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Abstract

This paper reports a novel mathematical structure of economic models with rational agents.
Taking a cash-in-advance (CIA) model as an example, I show that macroscopic conservation
and irreversibility laws, which are similar to those in thermodynamics, hold for the model.
These properties allow for defining internal energy, Helmholtz free energy, entropy, and tem-
perature. Thermodynamic relations among these quantities are also proven for the model.
Possible extensions to and implications for macroeconomic models are discussed.

1 Introduction

Social sciences have long aimed to describe the society using models. Among the social
sciences, economics is the most successful in establishing such models. Economics focuses on
quantities in society and establishes relations among them. Among the established relations
are identities such as the savings–investment identity that states that the amount of savings
equals the amount of investment. These identities are derived from the balance between
different sectors of an economy. The identity relationship between different quantities is an
important principle that supports economics as a quantitative science.

In addition to balance, the rationality of agents is another important principle for de-
veloping economic models. In the framework of the rational expectation hypothesis (Muth,
1961; Lucas, 1972), agents in a system are assumed to forecast and behave rationally. Al-
though it is unrealistic to assume that all agents perfectly know every detail of the economy
and choose the optimal action (Tversky and Kahneman, 1974; Hommes, 2011), assuming
rational agents is quite useful in constructing and analyzing models. Consequently, majority
of macroeconomic models are based on this hypothesis. In these models, rational agents
choose actions that maximize their utility, that is, total satisfaction. Micro-founded macroe-
conomic models describe the collective behavior of utility-maximizing agents. These models
have been successfully applied in economic forecasting and policy experiments (Del Negro
and Schorfheide, 2012). Hence, the mathematical structure of macroeconomic models with
rational agents deserves precise investigation.

Let us speculate over the mathematical structure that can emerge from the assumption of
rational agents. Here, I present an intuitive argument and leave a detailed proof of a model to
the following sections. Rational agents act optimally to maximize their utility. In a perfectly
competitive market, a non-optimal action leads to a decrease in utility, which is accompanied
by a loss of money. In other words, a not-so-rational agent, X, in an economy with rational
agents cannot earn money because all other agents take advantage of the non-optimality of
agent X. Strictly speaking, the profit of agent X trading with other agents in the economy is
nonpositive if the net amount of capital goods owned by agent X does not change. To further
examine the consequence of a loss, let us define the state of the economy by the amount of
money and capital owned by agent X. Even if agent X can change the state of the economy
from state A to state B, this does not necessarily mean that agent X can reverse the change.
On the contrary, as we see in the following sections, most changes are irreversible because
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agent X cannot regain the loss. This irreversibility of the loss implies that the set of states
can be regarded as an ordered set. There exists a function S(·), and S(A) ≤ S(B) is satisfied
if agent X can change the state of the economy from state A to state B.

In economics, nonpositivity and irreversibility have attracted less attention than identity
the relationship. However, the combination of identity and irreversibility is a fundamental
concept of thermodynamics (Callen, 1985; Tasaki and Paquette, 2018), which is one of the
most universal theories in physics (Einstein and Schilpp, 1979). Identity and irreversibility in
macroeconomic models can be regarded as conservation and irreversibility laws, respectively,
in thermodynamics.

The objective of thermodynamics is to describe the macroscopic properties of a system.
As an example, consider gas confined by a piston in a cylinder. We can measure the volume
and temperature of the gas and push and pull the piston to change them. Pushing the piston
decreases the volume and increases the temperature, and pulling the piston increases the
volume and decreases the temperature. The gas is the system. The volume and temperature
are the variables describing the state of the system. Pushing and pulling the piston and the
resulting change in the state of the system are called a process. A thermodynamic process
can be isothermal or adiabatic. In an isothermal process, the system is in equilibrium with
a temperature reservoir or an isothermal environment. The system exchanges heat with the
environment, and the temperature of the system converges to that of the environment. In
an adiabatic process, the system is isolated from the environment.

When the piston is pushed and pulled, the system does work on the piston and the
instruments connected to it. The first law of thermodynamics is related to the conservation
of energy: the amount of work done by the system in an adiabatic process equals the amount
of heat that the system loses. The second law of thermodynamics states the irreversibility of
some processes: a cyclic process of quickly pushing the piston and pulling it back to the same
position can raise the temperature of the system without an overall change in the volume.
In an adiabatic process, we cannot reduce the temperature of the system without decreasing
the volume. We can reduce the temperature only by bringing the system into contact with a
system or isothermal environment with a lower temperature. A temperature increase in an
adiabatic cycle means that work on the system is converted to heat and, consequently, that
the work done by the system in an adiabatic cycle is nonpositive. Whether we can change the
state of a system from A to B in an adiabatic process is determined by comparing a quantity
called entropy between these two states. A quasi-static adiabatic process—an infinitely slow
adiabatic process—does not change the entropy of the system and, consequently, is reversible.

