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Abstract

We have extended Diebold, Li and Yue (2008) to an arbitrage-free setting, proposing a global
factor model in which country yield-level and slope factors may depend on global-level, slope
and curvature factors as well as country-specific factors. Using a monthly dataset of govern-
ment bond yields for Germany, Japan, the US, and the UK from January 1995 to November
2018, we extracted global and country-specific factors for both the full sample. The results
indicate strongly that global yield-level, slope, and curvature factors do indeed exist and are
economically important, accounting for a significant fraction of variation in country bond yields
with interesting differences across countries. Moreover, the global yield factors appear linked to
global macroeconomic fundamentals. We show, in particular, that curvature factors are key to
explaining term premium dynamics, and appear more important in the second sub-sample.
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1 Introduction

The yield curve is of great interest to both academics and market practitioners. Hence, yield
curve modeling has generated a huge literature, spanning many decades, particularly as regards
the term structure of government bond yields. There are compelling reasons to assert that
global shocks affect cross-country government yield curves. The recent credit crisis, for instance,
shows that macrofinance shocks can be crucially transmitted internationally. As a consequence
of financial integration, a sizable amount of domestic government debt is held by foreigners
in global capital markets. Thus, positions on foreign bonds are naturally affected by home
macrofinance conditions, and vice versa. Despite these important stylized facts, little is known,
however, about whether global yield factors are operative and, more generally, about the nature
of dynamic cross-country bond yield interactions. One might naturally conjecture the existence
of global bond yield factors. This paper takes up this challenge and investigates the role of
global factors in the yield curves of several industrialized countries. Global yield curve modeling
mainly has two strands. One is Nelson-Siegel modeling approach,and another is no-arbitrage
affine term structure modeling approach.

Diebold et al. (2008) (hereafter DLY) extend the research of Diebold and Li (2006) to a
global context by modeling a potentially large set of country yield curves for Germany, Japan,
the UK, and the US in a framework that allows for both global and country-specific factors.
They show that two global factors, “global level and global slope,” are largely responsible for
the co-movements of yield curves in industrialized economies. Coroneo, Garrett and Sanhueza
(2018) analyze the relationship between the yield curves of the USA, the UK and Germany
using global and local factors. They disentangle the latent global and local factors contained in
country factors, based on the DL parametrization of Nelson and Siegel (1987) three factor model
and a quasi-maximum likelihood approach. The results indicate that global factors explain on
average 55% of the variance of yields. Using impulse response analysis, they examine the effects
of shocks to the factors on yields. They find that the response of yields to shocks to global factors
is larger and longer-lasting than the response to shocks to local factors. The DLY approach is
also applied to the term structure of other countries. Bae and Kim (2011) empirically evaluated
the developments of bond markets in East Asia based on the DLY methodology of dynamic
cross-country bond yield interactions. Morita and Bueno (2008) used the DLY framework to
extract common factors related to sovereign bonds from investment-grade emerging markets.

Abbritti, Dell’Erba, Moreno, Sola et al. (2018) introduce unspanned global factors within
a FAVAR framework in a flexible reduced-form affine term structure model. They show that,
together with the first and second global factors, a third factor is also important in explaining
the dynamics of interest rates. Kaminska, Meldrum and Smith (2013) also extends a popular no-
arbitrage affine term structure model to model jointly bond markets and exchange rates across
the United Kingdom, United States and euro area. Their results are similar to previous work.
But they are able to decompose interest rates into risk-free rates and risk premia. Additionally,
they are able to study the implications for exchange rates.

We have extended DLY approach to an arbitrage-free setting. Concretely, we use the
arbitrage-free dynamic version of the Nelson-Siegel yield curve (hereafter, AFNS), which is
derived from Christensen, Diebold and Rudebusch (2011) to model government bond yields of
developed countries.An AFNS model blends two important and successful approaches to yield
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curve modeling: the empirically based dynamic Nelson-Siegel (hereafter, DNS) approach and the
no-arbitrage theoretically based one. Models in the DNS tradition fit and forecast well, but they
lack theoretical rigor as they may admit arbitrage possibilities, while models in the arbitrage-free
tradition are theoretically rigorous as they enforce absence of arbitrage, but they may fit and
forecast poorly. AFNS bridges with a DNS model, which enforces absence of arbitrage.

This article differs from DLY in three important aspects. First, and more importantly, we
show that together with the global level and slope factor, a curvature factor is also important in
explaining the dynamics of the interest rates. We show that this factor, which turns out to be
especially important for explaining long-run variations in interest rates and the term premium,
is related to financial and policy risks and precedes the financial instability after the world
financial crisis period. Second, our approach is to model international yield curves jointly in a
no-arbitrage framework. Third, this paper also introduces a strategy that allows us to estimate
all unknown parameters via a one-step approach using panel data of bond yield curves.

This paper proceeds as follows. In section 2 we present the data In section 3 we discuss
the NS model, its parametrization by Diebold and Li (2006) and some descriptive evidence in
support of the presence of global factors. Section 4 describes the building blocks of our term
structure model. Section 5 explains the estimation methodology, and section 6 discusses our
main results and section 7 concludes.

2 Data

2.1 Government bond yield curve data

The monthly zero-coupon yields of maturities 3, 6, 12, 24, 36, 48, 60, 72, 84, 96, 108, and 120
months were considered for the period from January 1995 to November 2018. The zero-coupon
yields were obtained from Blomberg. Figure (1) shows the time series of the term structure of
yields of ten countries, including the US, Germany, Japan, and the UK. Apparently, each yield
curve displays significant level movements. Cross-country comparison of yield curves suggests
some cross-country commonality.

