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Abstract

This paper proposes a new asymmetric copula using the bivariate split-normal distri-
bution. The novelty of this copula is that it can change correlation signs of the upper and
lower tails of the distribution independently. The new copula is applied to the stock and
government bond price returns of the five peripheral EU countries and Germany during
the EU sovereign crisis. Their upper and lower tail correlation coefficients are estimated
by rolling maximum likelihood method. It finds that the peripheral countries had a strong
asymmetry, namely positive lower-tail correlation and negative or near zero upper tail cor-
relation of the stock-bond distribution, in the early stage of the crisis. It also finds that
the signs of their correlations changed from negative to positive in the crisis and stay
still positive after the crisis. In contrast, Germany had no sign-reversal or asymmetry in
correlation.

Keywords: Copula, Asymmetry, Rolling Estimation, Split-Normal Distribution.

1 Introduction

Asymmetry of financial asset returns has been extensively analyzed by copula in econometrics.

Recently, some authors reported that financial asset returns of the peripheral EU countries

showed correlation sign changes and strong asymmetry at the same time. This situation cannot
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be analyzed by conventional asymmetric parametric copulas, such as the Joe-Clayton copula,

since Kendall’s correlation coefficient of this copula is always positive, as shown by Li and Kang

(2018).

Then we propose a novel copula that can have change correlation sign in the upper and lower

tail area independently. Up to our knowledge, no conventional parametric copula does not have

this property.1 It is constructed from a split normal distribution, namely a bivariate distribution

consisting of two halved bivariate normal density functions with different correlation coefficients

connected on the negative 45 degree line.

We applies this copula to the stock and bond price returns of the five peripheral euro coun-

tries ( Greece, Ireland, Italy, Portugal, Spain). The correlation coefficients of the underlying

distribution are estimated by the rolling maximum likelihood method.

The rest of the paper is organized as follows. In the next section the literature review is

presented. The dependence structure of stock and bond price returns is defined in Section

3. The algorithm of the state space estimation is presented in Section 4. The results of the

empirical analysis are presented in Section 5.

Hereafter, the two correlation coefficients of these underlying distributions are referred to as

upper and lower tail correlation coefficients, when there is no fear of confusion.

1.1 Split-Normal Copula

Copula, first proposed by Sklar(1959), is joint distribution function with uniform marginal

distribution.Copula can be constructed by

Copula : C(w, v) = F (F−1
X (w), F−1

Y (v)), 0 < w < 1, 0 < v < 1, (1)

and its density function by

Copula Density Function: c(w, v) =
fX,Y (F

−1
X (w), F−1

Y (v))

fX(F
−1
X (w))fY (F

−1
Y (v))

, (2)

where F (x, y) is the distribution function of random variables X and Y , fX,Y (x, y) is the

density function, and FX(x) is the marginal distribution function and F−1
X (w) is its inverse.

An important property of copula is that same copula C is derived from any strictly monotonic

transformations of X and Y . We use this invariance property in deriving the new copula. For

the proof, see Nelson (2006, p.25).

We here construct a novel copula, from bivariate split normal distribution. This distribution

is defined by the two normal density functions with different correlation coefficients continuously

connected on the x = −y line, which is a special case of the multivariate split normal distribution

1Chang() showed that copula with flexible dependence can be obtained by mixture of parametric copula.
This is another promising line of research.
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investigated by Villani and Larson (2006). The density function is formally defined as

Split Normal Density: fX,Y (x, y) =

{
aU × ϕ(x, y, ρU , ω

2
U) if y > −x

aL × ϕ(x, y, ρL, ω
2
L) if y ≤ −x

, (3)

where ϕ is the bivariate normal density of random variables X and Y with correlation ρ and

both with mean zero and variance ω2, defined by

ϕ(x, y, ρ, ω2) =
1

2πω2
√

1− ρ2
exp

(
−x2 − 2ρxy + y2

2(1− ρ2)ω2

)
. (4)

We have assumed that X and Y have the same variance ωU in the upper tail in (3) and ωU in

the lower tail, and hence the joint distribution is symmetric with respect to the 45 degree line.