These considerations suggest an analogy between thermodynamic systems and macroe-
conomic models. Nonpositive work in thermodynamic systems corresponds to nonpositive
profit in economic models. Thermodynamics describes the macroscopic properties of a system
that is microscopically a collection of molecules. The macroscopic properties of an economy
which is microscopically a collection of agents might be described using a thermodynamic
framework. This paper provides a novel mathematical approach to macroeconomic models
with rational agents based on identities among quantities and the nonpositivity of profit or
the irreversibility of loss. This approach allows for defining thermodynamic functions for a
simple macroeconomic model and deriving previously unknown relations.
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This paper is organized as follows. Section 2 introduces the model and derives its equi-
librium solution. Section 3 proves that the profit of a not necessarily rational agent, which is
called the government for convenience, is nonpositive. Section 4 defines infinitely slow trade
between the government and the economy, which is a quasi-static adiabatic process in terms
of thermodynamics, and derives a quantity kept constant in this process, with which entropy
is defined. Section 5 examines the behavior of the model in a constant-price environment
and shows that this is equivalent to an isothermal environment in thermodynamics. Section
6 shows that the profit of the government that trades with a system of multiple economies
is nonpositive if these economies belong to a model class. Section 7 derives thermodynamic
functions including internal energy, entropy, Helmholtz free energy, and temperature. Ther-
modynamic relations among them are also proven. Section 8 evaluates the work done in
a Carnot cycle, which exemplifies the consistency of the derived thermodynamic functions.
Section 9 summarizes the results and discusses possible extensions and economic implications.

2 CIA model

I consider a cash-in-advance (CIA) model (Lucas, 1980, 1982) with money, goods, and land.
The model contains a representative household, a representative firm, a government, and a
central bank.

In maximizing consumption and minimizing labor to earn the money needed for consump-
tion, the household maximizes its own utility. Let

U =
∞
∑

t=1

βt[u(Ct)− d(Lt)] (1)

be the lifetime utility function of the representative household, where Ct and Lt are the
consumption and labor during period t, respectively, 0 < β < 1 is the discount factor, and
u(·) and d(·) are increasing concave and increasing convex functions, respectively; that is,

u′(C) ≥ 0, (2)

u′′(C) ≤ 0, (3)

d′(L) ≥ 0, (4)

d′′(L) ≥ 0. (5)

The household owns money Mt−1 at the beginning of period t, earns money WtLt, consumes
PtCt, and saves money Mt for consumption in the next period, where Pt, Mt, and Wt are the
price level, the nominal amount of money, and the nominal wage, respectively. In addition,
the household owns land At that is lent to the firm at rental price Rt and used in production,
and purchases it from the government or sells it to the government at land price Qt at the
beginning of period t. The government does not use the land it owns. Land is capital that
does not depreciate. Thus, the budget constraint of the household in period t is

PtCt +Qt(At − At−1) +Mt = WtLt +RtAt +Mt−1, (6)
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and the CIA constraint is
PtCt +Qt(At − At−1) ≤ Mt−1. (7)

The cash which the government uses to purchase land in period t can be spent by the
household later in the period.

The central bank provides the money needed for government purchases of land. The
nominal money supply is

Mt = Mt−1 +Qt(At−1 − At). (8)

Although for simplicity I refer to the agent purchasing land and increasing debt as the
government and the central bank, the present model applies to any agent that can purchase
land only by increasing debt. In the following, I characterize what this agent can do in the
economy.

The production function of the representative firm is assumed to be

Yt = Aty(lt), (9)

where lt = Lt/At and y(l) is a positive increasing concave function of l, that is,

y(0) ≥ 0, (10)

y′(l) ≥ 0, (11)

y′′(l) ≤ 0. (12)

Because the profit of the firm is PtYt −WtLt − RtAt, the first-order condition of optimality
is given by

Wt =Pt
∂Yt

∂Lt

= Pty
′(lt), (13)

Rt =Pt
∂Yt

∂At

= Ptŷ(lt), (14)

where I define ŷ(l) = y(l) − ly′(l). Note that WtLt + RtAt = PtYt. Rt is an increasing
nonnegative function of lt because

ŷ(0) = y(0) ≥ 0, (15)

dŷ(l)

dl
= y′(l)− y′(l)− ly′′(l) ≥ 0. (16)

Because the model describes a closed economy, the goods market clearing condition is

Ct = Yt. (17)

The Lagrangian of the optimization problem for the household is given by

Λ =
∞
∑

t=1

βt{u(Ct)− d(Lt) + λt[WtLt +RtAt +Mt−1 − PtCt −Qt(At − At−1)−Mt]

+ ξt[Mt−1 − PtCt −Qt(At − At−1)]}. (18)
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The first-order condition of optimality is

∂Λ

∂Ct

= u′(Ct)− Ptλt − Ptξt = 0, (19)

∂Λ

∂Lt

= Wtλt − d′(Lt) = 0, (20)

∂Λ

∂Mt

= βλt+1 − λt + βξt+1 = 0, (21)

∂Λ

∂At

= Rtλt −Qtλt + βQt+1λt+1 −Qtξt + βQt+1ξt+1 = 0. (22)

The equations are rearranged as

d′(Lt) =
βWtu

′(Ct+1)

Pt+1

, (23)

Qtu
′(Ct)

Pt

=
β(Qt+1 +Rt)u

′(Ct+1)

Pt+1

, (24)

λt =
βu′(Ct+1)

Pt+1

, (25)

ξt =
u′(Ct)

Pt

−
βu′(Ct+1)

Pt+1

. (26)

By replacing variables and functions withA,M , C̃(A), L̃(A), P̃ (A,M), Q̃(A,M), R̃(A,M),
W̃ (A,M), λ̃(A,M), and ξ̃(A,M) in Eqs. 7, 9, 23, 24, 25, and 26, we obtain the steady-state
equations

P̃ (A,M) =
M

C̃(A)
, (27)

C̃(A) =Ay(l̃(A)), (28)

d′(L̃(A)) =βy′(l̃(A))u′(C̃(A)), (29)

Q̃(A,M) =
βR̃(A,M)

1− β
=

βMŷ(l̃(A))

(1− β)C̃(A)
≡ Mq̃(A), (30)

λ̃(A,M) =
βu′(C̃(A))C̃(A)

M
, (31)

ξ̃(A,M) =
(1− β)u′(C̃(A))C̃(A)

M
, (32)

where l̃(A) = L̃(A)/A. The CIA constraint binds at the steady state because ξ̃(A,M) > 0.
In the following, steady-state values are indicated by tilde.