— Figure (1) —

3 The Nelson-Siegel (NS) and AFNS Model and Preliminary
Analysis

3.1 Single country yield curve

The Nelson and Siegel model fits the yield curve at any point in time with the simple functional
form

y(τ) = L+ S

(
1− e−λτ

λτ

)
+ C

(
1− e−λτ

λτ
− e−λτ

)
(1)

where y(τ) is the zero-coupon yield with τ months to maturity, and L,S, and C are model
parameters. The three parameters can be interpreted as factors. Due to its flexibility, this
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model is able to provide a good fit of the cross-section of yields at a given point in time, which
is the primary reason for its popularity in the financial market.

Although such a static representation appears useful for some purposes, a dynamic version
is required to understand the evolution of the bond market over time. Diebold and Li (2006)
achieve this by introducing time-varying parameters.

yi,t(τ) = Li,t + Si,t

(
1− e−λτ

λτ

)
+ Ci,t

(
1− e−λτ

λτ
− e−λτ

)
+ vi,t(τ) (2)

where Li,t,Si,t,Ci,t are interpreted as level, slope, and curvature factors (given their associated
Nelson-Siegel factor loadings in Figure(2)). vi,t(τ) is a disturbance with standard deviation σi(τ)

— Figure (2) —

Figure (3) shows estimates of the local level and slope factors, obtained via step one of the
Diebold and Li (2006), using the monthly yield curve from January 1995 to November 2018.

— Figure (3) —

Figure (4) demonstrates the principal component analysis of estimated factors by Diebold
and Li (2006). The PCA shows over 90% variation in the level and 50% variation in the slope,
and the curvature is driven by the first principal components.

— Figure (4) —

3.2 The AFNS model for single country yield curve

We choose to build on the affine three-factor arbitrage-free approximation of the well-known
Nelson-Siegel term structure model presented in Christensen et al. (2011). Their strategy is to
find the affine arbitrage free model with factor loadings that match Nelson-Siegel exactly. This is
a three-factor model where the latent state variables Xt = (Lt, St, Ct) can be interpreted as the
level, slope, and curvature with the imposition of a fixed set of restrictions on the Q-dynamics
of a general three-factor affine Gaussian term structure model.

rt = δ0 + δ′1Xt

dXt = KQ(θQ −Xt)dt+ ΣndW
Q
t (3)

where δ0 ∈ R3×1 and δ1 ∈ R3×3 are coefficients. WQ
t ∈ R3×3 is a standard Brownian motion.

θQ ∈ R3×1 is the drifts and KQ ∈ R3×1 is the mean-reversion matrix. Σn ∈ R3×3 is the
volatility matrix. The first critical assumption is to define the instantaneous risk-free rate as
the sum of the level and the slope factors:

rt = Lt + St (4)

The second critical assumption is that the mean-reversion matrix under the Q-matrix must have
the following simple form:

KQ,T =

0 0 0
0 λ −λ
0 0 λ

 (5)
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where λ will be identical to λ in the standard Nelson-Siegel model in Equation (1). These two
assumptions also highlight the role of the curvature factor Ct. This factor is absent from the
instantaneous risk-free rate and therefore does not impact short-term yields. Instead, its sole
role (under the Q-measure) is to act as a stochastic mean for the slope factor Slt. Finally, we
follow Christensen et al. (2011) and fix the mean vector under the Q-measure at zero, θQ,T = 0.
They show that this identification method can be applied without loss of generality. Imposing
the above structure on the general affine model default risk-free zero-coupon yields

yTt (τ) = Lt +

(
1− e−λτ

λτ

)
St +

[
1− e−λτ

λτ
− e−λτ

]
Ct −

AT (τ)

τ
(6)

where

Ay(t, T )

T − t
=(σ11)

2 (T − t)2

6

+ (σ22)
2

[
1

2λ2
− 1

λ3

1− e−λ(T−t)

(T − t)
+

1

4λ3

1− e−2λ(T−t)

(T − t)

]
+ (σ33)

2

[
1

2λ2
+

1

λ2
e−λ(T−t) − 1

4λ
(T − t)e−2λ(T−t) − 3

4λ2
e−2λ(T−t) − 2

λ3

1− e−λ(T−t)

(T − t)
+

5

8λ3

1− e−2λ(T−t)

(T − t)

]
(7)

In AFNS mode we recognize the Nelson-Siegel factor loadings for the level, slope, and curvature

factors. In addition, the yield function contains the maturity-dependent term AT (τ)
T−t , which arises

from imposing the absence of arbitrage on the dynamic Nelson-Siegel model.

4 AFNS Global Term Structure Model

DLY expands the study of the Diebold and Li (2006) model in a global context, while modeling
a potentially large set of country yield curves in a framework that allows for both common and
country-specific factors. Through an empirical analysis of the term structures of government
bond yields in Germany, Japan, the UK, and the US, they find that common yield factors do
exist and that such factors are economically important, as they explain significant fractions of
country yield curve dynamics, with interesting differences across countries.

