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Abstract

This study proposes a joint pricing model for stocks and bonds in a
no-arbitrage framework. A stock price representation is obtained in a man-
ner consistent with the quadratic Gaussian term structure model, in which
the short rate is the quadratic form of the state variables. In this study,
specifying the dividend as a function using the quadratic form of the state
variables leads to a stock price representation that is exponential-quadratic
in the state variables. We prove that the coefficients determining the stock
price have to satisfy some matrix equations, including an algebraic Riccati
equation. Moreover, we specify the sufficient condition in which the ma-
trix equations do have a unique solution. In our empirical analysis using
Japanese data, we obtain estimates with a good fit to the actual data. Fur-
thermore, we estimate the risk premiums for stocks and bonds and analyze
how the BOJ’s unconventional monetary policy has affected these risk pre-
miums.
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1 Introduction

Risk premiums are basic inputs for investors’ asset allocations. Needless to say, since
investors make decisions on the asset allocations of several financial assets, such as
stocks and bonds, they need to simultaneously estimate their risk premiums. More-
over, risk premiums are essential not only for investors but also for central bankers. In
particular, it has become more difficult for central banks to ignore how risk premiums
have been evolving since the financial crisis that began in August 2007. After the
collapse of Lehman Brothers, some central banks in developed countries conducted un-
conventional monetary easing measures. For example, the U.S. Federal Reserve (Fed)
began its quantitative easing in December 2008 and recently ended this policy in Octo-
ber 2014. The Bank of Japan (BOJ) started its comprehensive monetary easing (CME)
in October 2010, and when it ended its CME, it began the qualitative and quantitative
easing (QQE) in April 2013. Furthermore, the BOJ decided to expand the scale of its
QQE in November 2014. These policies consisted of large-scale purchases of longer-
term government bonds by the Fed and the BOJ in their attempts to lower investors’
risk premiums through portfolio rebalancing. For these reasons, it is important for
many investors and central bankers to simultaneously estimate the risk premiums of
several financial assets.

In order to simultaneously estimate the risk premiums of several assets, we need
a unified framework that jointly deals with the prices of these assets. One of the
likely candidates is the no-arbitrage pricing framework. Almost all the earlier studies
that price multiple assets within a no-arbitrage framework target stocks and bonds.
Although there is a limited number of earlier studies on this subject, [3], [11], [5], [10],
and [2] developed the joint-pricing model for stocks and bonds with the no-arbitrage
framework. Except for [2], these studies are based on a Gaussian affine framework.
In these studies’ models, stock and bond prices are both represented using an affine
function of the Gaussian state variables. They sustain theoretical consistency in the
sense that there is no arbitrage opportunity in financial markets. However, these models
do not ensure the positivity of nominal interest rates. A particular problem here is that
this may lead to inaccurate estimation results in a low interest rate environment, such
as in the current situation.

As for the previous studies focusing only on pricing bonds, some models that guar-
antee the interest rate’s positivity have been proposed. For example, the Cox-Ingersoll-
Ross (CIR) model proposed in [4] would be the most popular among positive interest
rate models. In addition, the potential approach in [13] and the shadow-rate approach
in [8] ensure positive interest rates. Furthermore, the quadratic Gaussian term struc-
ture model (QGTM) studied by [1] and [9] is one of these types of studies. The QGTM
has an advantage over the CIR model, which is a similar and popular short-rate model.
While it is possible that the interest rate in the CIR model takes a negative value in
time discretization, even though it ensures positivity in a continuous time setting, the
interest rate in the QGTM always takes a positive value, even in a discrete time set-
ting. Furthermore, the QGTM with multivariate factors enables us to represent more
flexible correlations among the variables. On the other hand, those of the multivariate
CIR are obliged to have some restrictions in obtaining well-defined bond prices.

In this study, we want to incorporate the QGTM into the dividend-discounted-cash-
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flow pricing model of stocks in a manner consistent with the no-arbitrage condition1.
We assume that the stock dividend is paid to stockholders on a continuous basis and
that the dividend yield is assumed to depend on the state variables. Furthermore,
setting the ex-dividend stock price as the exponential quadratic form of the state
variables leads to the necessary condition for the existence of the stock price. Thus, we
provide the sufficient condition of the well-defined stock price. The joint pricing model
for stocks and bonds, we propose in this study, allows us to estimate market prices
and their risk premiums more accurately than the affine Gaussian framework seen in
the previous studies. This is because our model ensures the positivity of the nominal
interest rates. In particular, our model could enable us to elaborate an empirical
analysis for financial markets under a low interest rate environment.

The rest of the paper is organized as follows. In section 2, we present the theoretical
basis of the study, which consists of the setup, and the bond-pricing and stock-pricing
elements of our model. In section 3, we explain the estimation methodology. section 4
presents the estimation results. The conclusions are presented in section 5.