First, let us examine the dependence of l̃(A) on land A. Rearranging Eq. 29 yields

d′(l̃(A)A) = βy′(l̃(A))u′(Ay(l̃(A))). (33)

6



Both increasing A and increasing l̃(A) increase the left-hand side and decrease the right-hand
side of Eq. 33 (Eqs. 3, 5, and 12). Thus, if A = A0 and l̃(A) = l0 satisfy Eq. 33, l ≥ l0 satisfies
Eq. 33 for A ≤ A0, and l ≤ l0 satisfies Eq. 33 for A ≥ A0; that is,

dl̃(A)

dA
=

d

dA

(

L̃(A)

A

)

≤ 0. (34)

Second, let us examine the dependence of q̃(A) on A. The derivative of the denominator
of Eq. 30 with respect to A is

d

dA
[Ay(l̃(A))] = y(l̃(A))− Ay′(l̃(A))

dl̃(A)

dA
≥ 0, (35)

which follows from Eqs. 10, 11, and 34. The numerator is a decreasing function of A,

d

dA
ŷ(l̃(A)) ≤ 0 (36)

which follows from Eqs. 16 and 34. Thus, we have

dq̃(A)

dA
≤ 0. (37)

Last, let us examine what happens when the government purchases or sells land. Let us
assume that the household solves the optimization problem in period t′ as follows: At′−1 is
the initial condition; At′ is determined by the government’s purchase in period t′; and the
household expects that At = At′ = A for t ≥ t′. In other words, the household assumes that
the government does not purchase or sell land in period t > t′. The optimality conditions
(Eqs. 23, 24, 25, and 26) are satisfied by

Ct =C̃(A), (38)

Lt =L̃(A), (39)

Pt =P̃ (A,M), (40)

Qt =Q̃(A,M), (41)

λt =λ̃(A,M), (42)

ξt =ξ̃(A,M) (43)

for t ≥ t′ under the condition Mt′ = M . Hence, the model household instantaneously jumps
to the steady state in response to the government’s purchase or sale of land.

3 The government’s profit cannot be positive

Here, I prove that the government’s profit is equal to or less than zero in a sequence of
purchases and sales if the amount of land owned by the government at the beginning of the
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sequence, t = 0, equals that at the end of the sequence, t = τ . Let us assume that the time
course of the government’s purchases is At−1 − At (1 ≤ t ≤ τ) and that A0 = Aτ . Inserting
Eq. 30 with A = At and M = Mt into Eq. 8 yields

Mt =
Mt−1

1− q̃(At)(At−1 − At)
. (44)

The government’s profit in the sequence is

Π =M0 −Mτ

=M0 −M0

τ
∏

t=1

1

1− q̃(At)(At−1 − At)

=M0 −M0 exp I, (45)

where

I =
τ
∑

t=1

f [q̃(At)(At − At−1)] (46)

and f(x) = − log(1 + x). Because f(x) is a convex function, we have

f(x) ≥ f(0) + f ′(0)x = −x. (47)

Let us define a(t) by
a(t) = A⌊t⌋ + (A⌊t⌋+1 − A⌊t⌋)(t− ⌊t⌋), (48)

where ⌊t⌋ is the greatest integer less than or equal to t. Using these functions and Eq. 37,
we obtain

I =

∫ τ

0

f

(

q̃(A⌊t⌋+1)
d

dt
a(t)

)

dt

≥−

∫ τ

0

q̃(A⌊t⌋+1)
d

dt
a(t) dt

≥−

∫ τ

0

q̃(a(t))
d

dt
a(t) dt

=−

∫ a(τ)

a(0)

q̃(a) da = 0. (49)

Therefore, combining it with Eq. 45, we have

Π ≤ 0. (50)

Planck’s principle, a version of the second law of thermodynamics, states that the work
done by a system in an adiabatic cycle is nonpositive. If profit in the present model corre-
sponds to work in thermodynamics, we can regard a sequence of purchases and sales with
A0 = Aτ as an adiabatic cycle. Moreover, Eq. 50 implies that a sequence of purchases and
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sales of land between the government and the economy can be regarded as an adiabatic pro-
cess even if A0 = Aτ is not satisfied. Because an adiabatic process occurs in a system isolated
from an external environment, it is reasonable to regard a sequence of purchases and sales in
an economy isolated from other economies as an adiabatic process.

In the following, I specify the economy by assuming

u′(C) =C−η, (51)

d′(L) =µLγ, (52)

y(l) =l1−α, (53)

where η, γ, µ, and α are constants satisfying 0 < η ≤ 1, γ > 0, µ > 0, and 0 < α < 1.
Equation 53 defines the Cobb-Douglas production function. The steady-state solution is

C̃(A) = θAν , (54)

L̃(A) = θ1/(1−α)Aκ, (55)

P̃ (A,M) = θ−1MA−ν , (56)

Q̃(A,M) = ζMA−1, (57)

where

ζ =
αβ

1− β
, (58)

ν =
α(γ + 1)

α + γ + η(1− α)
, (59)

κ =
α(1− η)

α + γ + η(1− α)
, (60)

θ =

(

β

µ
(1− α)

)
1−α

α+γ+η(1−α)

. (61)

We note that 0 < ζ < 1, 0 < ν < 1, 0 < κ < 1, and θ > 0. For the model specified by
Eqs. 51, 52, and 53, combining Eq. 44 and q̃(A) = ζA−1 gives