We do not consider the case where the joint distribution of X and Y id not line-symmetric.

Then, without loss of generality, we can assume that ωU = 1 for the sake of normalization,

using the copula invariance property; we have the same copula function even if the random

variables X and Y in (3) are divided by ωU and hence the variance of the upper-left area is

normalzed to unity. The weight constants aL and aU should satisfy the condition that fX,Y (x, y)

in (3) is a bivariate density function, namely:∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y)dxdy = 1, fX,Y (x, y) ≥ 0. (5)

This condition is reduced to the equation

0.5aU + 0.5aL = 1, (6)

since ∫ ∞

−∞

∫ ∞

−y

ϕ(x, y, ρU , ωU)dxdy =

∫ ∞

−∞

∫ −y

−∞
ϕ(x, y, ρL, ωL)dxdy = 0.5. (7)

The heights of the two parts of the density functions are matched on the boundary x+ y = 0

by adjusting aU and aL so that the two parts are connected continuously. The condition that

the two density functions are connected continuously on the boundary y = −x is

aU

2πω2
U

√
1− ρ2U

exp

[
− x2

(1− ρU)ω2
U

]
=

aL

2πω2
L

√
1− ρ2L

exp

[
− x2

(1− ρL)ω2
L

]
,−∞ < x < ∞,

which is reduced to

aL/aU =
(1− ρU)

√
1− ρ2L

(1− ρL)
√

1− ρ2U
, (1− ρU)ω

2
U = (1− ρL)ω

2
L. (8)

Then we can drop one parameter using conditions (6), and two parameters using (8). Then
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the values of (ωL, aL, aU) are determined by the values of ρU and ρL, noting that ωL = 1.

The figures of the lower row of Figure 2 show the contours of the split normal distribution with

ρU = −0.534 and ρL = 0.862 and the derived distribution (2) with standard normal marginals,

respectively. The correlation coefficients are those of Greece in May 2010 in the crisis period.

Note that asymmetry was enlarged in the crisis as the lower-tail correlation coefficient became

positive and that of the upper-area remained negative.

Figure 2 shows contours of the split normal distribution (3) with ρU = −0.612 and ρL =

−0.298 and the derived distribution (2), respectively. The correlation coefficients were es-

timated using the data from Greece in September 2007; the x-axis and y-axis variables were

transformed so that their marginal distributions are standard normal. Note that the correlation

coefficients were both negative and the bond was a safer asset in the pre-crisis period.

1.2 Numerical Evaluation

We estimate ρU and ρL in the copula density for the split normal distribution in (3) in using

rolling maximum likelihood method.

We evaluate FX(x), fX(x) = F ′
X(x), and F−1

X (w) numerically, since no analytical expression

of (1). We can obtain F−1
Y (v) = F−1

X (w) and fY (v) = fX(w) from the symmetry of fX,Y (x, y);

First, decompose FX(x) as

FX(x) = P (X < x, 0 < X + Y ) + P (X < x, 0 > X + Y ), (9)

where X and Y in the first term on the right hand side follow the upper-tail area of the density

function (3) and X and Y in the first term on the right hand side follow the lower tail area of

the density function (3).

These probabilities can be evaluated as follows: First,since P (X+Y > 0) = 0.5×aU from(3)

we have

P (X < x,X + Y > 0) = P (X < x,X + Y > 0|X + Y > 0)× 0.5× aU .

Noting that the conditional distribution of X and Y given X + Y > 0 is that of normal

distribution with zero means, variances ω2
U , and correlation coefficients ρU . We have that

P (X < x,X + Y > 0|X + Y > 0) = P (Z1 < x,Z1 + Z2 > 0|Z1 + Z2 > 0)

=
P (Z1 < x,Z1 + Z2 > 0)

P (Z1 + Z2 > 0)

where Z1, Z2 are normally distributed random variables, globally, with zeros means, variances

ω2
U , and correlation coefficients ρU . Then, noting that P (Z1+Z2 > 0) = 0.5 from the symmetry
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of the distribution of Z1 and Z2, we have

P (X < x,X + Y > 0) = P (Z1 < x,Z1 + Z2 > 0)× aU .