2 Theory

In this section, we explain the theoretical portion of the study. First, we prepare for
the setup of our model. Here, we define the state variable processes and the short rate.
Second, in order to provide the bond pricing, we review the quadratic Gaussian term
structure model (QGTM) studied by [1] and [9]. The QGTM serves as a basis for the
interest rate models in our study. Next, we aim to give the stock price representation.
In this part of our study, after defining the finite-maturity stock, we represent the
price as the general form of the conditional expectation of the discounted cash flow.
Then, we specify the amount of dividend paid continuously to the stockholders, which
depends on the state variables. As a result of an application of the Feynman-Kac
theorem, we can derive the necessary condition for the stock price representation to be
satisfied. In order for the finite-maturity stock price to become well defined, we discuss
the sufficient condition for the unique existence of the stock price. Next, we define the
infinite-maturity stock and give the price as the discounted cash flow representation in
the conditional-expectation form. Finally, we prove that imposing two transversality
conditions for the dividend and the infinite-maturity stock leads to equality between
the infinite-maturity stock price and the limit of the finite-maturity stock as maturity
approaches infinity. Therefore, under some proper conditions, we obtain the well-
defined stock price.

2.1 Setup

In this study, we fix a probability space (Ω,F , F,P) that satisfies the usual condition.
Here, let P denote the physical measure. In addition, we assume the market to be
complete, so that the risk-neutral measure, Q, uniquely exists.

1[2] works on a joint pricing model for stocks and bonds. They build a bond pricing model with the
potential approach and they incorporate it into the dividend discounted cash flow pricing of stocks that
is consistent with the no-arbitrage condition. Our work is particularly concerned with the estimation
of risk premiums; on the other hand, their work focuses only on the pricing of stocks and bonds.
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Let us consider state variable Xt, following the Ornstein-Uhlenbeck process under
the physical measure P:

dXt = KP
X(θP − Xt)dt + ΣXdWP

t,1, (1)

where WP
t,1 is an N dimensional Brownian motion. Moreover, we assume that ΣX is a

diagonal matrix with its diagonal elements all positive.
In addition to Xt, we define another state variable Yt as follows:

dYt = µPdt + KP
Y Xtdt + ΣY,1dWP

t,1 + ΣY,2dWP
t,2, (2)

where WP
t,2 is an M dimensional Brownian motion with cov(WP

t,1, W
P
t,2) = 0N×M . As

can be seen from equation (2), Yt is the non-stationary process.
In order to model the state variable process under the risk-neutral measure Q, we

define the market price of risk. This allows us to bridge between P and Q. We assume
that there exists the market price of risk for WP

t,1 and WP
t,2. Let Λt,1 be defined such

that dWQ
t,1 = dWP

t,1 + Λt,1dt where WQ
t,1 is an N dimensional Brownian motion under

the risk-neutral measure. We also assume that dWQ
t,2 = dWP

t,2 + Λt,2dt where WQ
t,2 is

an M dimensional Brownian motion under the risk-neutral measure. Specifically, we
model Λt,1 as Λt,1 = λ0 + Λ1Xt and Λt,2 as Λt,2 = λ1 + Λ2Xt, according to [7]. This is
called the essentially affine setting. Describing Xt under Q as follows:

dXt = KQ
X (θQ − Xt)dt + ΣXdWQ

t,1, (3)

we find the following relationships from equations (1) and (3)

KP
XθP = KQ

X θQ + ΣXλ0, KP
X = KQ

X − ΣXΛ1. (4)

Under Q, the non-stationary state process, Yt, is given by

dYt = µQdt + KQ
Y Xtdt + ΣY,1dWQ

t,1 + ΣY,2dWQ
t,2. (5)

Thus, the essentially affine setting, equations (2), and (5) lead to the following rela-
tionships:

µP = µQ + ΣY,1λ0 + ΣY,2λ1, KP
Y = KQ

Y + ΣY,1Λ1 + ΣY,2Λ2. (6)

Next, the risk-free short rate, rt, is defined as the quadratic form of the state
variable, Xt, in this study:

rt = X ′
tΨXt, (7)

where the superscript of Xt represents the transposition of Xt and Ψ is assumed to be
positive definite. This setting ensures the positivity of the short rate rt. Additionally,
we note that we sometimes denote rt by r(t,Xt) in order to emphasize on that rt

depends on Xt.
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2.2 Bond Pricing

Under the above-indicated setting, we derive the zero-coupon bond-pricing formula.
First, the zero-coupon bond price P T−t(t, Xt) at time t with maturity T is described
as

P T−t(t,Xt) = EQ
t

[
exp

(
−

∫ T

t

r(u,Xu)du

)]
, (8)

where EQ
t [ ] is the conditional expectation operator under Q, given the filtration Ft

which WQ
t generates until time t. We immediately find that the zero-coupon bond

price always becomes less than one because the short rate takes a positive value from
equation (7). This means that the zero-coupon yields also take positive values.

Applying the Feynman-Kac theorem to equation (8), we obtain the following partial
differential equation for P τ (t,Xt) (τ = T − t).

∂P τ (t,Xt)

∂t
+ κQ(t,Xt)

′∂P τ (t,Xt)

∂Xt

− r(t, Xt)P
τ (t,Xt) +

1

2
Tr

(
ΣXΣ

′

X

∂2P τ (t,Xt)

∂2Xt

)
= 0, (9)

P 0(T,XT ) = 1,

where κQ(t,Xt) = KQ
X (θQ − Xt).