Mt =
Mt−1

1− ζ(At−1

At
− 1)

. (62)

4 Quasi-Static adiabatic process

Although the government’s profit cannot be positive, the profit may be close to zero if the
government does its best not to change the land price, which can be achieved by infinitely
slow trade between the government and the economy. In this case, the relation f(x) = −x
exactly holds, and

I =−

∫ Aτ

A0

q̃(a) da. (63)
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Thus, we have

Mfinal = Minitial exp

(

−

∫ Afinal

Ainitial

q̃(A) dA

)

. (64)

Performing infinitely slow purchases and sales from Ainitial to Afinal and from Afinal to
Ainitial in sequence results in the money supply

Minitial exp

(

−

∫ Afinal

Ainitial

q̃(A) dA−

∫ Ainitial

Afinal

q̃(A) dA

)

= Minitial, (65)

that is, the money supply and the price level do not change, which means that the govern-
ment’s profit in this cycle equals zero. Hence, this can be regarded as a quasi-static adiabatic
process in thermodynamics because work done by a system in a quasi-static adiabatic cycle
equals zero. Rearranging the terms of Eq. 64 yields

Mfinal exp

(
∫ Afinal

Areference

q̃(A) dA

)

= Minitial exp

(
∫ Ainitial

Areference

q̃(A) dA

)

, (66)

where Areference is an arbitrary reference point. This suggests that

s(A,M) = M exp

(
∫ A

Areference

q̃(a) da

)

(67)

is conserved in a quasi-static adiabatic process.
For the model specified by Eqs. 51, 52, and 53, we have

Mfinal =Minitial

(

Ainitial

Afinal

)ζ

, (68)

s(A,M) =MAζ

=θP (A,M)Aν+ζ , (69)

where I used Eq. 56 and set Areference to 1.

5 CIA model in a constant-price environment

Because adiabatic processes have been characterized in previous sections, I next consider
isothermal processes (Callen, 1985; Tasaki and Paquette, 2018). In thermodynamics, a system
is in an environment with a fixed temperature at the beginning and end of an isothermal
process. In the present model, to determine what corresponds to an isothermal process, we
must define an environment with a fixed temperature.

If a small economy trades goods with an infinitely large economy, the government’s pur-
chases of land in the small economy minimally affect the price level of goods. Let us assume
that the goods are traded between two economies, and that land is not. The large economy
can be regarded as an environment or a reservoir to keep the price level constant. The price
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level in the small economy is assumed to be fixed to the price level of the large economy,
that is, Pt = P . Hence, I define the environment as a large economy in which the price level
is constant. This is equivalent to regarding the price level as temperature. As we will see in
the following sections, this equivalency can be justified for some models.

An isothermal process is different from an adiabatic process in two ways. First, in an
isothermal process, consumption in the small economy does not necessarily equal its produc-
tion. The small economy may sell goods to the large economy or buy goods from the large
economy. Therefore, the market clearing condition (Eq. 17) does not hold. Second, in an
isothermal process, two economies trade goods between them so that the amount of money
owned by the household of the small economy is not constrained by Eq. 8. The money issued
by the central bank may be passed from the small economy to the large economy, and the
small economy may pass money from the large economy to the government.

However, in the steady state, a small economy trading goods with a large economy con-
sumes the same amount of goods as that produced by itself. In other words, the small
economy is identical to an isolated economy or an economy in an adiabatic process. The
steady state of a small economy trading goods with a large economy is given by Eqs. 28 and
29 and

M̃(A,P ) =PC̃(A), (70)

Q̃(A,P ) =
βR̃(A,P )

1− β
=

βP ŷ(l̃(A))

1− β
. (71)

The utility function and budget constraint of the household of the small economy are the
same as Eqs. 1 and 6, respectively. If the CIA constraint binds for period t′, that is, ξt′ > 0,
and At = A for t ≥ t′, then

Ct =







Mt′−1 +Qt′(At′−1 − A)

P
t = t′

Ct = C̃(A) t ≥ t′ + 1
, (72)

Lt =L̃(A) t ≥ t′, (73)

Mt =M̃(A,P ) t ≥ t′, (74)

Qt =







Q̃(A,P )u′(C̃(A))

u′(Ct′)
t = t′

Q̃(A,P ) t ≥ t′ + 1

(75)

is the solution. Thus, once the CIA constraint binds, the economy jumps to the steady-state
solution in the next period. If the CIA constraint does not bind for period t′, that is, ξt′ = 0,
we see from Eq. 26

u′(Ct′) = βu′(Ct′+1). (76)

Combining this equation with Eq. 24 reveals

Qt′ = Qt′+1 +Rt′ . (77)
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From Eq. 43, whether the CIA constraint binds for period t is determined by the sign of

ξt =
u′(Ct)− βu′(Ct+1)

P
. (78)

Thus, the CIA constraint does not bind if Ct > u′−1(βu′(C(A))) > C̃(A). For the model
specified by Eqs. 51, 52, and 53, the CIA constraint does not bind if Mt−1 > β−1/ηM̃(A,P ) >
M̃(A,P ).