In this section, we extend the AFNS model to a multi-country environment, following the
DLY approach. Thus, one may adapt a single-country model to an N -country approach, with
a similar space-state framework. The appendix A describes the details. We make the following
two assumptions. First, the instantaneous short rate of country i is assumed to be a function of

the global level Lgt and the slope factor Sgt in addition to country-specific risk factor L
l(i)
t ,S

l(i)
t

for each country i = 1, . . . , N .

rit = βiLL
g
t + βiSS

g
t + L

l(i)
t + S

l(i)
t (8)

where βiL and βiS are loadings on global factors Second, the dynamics of the 3(N + 1) factors
under the risk-neutral pricing measure must be given by the solution to the following SDE: This

is a 3(N + 1)-factor model where the latent state variables Xt = (Lgt , S
g
t , C

g
t , L

l(i)
t , S

l(i)
t , C

l(i)
t ).
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For that reason, the dynamics of the global risk factors under the Q measure must be assumed
to be given by



dLgt
dSgt
dCgt
dL

l(i)
t

dS
l(i)
t

dC
l(i)
t


= −



0 0 0 0 0 0
0 λg −λg 0 0 0
0 0 λg 0 0 0
0 0 0 0 0 0

0 0 0 0 λl(i) −λl(i)
0 0 0 0 0 λl(i)





Lgt
Sgt
Cgt
L
l(i)
t

S
l(i)
t

C
l(i)
t


dt

+



σgL 0 0 0 0 0
0 σgS 0 0 0 0
0 0 σgC 0 0 0

0 0 0 σ
l(i)
L 0 0

0 0 0 0 σ
l(i)
S 0

0 0 0 0 0 σ
l(i)
C





dWLg ,Q
t

dWSg ,Q
t

dWCg ,Q
t

dWLl(i),Q
t

dWSl(i),Q
t

dWCl(i),Q
t


(9)

Given the assumption of independent factors, the zero-coupon yield function for a representative
bond from country i and T − t years to maturity is equal to

yi(t, T ) = βiLL
g
t + βiS

(
1− e−λ

g(T−t)

λg(T − t)

)
Sgt + βiS

(
1− e−λ

g(T−t)

λg(T − t)
− e−λ

g(T−t)

)
Cgt

+ Ll(i) +

(
1− e−λ(T−t)

λ(T − t)

)
S
l(i)
t +

(
1− e−λ(T−t)

(λl(i))τ
− e−(λl(i))(T−t)

)
C
l(i)
t −

Aiy(t, T )

T − t
(10)

Aiy(t, T )

T − t
= (σ

g
L
)
2
(β
i
L)

2 (T − t)2

6

+ (σ
g
S
)
2
(β
i
S)

2

 1

2(λg)2
−

1

(λg)3

1− e−λ
g(T−t)

(T − t)
+

1

4(λg)3

1− e−2λg(T−t)

(T − t)


+ (σ

g
C
)
2
(β
i
S)

2

 1

2(λg)2
+

1

(λg)2
e
−(λg)(T−t) −

1

4λg
(T − t)e−2λg(T−t) −

3

4(λg)2
e
−2λgn −

2

(λg)3

1− e−λ
g(T−t)

(T − t)
+

5

8(λg)3

1− e−2λg(T−t)

(T − t)


+ (σ

l(i)
L

)
2 (T − t)2

6

+ (σ
l(i)
S

)
2

 1

2(λl(i))2
−

1

(λl(i))3

1− e−λ
l(i)(T−t)

(T − t)
+

1

4(λl(i))3

1− e−2λl(i)(T−t)

(T − t)


+ (σ

l(i)
C

)
2

[
1

2(λl(i))2
+

1

(λl(i))2
e
−λl(i)(T−t) −

1

4λl(i)
(T − t)e−2λl(i)(T−t) −

3

4(λl(i))2
e
−2λl(i)(T−t)

−
2

(λl(i))3

1− e−λ
l(i)(T−t)

(T − t)
+

5

8(λl(i))3

1− e−2λl(i)(T−t)

(T − t)

]
(11)

There are no restrictions on the dynamic drift components under the empirical P -measure.
Therefore, beyond the requirement of constant volatility, we are free to choose the dynamics
under the P -measure. However, to facilitate the empirical implementation we limit our focus to
the essentially affine risk premium specification introduced in Duffee (2002). In the Gaussian
framework that we are working within this specification implies that the risk premiums are given
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by

Γt = γ0 + γ1Xt (12)

where γ0 ∈ R3(N+1)×1and γ1 ∈ R3(N+1)×3(N+1)contain unrestricted parameters. Thus, in
general, we can write the P -dynamics of the state variables as

dXt = KP (θP −Xt)dt+ ΣndW
P
t (13)

where both KP and θP are allowed to vary freely relative to their counterparts under the Q
measure.