Analogously, we have

P (X < x,X + Y < 0) = aL × P (Z1 < x, 0 > Z1 + Z2),

where Z1 and Z2 are normally distributed with zero means, variances ω2
L, and covariance ρLω

2
L,

Then we can evaluate FX(x) for given x applying the multivariate normal probability algo-

rithm pmvnorm of Genz et al. (2018) in the mvtnorm package of R to the first and second

terms of (9). We then derive FX(x), fX(x), and F−1
x (·) as smooth functions by spline inter-

polation. The procedure is as follows: first, evaluate (xi, FX(xi)) at i = 1, . . . , n for sufficient

large n for accuracy. In this paper we use n = 100. Second, obtain smooth approximation of

FX(x) by applying spline interpolation with increasing constraint to (xi, FX(xi)). The density

function fX(x) is obtained as an analytically derivative of FX(x). The quantile function F−1
X (·)

is obtained analogously from (FX(xi), xi).

2 Empirical Analysis

2.1 Stock-Bond Correlation

In econometrics correlations between financial returns have been researched extensively by

copula. The two-parameter Joe-Clayton copula was estimated by Patton (2006) in the time

series settings. Christoffersen et al. (2012) estimated dynamic asymmetric correlations in

large cross sections generalizing the dynamic conditional correlation (DCC) model of Engle

(2002). Okimoto (2008) used Markov switching model and copula to analyze international

equity markets. Yoshiba (2013) used rolling estimation of the copula parameters.

This sign-reversal of Stock-Bond correlation coefficients in the EU crisis was reported recently

by Dufour et al. (2017) and Ohmi and Okimoto (2016). They found that the stock-bond

correlations changed signs from negative to positive in the crisis and remained positive after

it. Yoshiba (2013) reported that the stock-bond correlations had sign change and correlation

asymmetry in the financial crisis using nonparametric copula.

However, the stock-bond correlation during the EU sovereign debt crisis has not been fully

analyzed by copula, because the correlation-sign changes cannot be analyzed by conventional

parametric copulas. The sign of correlation of the parametric copulas, such as the Joe-Clayton

copula, is always positive, as shown by Li and Kang (2018). They cannot express the situation

that the upper-tail and lower-tail have different sign. 2

2Chang (2019) showed that mixture copulas can express asymmetric correlation structure with sufficient
flexibility.　 This is another promising line of research.
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Then, in order to analyze the asymmetry of the stock bond-correlation in the EU crisis,

this paper proposes a novel two-parameter asymmetric copula, whose upper and lower tail

correlation coefficients can change value and sign independently.

2.2 Model

We assume that the marginal distribution of the stock and bond returns follow the AR(p)-

GARCH(1,1) model with Student’s t-distribution, namely

Rj(t) = µj +

pj∑
i=1

γiRj(t− i) + ej(t), ej(t) = σjϵj(t), ϵj(t) ∼ t(λj) independently, (10)

σ2
j (t) = αj0 + αj1(t− 1) + βj1σ

2
j (t− 1), j = Stock, Bond

It is assumed that w = Ft(ϵStock, λStock) and v = Ft(ϵBond, λBond), where Ft(·, λ) is t-distribution
function with degrees of freedom λ, has split-normal copula density, defined by

c(w, v) =
fX,Y (F

−1
X (w), F−1

Y (v))

fX(F
−1
X (w))fY (F

−1
Y (v))

,

where fX,Y (x, y), FX(x), and F−1
X (w) are density, margincal distribution, and inverse distribu-

tion functions, respectively, of the split-normal distribution defined by (3).

2.3 Data

We estimate the model using weekly data of the stock price indices and 10-year government

bond yields which are denoted by S(t) and Y (t), downloaded from the website of invest-

ing.com. Table 1 summarizes the data we use in the paper.