Let us assume that the government purchases or sells land in period t′ and that the
household expects At = At′ = A for t ≥ t′. Also let us assume that t′′ ≥ t′ is the first period
during which the CIA constraint binds. From Eq. 77, we obtain

Mt′′ + P
t′′
∑

t=t′

(Ct − Yt) = Mt′−1 +Qt′(At′−1 − A) ≡ M̂, (79)

where

Qt′ = Qt′′ +
t′′−1
∑

t=t′

Rt ≥ Qt′′ =
Q̃(A,P )u′(C̃(A))

u′(Ct′′)
≥ Q̃(A,P ) (80)

if Ct′′ ≥ C̃(A).
Next, I examine whether or not increasing Mt′−1 from its steady-state value is advanta-

geous in increasing the government’s profit, which is maximized if M̂ is minimized. Because
setting Mt′−1 to a value larger than its steady-state value could increase Qt′ , the government
might profit from increased Mt′−1 by selling land. On the contrary, in the following, I prove
that M̂ is an increasing function of Mt′−1, implying that Mt′−1 should be minimized to max-
imize the government’s profit. Therefore, the government’s profit is maximized when the
government purchases and sells land in small amounts, in keeping with the CIA constraint
binding.

Ct (t
′ < t ≤ t′′) is uniquely determined by Ct′ with Eq. 76. Note that t′′ is the first period

during which the sign of Eq. 78 is positive. Also, Lt (t
′ ≤ t < t′′) is determined by Ct+1 and,

thus, by Ct′ with Eq. 23. Because d′(Lt) and Wt are increasing and decreasing functions of
Lt, Eq. 23 has a unique solution for Lt. For t = t′′, Lt′′ = L̃(A) follows from Eq. 73. Thus,

Ct′ uniquely determines Qt′ = Qt′′ +
∑t′′−1

t=t′ Rt. Ct is an increasing function of Ct′ ; thus, it
uniquely determines the behavior of the household from period t′ to t′′. Next, let us examine
the dependence of Ct − Yt (t

′ ≤ t ≤ t′′) on Ct+1. Differentiating it yields

∂

∂Ct+1

[Ct − Yt] =
βu′′(Ct+1)

u′′(Ct)
− y′

(

Lt

A

)

∂Lt

∂Ct+1

, (81)

where I used Eq. 76. Combining Eqs. 13 and 23 and differentiating it, we have

∂Lt

∂Ct+1

=
βy′
(

Lt

A

)

u′′(Ct+1)

d′′(Lt)− β 1
A
y′′
(

Lt

A

)

u′(Ct+1)
< 0. (82)

For t = t′′, this equals zero. Hence, Ct − Yt (t
′ ≤ t ≤ t′′) is an increasing function of Ct+1

and, thus, an increasing function of Ct′ . Mt′′ = M̃(A,P ) holds from Eq. 74. Therefore, M̂ is
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an increasing function of Ct′ if t
′′ is fixed. If u′(Ct′′)− βu′(C̃(A)) = 0, both t′′ and t′′ +1 can

be regarded as the first period during which the CIA constraint binds. Because the value of
M̂ is identical in both cases, M̂ is a continuous function of Ct′ even at the point at which t′′

changes. Thus, M̂ is a monotonically increasing function of Ct′ .
Let us assume that two different values of Mt′−1 correspond to the same value of M̂ ,

resulting in a unique value of Ct′ and, thus, Qt′ , which contradicts with non-unique Mt′−1.
Thus, M̂ is a monotonic function of Mt′−1. If t

′ = t′′, rearranging Eq. 79 yields

M̂ = Mt′−1 +
Q̃(A,P )u′(C̃(A))

u′(M̂/P )
(At′−1 − A). (83)

For A > At′−1, this equation indicates that M̂ is an increasing function of Mt′−1 because u(·)
is a concave function. Because M̂ is a monotonic function of Mt′−1 even for t′ 6= t′′, M̂ is an
increasing function of Mt′−1 for any Mt′−1. Therefore, increasing Mt′−1 does not increase the
government’s profit from selling land.

In the following, I show that the government’s profit cannot be positive in the constant-
price environment. The analysis concentrates on the case in which Mt′−1 equals its minimal,
that is, its steady-state value. Although solving Eq. 75, that is,

Qtu
′

(

Mt−1 +Qt(At−1 − At)

P

)

= Q̃(A,P )u′(C̃(A)), (84)

is needed to calculate the profit, this equation cannot be solved in an explicit form. However,
the profit

Π =
τ
∑

t=1

Qt(At − At−1) (85)

can be evaluated by using

Π̂ =
τ
∑

t=1

Q̂t(At − At−1) (86)

where Q̂t is the solution to

Q̂tu
′

(

Mt−1

P

)

= Q̃(A,P )u′(C̃(A)) (87)

or
Q̂tu

′(C̃(At−1)) = Q̃(At, P )u′(C̃(At)). (88)

Because u′(·) is a monotonically decreasing function, Q̂t ≤ Qt when At−1 − At ≥ 0, and
Q̂t ≥ Qt when At−1 − At ≤ 0. Thus, we have

Π ≤ Π̂. (89)

Next, I prove that Π̂ ≤ 0. The land price in the steady state in the constant-price envi-
ronment, Q̃(A,P ), is given by Eq. 71, whose differentiation with respect to A is nonpositive
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from Eq. 36. From Eq. 35, the differentiation of the consumption in the steady state (Eq. 28),
C̃(A), with respect to A is nonnegative . If At−1 ≤ a ≤ At, because u

′(C̃(At)) ≤ u′(C̃(At−1)),
we obtain Q̂t ≤ Q̃(At, P ) ≤ Q̃(a, P ) from Eq. 88. Similarly, if At ≤ a ≤ At−1, because
u′(C̃(At−1)) ≤ u′(C̃(At)), we obtain Q̃(a, P ) ≤ Q̃(At, P ) ≤ Q̂t from Eq. 88. Hence, defining
a(t) by Eq. 48, we have

Π̂ =

∫ τ

0

Q̂⌊t⌋+1
d

dt
a(t) dt

≤

∫ τ

0

Q̃(a(t), P )
d

dt
a(t) dt

=

∫ a(τ)

a(0)

Q̃(a, P ) da = 0, (90)

which leads to Π ≤ 0. Therefore, the government cannot profit from an economy that
trades goods with an infinitely large economy. In terms of thermodynamics, this statement
is equivalent to Kelvin’s principle, another version of the second law, which states that work
done by a system in an isothermal cycle cannot be positive.