5 Estimation Strategy

We estimate the models introduced in the previous subsections using the Kalman filter. Since all
models considered in this paper are affine Gaussian models, the Kalman filter is an efficient and
consistent estimator. In addition, the Kalman filter requires a minimum of assumptions about
the observed data, and it easily handles missing data. This motivates our use of the standard
Kalman filter in this setting. Unlike DLY, we introduces a strategy that allows us to estimate
all unknown parameters via a one-step approach using panel data of bond yield curves. The
measurement equation for the panel data of bond yields is given by



y1(τ1)
y1(τ2)
· · ·

y1(τJ)
· · ·

yN (τJ)


NJ×1

= B

LgtSgt
Cgt

+ A



L
l(1)
t

S
l(1)
t

C
l(1)
t

· · ·
L
l(N)
t

S
l(N)
t

C
l(N)
t


−



A1
y(t,T )

τ1
A1
y(t,T )

τ2
· · ·

A1
y(t,T )

τJ
· · ·

ANy (t,T )

τJ


+



v1,t(τ1)
v1,t(τ2)
· · ·

v1,t(τJ)
· · ·

vN,t(τJ)



= C



Lgt
Sgt
Cgt
L
l(1)
t

S
l(1)
t

C
l(1)
t

· · ·
L
l(N)
t

S
l(N)
t

C
l(N)
t


−



A1
y(t,T )

τ1
A1
y(t,T )

τ2
· · ·

A1
y(t,T )

τJ
· · ·

ANy (t,T )

τJ


+



v1,t(τ1)
v1,t(τ2)
· · ·

v1,t(τJ)
· · ·

vN,t(τJ)

 (14)
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where N is the number of countries and J is the number of maturities.

A
NJ×3N

=


1

(
1−e−λτ1
λτ1

) (
1−e−λτ
λτ1

− e−λτ1
)

0 · · · 0 0 0

1
(

1−e−λτ2
λτ2

) (
1−e−λτ
λτ1

− e−λτ1
)

0 · · · 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 1

(
1−e−λτJ
λτJ

) (
1−e−λτ
λτ1

− e−λτ1
)

 (15)

B
NJ×3

=


β1
L β1

S

(
1−e−λτ1
λτ1

)
β1
S

(
1−e−λτ
λτ1

− e−λτ1
)

β1
L β1

S

(
1−e−λτ2
λτ2

)
β1
S

(
1−e−λτ
λτ2

− e−λτ1
)

· · · · · ·
βNL βNS

(
1−e−λτJ
λτJ

)
βNS

(
1−e−λτJ
λτJ

− e−λτJ
)

 (16)

C
C=[BA]

=

(
B 0

0 A

)
(17)

The global factor and βiS ,βiLare not identified separately in equation (14). Therefore,we assume
that the US loadings on the global factors are positive, that is, βin > 0,n = S,L to identify
the signs of factors and factor loadings, We also fixed the λg and λl(i) as 0.6 which attains the
maximum value for curvature factor at maturity of 2.5 years. We initialize the estimates of the
global factor using the first principal component for each factors estimated using Diebold and Li
(2006) methods. We initialized the estimates of the local factor using the residual by regressing
NS factors of each country on the the first principal component on the NS factors.

The numbers of estimated parameters are 6+20N = 86. In the measurement equation,there
are 2N parameters to be estimated (βiL, β

i
S), four for each country. In the state equations,

there are 3 + 3N parameters, three mean-reversion parameters relative to the global factors
(Kpg11,Kp

g
22,Kp

g
33) and three mean reversion parameters for the local factors for each country

(Kpi,11,Kpi,22,Kpi,33) to be estimated. The standard deviation is considered constant over time.
For local factors of state equation, there are 3(N + 1) standard deviations for each country. For
local factors of measurement equation, there are 12N standard deviations for each country.

6 Estimation Results

In this section we report the empirical results obtained for our global factor term structure
model. First we show the three estimated global factors and provide an intuitive macroeconomic
explanation for each of them. We then assess the specification of our global factor model and
evaluate its fit in terms of how well it can replicate yield curves across different maturities for
different countries.

6.1 Estimates of the Global Factors

We report estimates of the term structure model, obtained using the monthly yield curve from
January 1995 to November 2018. Table (1) indicates the estimated parameters and standard
errors. Although we need to estimate many parameters most parameters estimated by our
one-step approach are statistically significant.
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— Table (1) —

We show the estimated common factor as a solid line and the first principal component as
a dashed line, January 1995 through November 2018 in Figure (5).The close link between the
common factor and the first principal component of level and slopes is confirmed. The correlation
between the common factor and the first principal component of level, slope, and curvature are
0.90, 0.97, and 0.97, respectively. Overall, these results point to the crucial importance of global
factors in explaining domestic yield curves. DLY showed the importance of two global yield
factors related to global inflation and economic activity. Our results suggest that a third global
factor also needs to be taken into account.

— Figure (5) —

6.2 Links to the global macroeconomy

Several studies, for example, Ang and Piazzesi (2003) and Diebold, Rudebusch and Aruoba
(2006), show that latent country yield factors are linked to, and interact dynamically with,
domestic macroeconomic factors. The key factors, moreover, are inflation and real activity,
which are linked to the yield curve level and slope, respectively. In a parallel fashion, our
extracted global level and slope factors reflect the major developments in global inflation and
real activity during the past 20 years. The temporal decline in the global-level factor reflects
the reduction of inflation in the industrialized countries. The correlation between our extracted
global level factor and average G-7 inflation during our sample is 0.3. Similarly, movements in
the global slope factor reflect the global business cycle, with the global slope factor peaking just
before the two global recessions of the early 1990s and in early 2009. The correlation between
our extracted global slope factor and average G-7 GDP annual growth during our sample is 0.4.