The sample period from August 2006 to August 2018 contains the EU crisis from the be-

ginning to the end. The EU crisis emerged when the underreported Greek government debt

became evident in November 2009 and the crisis started to calm down when the Outright Mon-

etary Transaction was announced by the European Central Bank in 2012. Ireland and Spain

exited from the bailout program around the end of 2013, although the financial markets in

some countries were still turbulent.

The estimation of our model is executed as follows:

1. Calculate the returns on stock and bond prices by

Stock Price Returns: RStock(t) = log S(t)− logS(t− 1), (11)

Bond Price Returns: RBond(t) = logB(t)− logB(t− 1), (12)
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Table 1: Summary Statistics of Financial Returns

Country Assets Mean SD Min Max Skew Kurt Kendall’s τ

Greece
FTSE ATHEX 20 -0.256 4.690 -23.160 20.747 -0.368 2.837

0.206
10 Year Gov. Bond 0.017 7.550 -61.953 161.233 9.913 231.988

Ireland
FTSE Ireland -0.026 3.878 -37.103 22.979 -1.271 14.061

0.011
10 Year Gov. Bond 0.048 2.029 -15.061 21.381 0.592 24.936

Italy
FTSE MIB 0.087 4.546 -24.360 91.854 9.923 208.396

0.143
10 Year Gov. Bond 0.007 1.303 -5.824 10.447 0.758 8.246

Portugal
PSI-ALL Share GR 0.016 2.487 -20.528 7.677 -1.192 6.772

0.135
10 Year Gov. Bond 0.038 2.487 -18.871 16.597 -0.107 15.053

Spain
IBEX 35 -0.017 3.134 -23.827 11.823 -0.775 4.646

0.059
10 Year Gov. Bond 0.040 1.403 -6.545 10.521 1.004 10.961

Germany
DAX 0.073 3.206 -24.347 14.942 -0.707 5.481

-0.277
10 Year Gov. Bond 0.046 0.953 -3.606 3.676 -0.178 0.641

Note: SD, Skew, and Kurt stand for standard deviation, skewness, and Kurtosis, respectively,

Calculated from percentage weekly returns of stock indices and 10-year government bond prices

from January 2004 to August 2018.

where S(t) is the stock price, Y (t) is the 10-year bond yield, and the bond price B(t) is

constructed by

Bond Price: B(t) =
1

(1 + Y (t))10
. (13)

2. Estimate GARCH models (10) and obtain standardized residuals as ϵ̂Stock(t) and ϵ̂Bond(t)

for ϵStock(t) and ϵBond(t), respectively. Their estimates are shown in Table 2.

3. Transform the GARCH residuals to uniformly distributed variables W = Ft(ϵ̂Stock, λ̂Stock)

and V = Ft(ϵ̂Bond, λ̂Bond), where λ̂Stock and λ̂Bond are estimated degrees of freedom of

t-distributions.

2.4 Stock and Government Bond Markets

Figures 2-7 show the estimates of the upper- and lower-tail correlation coefficients estimated

by the rolling maximum likelihood method with 100 weeks rolling window.

In the pre-crisis period, the signs of stock-bond correlation of all the countries were negative

or around zero. The five peripheral countries had near-zero or negative upper-tail correlations

and large positive lower-tail correlations (> 0.5). This large asymmetry suggests an outflow of

money from these financial markets.
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Table 2: Summary Statistics of AR(p)-GARCH(1,1) Estimation

Country Assets AR(p) GARCH(1,1) df

p α0 α1 β1

Greece

Stock 0 0.272 0.101 0.888 9.41

( 0.155 ) ( 0.028 ) ( 0.031 ) ( 2.55)

Bond 0 0.081 0.185 0.814 3.72

( 0.026 ) ( 0.028 ) ( 0.024 ) ( 0.38 )

Ireland

Stock 0 0.140 0.063 0.925 5.04

( 0.095 ) ( 0.023 ) ( 0.016 ) ( 0.85)

Bond 0 0.069 0.126 0.853 3.74

( 0.062 ) ( 0.044 ) ( 0.033 ) ( 0.54 )

Italy

Stock 4 1.391 0.352 0.571 5.230

( 0.492 ) ( 0.084 ) ( 0.080 ) ( 0.822)