A quasi-static isothermal process can also be defined. The money that the government
gains from the household in the limit of infinitely slow trading between the government and
the economy is given by

Π =

∫ Afinal

Ainitial

Q̃(A,P ) dA

=

∫ Afinal

Ainitial

PC̃(A)q̃(A) dA. (91)

This profit is the largest that the government can gain from the economy in a constant-
price environment, which is proven as follows. Let us assume that the government can gain
a larger profit Π′ > Π by trading land to change the amount of land that the household
owns from Ainitial to Afinal. The profit of the isothermal cycle composed of the process with
profit Π′ starting from Ainitial to Afinal and the reversed quasi-static process from Afinal to
Ainitial is Π′ − Π > 0, which contradicts with the nonpositivity of the profit. Thus, Eq. 91
can be regarded as the maximal work done by a system in equilibrium with an isothermal
environment.

For the model specified by Eqs. 51, 52, and 53, the steady-state solution is given by
Eqs. 54, 55, and

M̃(A,P ) = θPAν , (92)

Q̃(A,P ) = ζθPAν−1, (93)

where I rearranged the terms of Eqs. 56 and 57. The maximal profit of the government is
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given by

Π =

∫ Afinal

Ainitial

PC̃(A)q̃(A) dA

=
ζ

ν
θP (Aν

final − Aν
initial). (94)

6 Multi-economy system

Let us consider n ≥ 2 economies trade with each other. We assume that these economies
trade goods but not land and that people cannot move among economies. The budget and
the CIA constraints are assumed for each economy. All economies share the same price level
of goods. Like an economy trading with a large economy, in the steady state, each economy
is identical to the isolated economy, that is, each economy consumes the same amount of
goods as that produced by itself. If the CIA constraint binds for any economy in period t′,
the economies converge to the steady state in period t′ + 1. In this case, the land price in
economy i is determined by

Qt,i =
βi

1− βi

Mtŷi(l̃i(At,i))
∑n

j=1At,jyj(l̃j(At,j))
, (95)

where Mt is the total amount of money owned by households of the economies and

ŷi(l) = yi(l)− ly′i(l). (96)

Assuming that the land owned by the household of economy i changes from At−1,i to At,i,
the total amount of money is given by

Mt = Mt−1 +
n
∑

i=1

Qt,i(At−1,i − At,i) (97)

which is rearranged to give

Mτ =M0 exp

[

τ
∑

t=1

f

(

n
∑

i=1

Qt,i

Mt

(At,i − At−1,i)

)]

≥M0 exp

[

−

τ
∑

t=1

n
∑

i=1

Qt,i

Mt

(At,i − At−1,i)

]

, (98)

where Eq. 47 is used.
In the following, I consider the multi-economy system of the models specified by Eqs. 51,

52, and 53 with identical utility and production functions. Inserting Eq. 95 into Eq. 98, we
have

log
Mτ

M0

≥− ζ

τ
∑

t=1

∑n
i=1 A

ν−1
t,i (At,i − At−1,i)
∑n

i=1 A
ν
t,i

. (99)
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Defining ai(t) by
ai(t) = A⌊t⌋,i + (A⌊t⌋+1,i − A⌊t⌋,i)(t− ⌊t⌋), (100)

we have

log
Mτ

M0

≥− ζ

∫ τ

0

∑n
i=1 ai(⌊t⌋+ 1)ν−1 dai(t)

dt
∑n

i=1 ai(⌊t⌋+ 1)ν
dt

≥− ζ

∫ τ

0

∑n
i=1 ai(t)

ν−1 dai(t)
dt

∑n
i=1 ai(t)

ν
dt

=−
ζ

ν

[

log

(

n
∑

i=1

ai(t)
ν

)]τ

0

= 0 (101)

if A0,i = Aτ,i.
Hence, the government cannot profit from the model economies even if these economies

trade goods. As with the single economy, infinitely slow trading between the government
and the economies is reversible in the multi-economy system. In other words, if infinitely
slow trading between the government and the economies with states (P,A1), . . . , (P,An)
changes the amounts of land to A′

1, . . . , A′
n, the price level at the end of the process, P ′,

is unique. This statement is proven as follows. Let us assume that the price level can be
P ′ and P ′′. Then, the government can change the set of states from (P ′, A′

1), . . . , (P ′, A′
n)

to (P ′′, A′
1), . . . , (P ′′, A′

n) and vice versa. Therefore, the government can profit from the
economies if P ′ 6= P ′′, which contradicts with Eq. 101.