— Figure (6) —

Finding an economic interpretation for the global curvature factor is, however, a novel task.
Figure (7) plots the global curvature factor together with several related macro-finance series:
a financial stress index published by the Federal Reserve Bank of St. Louis, the U.S. policy
uncertainty index derived by Baker, Bloom and Davis (2016), and the U.S. term premium
computed by Bauer, Rudebusch and Wu (2014). The correlation between our extracted global
curvature factor and a financial stress index, the U.S. policy uncertainty index and the U.S.
term premium during our sample is −0.48,0.48 and 0.65 respectively. Overall, the dynamics
of the global curvature factor shows low level in the first part of the sample (up to the middle
of 2000) and an increase in the second part, especially around 2007−2013. The graphs show
that the peak of the global curvature in 2010−2013 coincides with a sharp increase in the policy
uncertainty index. It also precedes the peak in the financial stress index and thus anticipates this
financial/liquidity risk episode. Finally, a positive shock to the global curvature factor produces
an increase in term premiums across all countries. Interestingly, these results are consistent with
the bottom-right panel of Figure (7), which plots the global curvature factor against the U.S.
term premium implied by the model in Bauer et al. (2014). It reveals that the global curvature
factor captures the dynamics of the term premium very closely. This is especially the case at
the end of the sample, coinciding with the onset of the financial crisis.

— Figure (7) —
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6.3 Loading of yields on Global Factors

We regress yields on the global and local factors to gauge the shape of the implied loadings.
As figure (8) shows, the loadings on the global level factor are relatively flat and persistent,
resembling a classical global level factor. The loadings on the global slope factor differ across
countries, exhibiting either increasing or decreasing patterns. Finally, loadings on the curvature
factor are all decreasing and, in most cases, convex. The results indicate that global yield-level,
slope, and curvature factors account for a significant fraction of variation in country bond yields
with interesting differences across countries.

— Figure (8) —

6.4 Model Performance

To evaluate the fit of the model, Figure(8) shows actual mean yield vs estimated mean yield
from global factor model. The fit of the model is relatively good for all countries.

— Figure (9) —

7 Concluding Remarks and Extensions

We have extended Diebold et al. (2008) to an arbitrage-free setting, proposing a global factor
model in which country yield-level and slope factors may depend on global-level, slope and
curvature factors as well as country-specific factors. Using a monthly dataset of government
bond yields for Germany, Japan, the US, and the UK from January 1995 to November 2018,
we extracted global and country-specific factors for both the full sample. The results indicate
strongly that global yield-level, slope, and curvature factors do indeed exist and are economically
important, accounting for a significant fraction of variation in country bond yields. Moreover,
the global yield factors appear linked to global macroeconomic fundamentals. We show, in
particular, that curvature factors are key to explaining term premium dynamics, and appear
more important in the second sub-sample. In future work, we intend to examine the term
premium dynamics and the forecasting ability of the model.

8 Appendix A: The analytical solution of the zero coupon bond
yield function

All models analyzed in this paper are nested versions of the 3(N + 1)-factor model of zero-
coupon bond prices introduced in Section 4. The 3(N + 1) state variables consist of a global
level, slope, and curvature factor in addition to a local level, slope, and curvature factor.That is,

Xt = (Lgt , S
g
t , C

g
t , L

l(i)
t , S

l(i)
t , C

l(i)
t )′ In order to obtain a Nelson-Siegel factor loading structure for

global and local factors in the zero-coupon bond yield function of the form, three assumptions
must be imposed. First, we define a factor model for the yield curve that considers both global
and local factors. We decompose the factors in the factor model into the sum of two orthogonal
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components:the global factor,which we denote by Xg
t and local factors demoted by X l

t . Second,
the instantaneous short rate is assumed to be an affine function of the state variables

rit = ρi0 + ρ′1(βX
g
t +X l

t) (18)

= βiLL
g
t + βiSS

g
t + L

l(i)
t + S

l(i)
t (19)

This means that the vector of factor loadings in the discount rate are given by

ρi0 = 0, ρ1 =

1
1
0

 , β =

βiLβiS
0

 (20)

Third, the dynamics of the 3(N + 1) factors under the risk-neutral pricing measure must be
given by the solution to the following SDE

dLgt
dSgt
dCgt
dL

l(i)
t

dS
l(i)
t

dC
l(i)
t


= −



0 0 0 0 0 0
0 λg −λg 0 0 0
0 0 λg 0 0 0
0 0 0 0 0 0

0 0 0 0 λl(i) −λl(i)
0 0 0 0 0 λl(i)





Lgt
Sgt
Cgt
L
l(i)
t

S
l(i)
t

C
l(i)
t


dt

+



σgL 0 0 0 0 0
0 σgS 0 0 0 0
0 0 σgC 0 0 0

0 0 0 σ
l(i)
L 0 0

0 0 0 0 σ
l(i)
S 0

0 0 0 0 0 σ
l(i)
C





dWLg ,Q
t

dWSg ,Q
t

dWCg ,Q
t

dWLl(i),Q
t

dWSl(i),Q
t

dWCl(i),Q
t


(21)

Note here that all 3(N+1) factors are Gaussian processes with constant volatility matrix. From
Duffie and Kan (1996) it now follows that the price at time t of a representative zero-coupon
bond from country i with maturity at T is given by

P i(t, T ) = EQ[e−
∫ T
t riudu]

= exp(BiLg (t, T )L
g +BiSg (t, T )S

g +BiCg (t, T )C
g +BiLl(t, T )L

l(i) +BiSl(t, T )S
l(i) +BiCl(t, T )C

l(i) +Aiy(t, T ))
(22)

where Bi
Lg(t, T ), Bi

Sg(t, T ), Bi
Cg(t, T ),Bi

Ll
(t, T ), Bi

Sl
(t, T ), Bi

Cl
(t, T ) and Aiy(t, T ) are the unique

solutions to the following set of ODEs.

