where U is an orthogonal matrix. Since this transformation is a linear transformation, the
model remains unchanged. X̂ = UX transforms equation (6.4) as

dX̂t = −UKXU−1X̂t + UdW x
t . (6.5)

In equation (6.5), we note that UKXU−1’s eigenvalues are always positive and UW x
t is

a multivariate standard Brownian motion. By applying Schur’s decomposition to KX and
choosing a proper orthogonal matrix U , we obtain the lower triangular matrix UKXU−1 with
all diagonal elements positive.

Summarizing the above, by taking a proper affine transformation for Xt, we obtain the
following Xt without changing bond and stock prices:

dXt = −KXXt + dW x
t , (6.6)

where KX is the lower triangular matrix with all diagonal elements positive.
We can also take the similar affine transformation for Yt and Zt without changing bond

and stock prices or exchange rate dynamics. As a result, we obtain simpler models for Yt and
Zt given by

dYt = −KY Yt + dW y
t ,

dZt = KZZt + dW z
t ,

(6.7)

where KY is the lower triangular matrix with all diagonal elements positive.

7 Conclusion

This work presents a joint model for bond prices, stock prices and exchange rates in multi-
currency economies by introducing a stochastic discount factor based on three types of
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risk factors: systematic factors that determine the interest rates, stock-specific factors, and
currency-specific factors. Using the quadratic Gaussian approach, we derive analytical rep-
resentations for bond and stock prices and for exchange rates. Our model has a distinctive
feature in that interest rates and dividend yields it implies capture market rates more accu-
rately under a low interest rate environment, as has been seen in many countries in recent
years.

Although this study focuses on constructing a model, it would be interesting to conduct
a simultaneous estimation of bond, equity and currency risk premiums based on our model,
using actual market data, and to disentangle the dependence between them. By including
these concepts, we will conduct an empirical study using our model in the near future.
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