The government’s nonpositive profit allows us to discriminate whether a set of states
of isolated economies can be made from another set of states by the government. In the
following, the first set of states is denoted by (P

(1)
1 , A

(1)
1 ), . . . , (P

(1)
n , A

(1)
n ) and the sec-

ond set by (P
(2)
1 , A

(2)
1 ), . . . , (P

(2)
n , A

(2)
n ). To compare two sets of states, let us assume

the following process with infinitely slow trade between the government and the economies.
First, the government sells or purchases land of isolated economies to set the price levels
of all economies to P (1) and P (2) for the first and second sets, respectively. Now we have

(P (1), A
(1)
1

′
), . . . , (P (1), A

(1)
n

′
) and (P (2), A

(2)
1

′
), . . . , (P (2), A

(2)
n

′
). Second, in allowing the sec-

ond set of economies to trade goods with each other, the government sells and purchases land
to set the amount of land of economy i of the second set to that of economy i in the first set,
A

(1)
i . Then, the states of the second set of economies are (P (2)′, A

(1)
1 ), . . . , (P (2)′, A

(1)
n ). P (2)′

is uniquely determined by the sets of states at the beginning of the process. If P (1) ≥ P (2)′,
the government can bring the states of the second set of economies to those of the first
set of the economies. If P (1) ≤ P (2)′, the government can bring the states of the first set of
economies to those of the second set of economies. If the government can bring the economies
from the first set of states to the second set of states and vice versa, it cannot profit from
the circle from the first set to the first set through the second set because Eq. 101 holds.
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7 Thermodynamic functions

We have seen that in both an economy isolated from a larger one and an economy trading
with a larger one, the government’s profit is nonpositive given that no net change occurs in
the amount of land owned by the household. We have also seen that the government’s profit
is nonpositive in a multi-economy system under the same condition. These results lead us
to the similarity of the work done by a thermodynamic system and the government’s profit.
The nonpositivity of work in a cycle underlies the thermodynamic functions (Tasaki and
Paquette, 2018).

Having formulated adiabatic and isothermal processes, here I derive thermodynamic func-
tions of the model specified by Eqs. 51, 52, and 53. Let us assume that T = P 1/σ corresponds
to the temperature of the system. In the following, I specify the state of the economy with T
and A. Because the work done by a system is given by the difference in the internal energy
(Callen, 1985; Tasaki and Paquette, 2018), using Eq. 56, the internal energy of the system
can be defined by

U(T ;A) = M + c = θT σAν + c, (102)

where c is a constant set to 0 in the following. Because the entropy of a system does not
change in a quasi-static adiabatic process, Eq. 69 suggests that the entropy must be in the
form of

S(T ;A) = g(θT σAν+ζ). (103)

Here I assume that g(x) = ωxρ. Requiring the thermodynamic relation

∂

∂T
U(T ;A) = T

∂

∂T
S(T ;A) (104)

(Callen, 1985) to hold, we have

ρ =
ν

ν + ζ
, (105)

σ =1 +
ν

ζ
, (106)

ω =ρ−1θ
ζ

ν+ζ , (107)

where 0 < ρ < 1, σ > 1, and ω > 0. Thus, the entropy is given by

S(T ;A) =

(

1 +
ζ

ν

)

θT
ν
ζAν . (108)

The Helmholtz free energy is defined by

F (T ;A) =U(T ;A)− TS(T ;A)

=−
ζ

ν
θT σAν (109)
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(Kittel and Kroemer, 1980; Callen, 1985; Tasaki and Paquette, 2018). The maximal work
calculated from the difference in the Helmholtz free energy

Π =
ζ

ν
θT σ(Aν

final − Aν
initial) (110)

equals the maximal profit (Eq. 94) in the constant-price environment.
The entropy as a function of U and A is given by

S(U,A) = ωUρAρζ . (111)

This coincides with the fundamental relation for a photon gas, S = ωU3/4V 1/4 (Kittel and
Kroemer, 1980), if A = V , ρ = 3/4, and ζ = 1/3, which are achieved in the limit of γ → 0
and η → 0.

Introducing the variable N to represent the size of the system, which corresponds to the
population in the economy, yields

S(U,A,N) = ωN

(

U

N

)ρ(
A

N

)ρζ

. (112)

In terms of thermodynamics, P and T are intensive variables, and U , F , S, M , A, and N
are extensive variables. It is easily proven that entropy monotonically increases with respect
to U , is concave with respect to U , A, and N , and is a homogeneous function of degree 1,
that is,

∂

∂U
S(U,A,N) > 0, (113)

S(λU, λA, λN) = λS(U,A,N), (114)

S(U1 + U2, A1 + A2, N1 +N2) ≥ S(U1, A1, N1) + S(U2, A2, N2), (115)

which are major properties of thermodynamic functions. If S(U1, A1) < S(U2, A2), the
government can bring the state of the economy from (U1, A1) to (U2, A2), but not vice versa.

The entropy of an isolated system can also be used to judge whether the government can
change the state of a multi-economy system from one to another. Comparing the summation
of the entropies of a set of economies with that of another set of economies, we can determine
whether the government can bring the system from one to another (Tasaki and Paquette,
2018). Let us define the entropy of two sets of states by

S(1) =
n
∑

i=1

S(U
(1)
i , A

(1)
i , Ni), (116)

S(2) =
n
∑

i=1

S(U
(2)
i , A

(2)
i , Ni). (117)

If S(1) ≥ S(2), the first set can be made from the second set, and if S(1) ≤ S(2), the second
set can be made from the first set.
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In thermodynamics, the Legendre transform of internal energy gives the Helmholtz free
energy. Similarly, the Legendre transform of U(S,A,N) as a function of S is defined by

min
S

[U(S,A,N)− TS] =min
S

(

ω−1/ρN

(

S

N

)1/ρ(
A

N

)−ζ

− TS

)

=−
ζ

ν
θT σN

(

A

N

)ν

=F (T ;A,N), (118)

which recovers the Helmholtz free energy.