dBi(t, T )

dt
= ρi1 + (KQ(i))′Bi(t, T ), B(T, T ) = 0 (23)

dAiy(t, T )

dt
= ρi0 −

1

2

6∑
j=1

(Σi)′Bi(s, T )Bi(s, T )′Σi)j,j , A
i
y(T, T ) = 0 (24)
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Now, we solve these two systems of ODEs. We start with the system for Bi(t, T ) Since

d

dt
[e(K

Q(i)(T−t)Bi(t, T )] = e(K
Q(i)(T−t)dB

i(t, T )

dt
− (KQ(i))′e(K

Q(i)(T−t)Bi(t, T ) (25)

we can use the system of ODEs for Bi(t, T ) to obtain∫ T

t

d

dt
[e(K

Q(i))′(T−t)Bi(t, T )]ds =

∫ T

t
e(K

Q(i))′(T−s)ρi1ds (26)

or, equivalently, using the boundary conditions

Bi(t, T ) = −e(KQ(i))′(T−t)
∫ T

t
e(K

Q(i))′(T−s)ρi1ds (27)

Here, it is easy to show that

e(K
Q(i))′(T−s) =



1 0 0 0 0 0

0 eλ
g(T−t) 0 0 0 0

0 −λg(T − t)eλ
g(T−t) eλ

g(T−t) 0 0 0
0 0 0 1 0 0

0 0 0 0 eλ
l(i)(T−t) 0

0 0 0 0 −λl(i)(T − t)eλ
l(i)(T−t) eλ

l(i)(T−t)


(28)

and

e−(KQ(i))′(T−s) =



1 0 0 0 0 0

0 e−λ
g(T−t) 0 0 0 0

0 λg(T − t)eλ
g(T−t) e−λ

g(T−t) 0 0 0
0 0 0 1 0 0

0 0 0 0 e−λ
l(i)(T−t) 0

0 0 0 0 λl(i)(T − t)eλ
l(i)(T−t) e−λ

l(i)(T−t)


(29)

Inserting this into the expression for Bi(t, T ) we obtain

Bi(t, T ) = −



1 0 0 0 0 0

0 e−λ
g(T−t) 0 0 0 0

0 λg(T − t)eλ
g(T−t) e−λ

g(T−t) 0 0 0
0 0 0 1 0 0

0 0 0 0 e−λ
l(i)(T−t) 0

0 0 0 0 λl(i)(T − t)eλ
l(i)(T−t) e−λ

l(i)(T−t)



×
∫ T

t



1 0 0 0 0 0

0 eλ
g(T−t) 0 0 0 0

0 −λg(T − t)eλ
g(T−t) eλ

g(T−t) 0 0 0
0 0 0 1 0 0

0 0 0 0 eλ
l(i)(T−t) 0

0 0 0 0 −λl(i)(T − t)eλ
l(i)(T−t) eλ

l(i)(T−t)




βiL
βiS
0
1
1
0

 ds (30)
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This can be rewritten as

Bi(t, T ) = −



1 0 0 0 0 0

0 e−λ
g(T−t) 0 0 0 0

0 λg(T − t)eλ
g(T−t) e−λ

g(T−t) 0 0 0
0 0 0 1 0 0

0 0 0 0 e−λ
l(i)(T−t) 0

0 0 0 0 λl(i)(T − t)eλ
l(i)(T−t) e−λ

l(i)(T−t)



×
∫ T

t



βiL
βiSe

λg(T−t)

−βiSλg(T − t)eλ
g(T−t)

1

eλ
l(i)(T−t)

−λl(i)(T − t)eλ
l(i)(T−t)


ds (31)

Since ∫ T

t
ds = T − t (32)

and ∫ T

t
eλ(T−s)ds =

[
− 1

λ
eλ(T−s)

]T
t

= −1− eλ(T−t)

λ
(33)

and∫ T

t
−λ(T − t)eλ(T−s)ds =

1

λ

∫ 0

λ(T−t)
exdx=

1

λ
[xex]0λ(T−t) −

1

λ

∫ 0

λ(T−t)
ex (34)

= −(T − t)eλ(T−t) − 1

λ
[ex]0λ(T−t) = −(T − t)eλ(T−t) − 1− eλ(T−t)

λ

the system of ODEs can be reduced to

Bi(t, T ) = −



1 0 0 0 0 0

0 e−λ
g(T−t) 0 0 0 0

0 λg(T − t)eλ
g(T−t) e−λ

g(T−t) 0 0 0
0 0 0 1 0 0

0 0 0 0 e−λ
l(i)(T−t) 0

0 0 0 0 λl(i)(T − t)eλ
l(i)(T−t) e−λ

l(i)(T−t)



×
∫ T

t



βiL

βiS
1−eλ

g(T−t)

λg

−βiS
[
(T − t)eλ

g(T−t) − 1−eλ
g(T−t)

λg

]
1

1−eλ
l(i)(T−t)

λl(i)

(T − t)eλ
l(i)(T−t) − 1−eλ

l(i)(T−t)

λ


(35)
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This system can be reduced even further whereby the final solution is obtained as

Bi(t, T ) =



βiL

βiS
1−eλ

g(T−t)

λg

−βiS
[
(T − t)eλ

g(T−t) − 1−eλ
g(T−t)

λg

]
1

1−eλ
l(i)(T−t)