Bond 4 0.038 0.092 0.883 6.909

( 0.030 ) ( 0.025 ) ( 0.028 ) ( 1.550 )

Portugal

Stock 0 0.102 0.118 0.875 5.243

( 0.059 ) ( 0.030 ) ( 0.025 ) ( 0.948)

Bond 0 0.026 0.100 0.897 5.439

( 0.028 ) ( 0.028 ) ( 0.025 ) ( 1.076 )

Spain

Stock 1 0.089 0.075 0.917 9.281

( 0.065 ) ( 0.019 ) ( 0.018 ) ( 2.206)

Bond 1 0.025 0.085 0.900 8.133

( 0.033 ) ( 0.034 ) ( 0.038 ) ( 2.032)

Germany

Stock 0 0.451 0.156 0.800 8.016

( 0.200 ) ( 0.046 ) ( 0.057 ) ( 1.737

Bond 0 0.014 0.060 0.925 20.991

( 0.021 ) ( 0.024 ) ( 0.028 ) ( 11.287 )

Note: The order of AP(p) is chosen by minimizing AIC. Standard errors are shown in

parentheses. df stands for degrees of freedom.
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The stock-bond correlations of the periferal EU countreis are were still positive after 2014,

which suggests that the government bonds of these countries were not safe assets.

In contrast, Germany3 had negative or near-zero correlations throughout the sample period,

unlike the peripheral EU countries.

3 Simulation Study

In order evaluate the precision of the rolling maximum likelihood estimation of the split-

normal copula, we conduct a small Monte Carlo experiment. Artificial data is generated from

the split-normal copula using the correlation coefficients estimated in the previous section in

the data generating process. the time-varying upper- and lower-tail correlations of Spain and

Germany estimated in the empirical analysis detailed in the previous section. we use grid

width 0.04 in the grid-search maximum likelihood estimation. This width is larger than that

used in the empirical analysis, for the sake of saving computational time. Figures 8 and 9

shows the mean of the rolling maximum likelihood estimates and their 95 percent confidence

intervals. Table 3 shows that the standard deviation and the root mean squared error from the

moving average of correlation coefficients are very close so that the rolling maximum estimator

is virtually an unbiased estimator of the moving average.

The average of the root mean squared errors around the moving average correlations range

from 0.16 to 0.23 when the length of rolling windows is 100, and from 0.15 to when the length

of rolling windows is 200.

4 Conclusion

This paper proposed a novel copula and it successfully identified the sign-reversal and asym-

metry of the time-varying stock-bond correlation in the EU sovereign crisis. In all the peripheral

countries the stock-bond correlation coefficients changed the sign from negative as soon as the

crisis started. The mid-crisis period is characterized by the asymmetry of the stock-bond cor-

relation, namely, the positive lower-tail correlation and the negative or near zero upper tail

correlation of the stock-bond distribution. This asymmetry cannot be expressed by the other

parametric copulas.

We believe that this method can be applied to other asset returns, such as commodities and

real estate, in crisis periods and it is interesting to know whether we can find the asymmetry

and sign-reversal of the stock-bond correlation in other financial crises.

3The stock-bond correlations of the Netherlands and France, which are core EU countries, had a similar
pattern to that of Germany.
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Table 3: Summary of Simulation
100 Week Rolling Window

Upper Tail Lower Tail

Country bias biasm
Ave.

rmseU

Ave.

rmsemU

Ave.

bias

Ave.

biasm
Ave.

rmseU

Ave.