8 Work done in a Carnot cycle

Let us evaluate the government’s profit from purchasing land from an economy in environ-
ments with price levels PH and PL, where PH > PL (Fig. 1). In the first step, the amount
of land owned by the household of an economy is A1, and the economy is in an environment
with a price level PH . In the second step, the government in this environment increases the
household-owned land to A2, where A2 > A1. In the third step, the economy is dissociated
from the environment and the price level is changed from PH to PL by a quasi-static adiabatic
process. Because Eq. 69 is constant in a quasi-static adiabatic process, the amount of land
owned by the household, A3, at the price level PL is defined by

θPHA
ν+ζ
2 = θPLA

ν+ζ
3 . (119)

In the fourth step, in the environment with the price level PL, where A4 < A3, the government
decreases the amount of household-owned land to A4. In the fifth step, the government again
dissociates the economy from the environment and changes the price level from PL to PH

through a quasi-static adiabatic process. To restore the amount of household-owned land to
A1 at the end of the fifth step, A4 must satisfy

θPLA
ν+ζ
4 = θPHA

ν+ζ
1 . (120)

The state of the economy returns to the initial state, thus completing a Carnot cycle. The
money that the economy gains from the environment with price level PH is given by the
summation of the government’s profit and the increase in the amount of money owned by
the economy from the beginning to the end of the process, that is,

∆MH =
ζ

ν
θPH(A

ν
2 − Aν

1)− θPHA
ν
1 + θPHA

ν
2

=

(

1 +
ζ

ν

)

θPH(A
ν
2 − Aν

1) > 0. (121)

Similarly, the money that the economy loses to the environment with price level PL is

∆ML =

(

1 +
ζ

ν

)

θPL(A
ν
3 − Aν

4) > 0. (122)
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Figure 1: Carnot cycle. The following parameter values are used: γ = 0.5, β = 0.8, µ = 1,
α = 0.5, and η = 0.5.

∆MH − ∆ML is the work done in the Carnot cycle and the amount of money that the
government gains from the environment through the economy. This can also be calculated
using the thermodynamic functions as

F (TH ;A1)− F (TH ;A2) + U(TH ;A2)− U(TL;A3)

+ F (TL;A3)− F (TL;A4) + U(TL;A4)− U(TH ;A1)

=

(

1 +
ζ

ν

)

θT σ
H(A

ν
2 − Aν

1) +

(

1 +
ζ

ν

)

θT σ
L (A

ν
4 − Aν

3)

=∆MH −∆ML, (123)

where we define TH = P
1/σ
H and TL = P

1/σ
L . Using Eqs. 119 and 120, the ratio of the money

gained and lost by the economy in environments with price levels PH and PL is

∆MH

∆ML

=
PH(A

ν
2 − Aν

1)

PL(Aν
3 − Aν

4)

=
TH

TL

, (124)

which coincides with the definition of temperature in thermodynamics.

9 Discussion

In the present model, the government debt equals the money supply (Table 1). This identity
allows us to regard the money supply as the internal energy and the government’s profit
as the work. The conservation of the amount of money corresponds to the conservation of
energy, that is, the first law of thermodynamics.

The second law of thermodynamics corresponds to the nonpositivity of profit. A non-
optimal action of an agent in any economy with optimal agents leads to nonpositive profit
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Table 1: Correspondence of thermodynamics and macroeconomics in the present model
Thermodynamics Internal energy U Work W Temperature T

Macroeconomics Money supply M Profit Π Power of price P 1/σ

taken advantage of by others. The nonpositivity of profit is found in a perfectly competitive
market.

The conservation of a quantity in a system and the irreversibility of the flow of the
quantity allow the formalization of thermodynamics (Tasaki and Paquette, 2018). Hence,
thermodynamic functions should be derived for other macroeconomic models that satisfy
these two properties. Let us note that, although thermodynamic functions are defined for
equilibrium states, the system does not have to be in equilibrium at every instant of the
process for the laws of thermodynamics to hold. For example, the process that first dissociates
an economy from an environment, second purchases and sells goods in the economy, and
third brings the economy in contact with the environment is an isothermal process that is
not in equilibrium with the environment in the middle of the process. Even in this case,
the government’s maximal profit is given by the Helmholtz free energy. Because an agent
cannot profit from an economy with rational agents, checking whether a model satisfies these
two laws can be used to test the soundness of the model. This procedure is like testing
the soundness of a statistical mechanical model by examining whether it is consistent with
thermodynamics.

However, some agents may profit from real markets. Several reasons exist for the in-
compatibility between agents gaining profits and the results of the present model. First,
these agents may be trading between two disconnected markets, but not in a single market.
This situation allows agents to profit from the markets, as we have seen in the Carnot cy-
cle. Second, the government can profit from economies trading with each other unless these
economies are the models specified by Eqs. 51, 52, and 53 with the same parameter values.
However, the government might not profit from a multi-economy system in which households
have other expectations than At = A for t ≥ t′. Third, if an agent has information that
other agents do not have, the agent can profit from the market. Markets are not necessarily
perfectly competitive; information asymmetry is found in markets (Akerlof, 1970). In an
analogy of information thermodynamics (Parrondo et al., 2015), the maximal profit might
be a function of the amount of information that the agent has.

Examining how taxes and bonds affect the properties of the model will be of interest.
Economies with multiple types of goods and capitals, which can be regarded as multicom-
ponent systems, also are of interest. Although fluctuations in physical systems are ignored
in thermodynamics, fluctuations in economic as well as physical systems represent an impor-
tant problem to be addressed. Additionally, technology advances should be investigated by
extending the model.

Although this paper focuses on an economic system, the law of conservation and irre-
versibility could be found in other fields of social sciences and may allow the thermodynamic
formulation of systems. The irreversibility of these systems could be a manifestation of the
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rational and optimal behavior of agents.
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