λl(i)

(T − t)eλ
l(i)(T−t) − 1−eλ

l(i)(T−t)

λ


(36)

Thus, the yield-to-maturity of the zero-coupon bond is given by

yi(t, T ) = − 1

T − t
lnP i(t, T )

= βiLL
g
t + βiS

(
1− e−λ

g(T−t)

λg(T − t)

)
Sgt + βiS

(
1− e−λ

g(T−t)

λg(T − t)
− e−λ

g(T−t)

)
Cgt

+ L
l(i)
t +

(
1− e−λ(T−t)

λ(T − t)

)
S
l(i)
t +

(
1− e−λ(T−t)

(λl(i))τ
− e−(λl(i))(T−t)

)
C
l(i)
t −

Aiy(t, T )

T − t
(37)

In order to obtain a full analytical formula for the corporate bond yields we need to look into

the details of the maturity adjustment term
Aiy(t,T )

T−t .That is the focus of the following section.

8.1 The maturity adjustment term

The formula for the maturity adjustment term is given by

Aiy(t, T )

T − t
=

1

2

1

T − t

∫ T

t

6∑
j=1

((Σi)′Bi(s, T )Bi(s, T )′Σi)j,jds (38)

where Bi(t, T ) = (BLg(t, T ), Bsg(t, T ), BCg(t, T ), Bi
Ll

(t, T ), Bi
Sl

(t, T ), Bi
Cl

(t, T )) Since all factors
are assumed to be independent, the volatility matrix is diagonal

Σi =



σgL 0 0 0 0 0
0 σgS 0 0 0 0
0 0 σgC 0 0 0

0 0 0 σ
l(i)
L 0 0

0 0 0 0 σ
l(i)
S 0

0 0 0 0 0 σ
l(i)
C


(39)

Thus, the maturity adjustment term reduces to

Aiy(t, T )

T − t
=

1

2

1

T − t

[
(σgL)

2

∫ T

t

BiLg (t, T )
2ds+

1

2

1

T − t
(σgS)

2

∫ T

t

BiSg (t, T )
2ds+

1

2

1

T − t
(σgC)

2

∫ T

t

BiCg (t, T )
2ds

]
+

1

2

1

T − t

[
(σ
l(i)
L )2

∫ T

t

BiLl(t, T )
2ds+

1

2

1

T − t
(σ
l(i)
S )2

∫ T

t

BiSl(t, T )
2ds+

1

2

1

T − t
(σ
l(i)
C )2

∫ T

t

BiCl(t, T )
2ds

]
(40)

All these integrals have already been solved in Christensen et al. (2011), so we are able to
immediately present the final result.
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8.2 Summary

Given the assumption of independent factors, the zero-coupon yield function for a representative
bond from country i and T − t years to maturity is equal to

Aiy(t, T )

T − t
= (σ

g
L
)
2
(β
i
L)

2 (T − t)2

6

+ (σ
g
S
)
2
(β
i
S)

2

 1

2(λg)2
−

1

(λg)3

1− e−λ
g(T−t)

(T − t)
+

1

4(λg)3

1− e−2λg(T−t)

(T − t)


+ (σ

g
C
)
2
(β
i
S)

2

 1

2(λg)2
+

1

(λg)2
e
−(λg)(T−t) −

1

4λg
(T − t)e−2λg(T−t) −

3

4(λg)2
e
−2λgn −

2

(λg)3

1− e−λ
g(T−t)

(T − t)
+

5

8(λg)3

1− e−2λg(T−t)

(T − t)


+ (σ

l(i)
L

)
2 (T − t)2

6

+ (σ
l(i)
S

)
2

 1

2(λl(i))2
−

1

(λl(i))3

1− e−λ
l(i)(T−t)

(T − t)
+

1

4(λl(i))3

1− e−2λl(i)(T−t)

(T − t)


+ (σ

l(i)
C

)
2

[
1

2(λl(i))2
+

1

(λl(i))2
e
−λl(i)(T−t) −

1

4λl(i)
(T − t)e−2λl(i)(T−t) −

3

4(λl(i))2
e
−2λl(i)(T−t)

−
2

(λl(i))3

1− e−λ
l(i)(T−t)

(T − t)
+

5

8(λl(i))3

1− e−2λl(i)(T−t)

(T − t)

]
(41)

9 Appendix B: Kalman filter estimation

We display the state-space representations of the AFNS global factor models. The state equation
in the Kalman filter is given by

Xt = ΦtXt−1 + ηt (42)

where Φt = exp(−KP 4 t) and 4t = T − t is the time between observations. In the Kalman
filter estimations, all measurement errors are assumed to be i.i.d. white noise. Thus, the error
structure is in general given by (

ηt
vt

)
∼ N

[(
0
0

)(
Q 0
0 H

)]
(43)

where

Q =

∫ 4t
0

e−K
P sΣΣ′e−(K

P )′sds (44)

where matrix H is diagonal, and the matrix Q is diagonal. Denote the yield curve information
available at time t by yt = (y1(τ1), y

1(τ1), · · · yN (τJ)) and denote model parameters by ψ. Con-
sider the period and suppose that the state update Xt and its mean square error matrix have
been obtained. The prediction step is

Xt|t−1 = ΦtXt−1|t−1 (45)

Pt|t−1 = ΦtPt−1|t−1Φ
′
t +Q (46)

In the time t update step, Xt|t−1 is improved by using the additional information contained in
yt. We have