rmseU

Greece 0.094 0.019 0.240 0.212 0.060 0.015 0.179 0.163

Ireland 0.107 0.014 0.251 0.215 0.068 0.023 0.226 0.210

Italy 0.058 0.023 0.239 0.229 0.058 0.018 0.192 0.180

Portugal 0.074 0.019 0.215 0.195 0.061 0.020 0.211 0.199

Spain 0.066 0.010 0.211 0.193 0.074 0.019 0.214 0.196

Germany 0.055 0.009 0.169 0.155 0.058 0.008 0.176 0.160

200 Week Rolling Window

Country Upper Tail Lower Tail

bias biasm rmse rmsem bias biasm rmse rmsem

Greece 0.101 0.017 0.180 0.135 0.097 0.010 0.153 0.110

Ireland 0.214 0.016 0.275 0.152 0.080 0.014 0.168 0.136

Italy 0.078 0.010 0.168 0.141 0.091 0.009 0.151 0.111

Portugal 0.084 0.013 0.163 0.130 0.105 0.011 0.173 0.125

Spain 0.133 0.027 0.206 0.145 0.134 0.016 0.197 0.134

Germany 0.078 0.019 0.141 0.112 0.102 0.032 0.161 0.119

Note: Time-average of the biases and root mean squared errors of the rolling maximum likeli-

hood ratio estimators are shown for each countries. The reported bias and root mean squared

errors are defined as follows:

rmsej(t) =
N∑
i=1

(r
(i)
j (t)− ρj(t))

2/N, j = Upper, Lower

rmsemj (t) =
N∑
i=1

(r
(i)
j (t)− ρ̄j(t))

2/N,

biasj(t) = |r̄j(t)− ρj(t)|, biasmj (t) = |r̄j(t)− ρ̄j(t)|,

where N is the number of iterations of the experiment. r
(i)
U (t) is the upper tail correlation

estimate in the i-th iteration at date t and ρU(t) is the upper tail correlation coefficient estimated

in in the previous section and was used in the artificial data generation process.

where

r̄j(t) =
∑N

i=1 r
(i)
j (t), ρ̄L(t) =

∑t+W/2
i=t−W/2+1 ρL(t) is W -week moving average of correlations.
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Figure 1: Contours of split normal densities are shown in the left column and contours of

transformed distribution with standard normal marginal in the right column. In the upper

row ρU = −0.612 and ρL = −0.298 and in the lower row ρU = −0.532 and ρL = 0.862. The

parameter values were those of Greece in September 2007 and May 2010, respectively.
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Figure 3: Upper- and Lower-tail correlation of Stock-Bond distribution: Ireland
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Figure 4: Upper- and Lower-tail correlation of Stock-Bond distribution: Italy
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Figure 5: Upper- and Lower-tail correlation of Stock-Bond distribution: Portugal

16



2005 2010 2015

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Stock−Bond Correlations: Spain

up
pe

r−
  a

nd
 lo

w
er

−
ta

il 
co

rr
el

at
io

ns

G
re

ek
 C

ris
is

 S
ta

rt
s

S
pa

in
 E

xi
ts

 B
ai

lo
ut

 P
ro

gr
am

m
e

upper−tail correlation
lower−tail correlation

Figure 6: Upper- and Lower-tail correlation of Stock-Bond Distribution: Spain
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Figure 7: Upper- and Lower-tail correlation of Stock-Bond distribution: Germany
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Figure 8: Simulation Experiment of Estimated Upper Tail correlation Coefficients and Confi-

dence Interval. Number of iterations was 100.The estimated upper and lower tail correlations

of Spain were used in the data generation process
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Figure 9: Simulation Experiment of Estimated Lower Tail correlation Coefficients and Confi-

dence Intervals Number of iterations is 100.The estimated upper and lower tail correlations of

Spain were used in the data generation process

20



2005 2010 2015

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Date

C
or

re
la

tio
n 

 C
oe

ffi
ci

en
ts

Upper Area Correlation

2005 2010 2015

−
1.

0
−

0.
5

0.
0

0.
5

1.
0 estimated corelation

estimate + 2*SD
estimate − 2*SD
true correlation

Figure 10: Simulation Experiment of Estimated Upper Tail correlation Coefficients and Confi-

dence Interval. Number of iterations was 200.The estimated upper and lower tail correlations

of Germany were used in the data generation process
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Figure 11: Simulation Experiment of Estimated Lower Tail correlation Coefficients and Confi-

dence Intervals Number of iterations is 200.The estimated upper and lower tail correlations of

Germany were used in the data generation process
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