Xt|t = Xt|t−1 + Pt|t−1C
′F−1t|t−1vt|t−1 (47)

Pt|t = (1− Pt|t−1C ′F−1t|t−1C)Pt|t−1 (48)
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where

vt|t−1 = yt +
Aiy(t, T )

T − t
−CXt|t−1 (49)

Ft|t−1 = CPt|t−1C
′ +H (50)

H(ψ) = diag(σ2v(τ1), . . . , σ
2
v(τJ)) (51)

At this point, the Kalman filter has delivered all ingredients needed to evaluate the Gaussian
log likelihood, the prediction-error decomposition of which is

logl(ψ) =

T∑
t=1

(−JN
2

log(2π)− 1

2
log | Ft | −

1

2
v′tF

−1
t vt) (52)

where JN is the number of observed yields. We numerically maximize the likelihood with respect
to ψ. Upon convergence, we obtain standard errors from the estimated covariance matrix. The
linear least-squares optimality of the Kalman filter require that the white noise transition and
measurement errors be orthogonal to the initial state. Finally, the standard deviations of the
estimated parameters are calculated as

Ω(ψ̂) =
1

T

[
1

T

T∑
t=1

∂loglt(ψ̂)

∂ψ

∂loglt(ψ̂)′

∂ψ

]−1
(53)

where ψ̂ denotes the optimal parameter set.
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Figure (1): Yield curves across countries and time 

 
 (Note): This figure shows the evolution of the yield curves across countries. All yield data are 

monthly, January 1995 through November 2018. 

Figure (2): Factor loadings in the Nelson-Siegel yield function. 

 
 

(Note): Illustration of the factor loadings on the three state variables in the Nelson-Siegel model. The 

value for λ is 0.60 and maturity is measured in years. 
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Figure (3): Term structure factors of Diebold Li model by country  

 

 

 

 

Figure (4): Principal Component Analysis 

 

(Note) : Percent explained of Global factors are demonstrated by principal component analysis 

(Note): This figure shows estimates of the company level and slope factor, obtained via step 

one of the Diebold and Li(2006), using monthly yield curve January 1995 to November 2018. 
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 Table (1): Estimates of the AFNS-Global Factor model 

 
(Note): We report estimated parameters and standard errors of the term structure model, obtained 

using monthly yield curve during January 1995 through November 2018. 

Figure (5): Global factor vs. first principal component of country level and slopes 

 

(Note): The estimated global factor as a solid line and the first principal component as a dashed line, 

January 1995 through November 2018. is presented. 

 

State equation Mesurement equation

Mean reversion
 
Estimates

std

Kp11_g 0.037 0.034
Kp22_g 0.125 0.083
Kp33_g 0.117 0.082

Mean reversion
 

Estimates
std

Standard
deviation of
Idiosyncratic

factor

 
Estimates

std

Standard
deviation of
Idiosyncratic

factor

 
Estimates

std
loading on

global factor
 
Estimates

std

kp11_us 0.056 0.032 σ_l_g 0.043% 0.002% σ_l_jp 0.024% 0.007% β_l_us 0.251 0.021
kp22_us 0.234 0.140 σ_s_g 0.011% 0.003% σ_s_jp 0.100% 0.004% β_s_us 0.436 0.000
kp33_us 0.761 0.477 σ_c_g 0.040% 0.002% σ_c_jp 0.100% 0.005% β_l_dr 0.621 0.006
kp11_dr 0.122 0.076 σ_l_us 0.030% 0.001% σ_l_uk 0.419% 0.031% β_s_dr 0.408 0.000
kp22_dr 0.112 0.064 σ_s_us 0.034% 0.001% σ_s_uk 0.714% 0.055% β_l_jp 0.342 0.014
kp33_dr 0.235 0.124 σ_c_us 0.001% 0.005% σ_c_uk 1.659% 0.125% β_s_jp 0.081 0.000
kp11_jp 0.608 0.263 σ_l_dr 0.043% 0.002% β_l_uk 0.572 0.013
kp22_jp 0.111 0.067 σ_s_dr 0.090% 0.004% β_s_uk 0.447 0.000
kp33_jp 0.169 0.087 σ_c_dr 0.100% 0.004%
kp11_uk 0.127 0.067
kp22_uk 0.545 0.297
kp33_uk 0.914 0.649
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Figure (6): Global Level and Slope Factor vs Macro Variables  

 

(Note): This figure shows the global level and slope factors plotted against their macroeconomic interpretations. 

The global level factor is plotted against the first principal component extracted from a matrix containing data on 

expected inflation for US, Germany, Japan and UK. The global slope factor is plotted against the first principal 

component extracted from a matrix containing data on GDP for above four countries. 

Figure (7): Global Curvature Factor vs Macro Variables  

(Note): This figure plots the global curvature factor against several macro-finance time series: Top 

left: U.S. policy uncertainty index computed by Baker, Bloom, and Davis (2016). Bottom left: 

Financial stress index published by the Federal Reserve Bank of St. Louis. Bottom right: U.S. term 

premium, computed by Bauer, Rudebusch, and Wu (2014). 
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Figure (8): Loading of yields on Global Factors  

 
(Note): This figure plots the factor loadings of regression of all yields on the estimated global(above) 

and local (below) factors. 

Figure (9): Model Fit  

 

(Note): This figure shows actual mean yield vs estimated mean yield from global factor model. 
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