An attempting at finding the solution to equation (9) takes the form given by

P τ (t,Xt) = exp (X ′
tAτXt + b′τXt + cτ ) . (10)

Computing derivatives based on equation (10), we obtain

∂P τ (t,X)
∂t

=
(
X ′ dAτ

dt
X + db′τ

dt
X + dc′τ

dt

)
P τ (t,X),

∂P τ (t,X)
∂X

= ((A′
τ + Aτ )X + bτ ) P τ (t,X),

∂2P τ (t,X)
∂2X

= {(A′
τ + Aτ )XX ′(A′

τ + Aτ ) + (A′
τ + Aτ )Xb′τ

+ bτX
′(A′

τ + Aτ ) + (A′
τ + Aτ + bτb

′
τ )}P τ (t,X).

(11)

Substituting equation (11) into equation (9), we obtain the differential equations
from the conditions that the coefficient corresponding to each degree of Xt must each
become equal to zero, respectively:

dAτ

dt
= KQ

X

′
(Aτ + A′

τ ) + Ψ − 1
2
(A′

τ + Aτ )ΣXΣ′
X(A′

τ + Aτ ), A0 = 0N×N

db
′
τ

dt
= −(KQ

X θQ)′(A′
τ + Aτ ) + b′τK

Q
X − b′T−tΣXΣ′

X(A′
τ + Aτ ), b0 = 0N×1

dbτ

dt
= −(KQ

X θQ)′bT−t − 1
2
Tr(ΣXΣ

′
X(A′

τ + Aτ ) + bτb
′
τ ), c0 = 0

(12)

In general, equation (12) does not have the closed-form solution. Therefore, to
compute the solutions, we rest on the numerical method, such as the Runge-Kutta
method.
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2.3 Stock Price Modeling

2.3.1 Finite-Maturity Stock

In this subsection, we define the finite-maturity stock and provide a sufficient condition
for the unique existence of this stock price.

First, we consider the stock with finite maturity. This stock continuously pays divi-
dend D(t, Zt) per time to stockholders, where Zt denotes Z ′

t = (X ′
t, Y

′
t ). At maturity T ,

this stock pays the terminal dividend D(T, ZT ). For the period after T , it is assumed
that this stock no longer generates cash flow. This finite-maturity stock is bought and
sold for price ST (t) at time t.

The cumulative discounted gain from time 0 to time t (t ≤ T ), gT (t) is described
as

gT (t) =

∫ t

0

exp

(
−

∫ s

0

r(u,Xu)du

)
D(s, Zs)ds + exp

(
−

∫ t

0

r(s, Xs)ds

)
ST (t). (13)

Under the Q measure, gT (t) has to become a martingale. Thus, the relationship
gT (t) = EQ

t [gT (T )] holds. This relationship and equation (13) lead to the following
equation for the stock price at t.

ST (t) = EQ
t

[∫ T

t

exp

(
−

∫ s

t

r(u,Xu)du

)
D(s, Zs)ds + exp

(
−

∫ T

t

r(s,Xs)ds

)
D(T, ZT )

]
.

(14)
Here, assuming the transversality condition for the terminal dividend given by

lim
T→∞

EQ
t

[
exp

(
−

∫ T

t

r(s,Xs)ds

)
D(T, ZT )

]
= 0, (15)

from equation (14), we can derive the limit of the finite maturity stock price as the
maturity approaches infinity:

lim
T→∞

ST (t) = lim
T→∞

EQ
t

[∫ T

t

exp

(
−

∫ s

t

r(u, Xu)du

)
D(s, Zs)ds

]
. (16)

Here, let us specify the dividend. First, we model the dividend D(t, Zt) as follows:

D(t, Zt) = (δ0 + δ′1Xt + X ′
tΦXt) exp (kt + d′Xt + X ′

tEXt + c′Yt) , (17)

where Φ and E are assumed to be symmmetric. As for the terminal dividend at
maturity T , we model it by

D(T, ZT ) = exp (kT + d′XT + X ′
T EXT + c′YT ) . (18)

Equations (14), (17), (18), and the Feynman-Kac theorem allow us to derive the
partial differential equation for ST (t). (Afterwards, we sometimes denote ST (t) by
ST (t, Zt) to emphasize that the price depends on the state variable Zt)

∂ST (t,X)
∂t

+ ∂ST (t,Z)
∂X

κQ(X) + ∂ST (t,Z)
∂Y

κ̃Q(X) + 1
2
Tr

(
ΣXΣ

′
X

∂2ST (t,X)
∂2X

)
+1

2
Tr

(
ΣY Σ

′
Y

∂2ST (t,Z)
∂2Y

)
+ Tr

(
ΣXΣ

′
Y

∂2ST (t,Z)
∂X∂Y

)
−r(t,X)ST (t, Z) + D(t, Z) = 0,

ST (T, ZT ) = D(T, ZT ) = exp(kT + d′XT + X ′
T EXT + c′YT ),

(19)
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where κQ(X) = KQ
X (θQ − X) and κ̃Q(X) = µQ + KQ

Y X .
An estimate of the solution to equation (19) has the form given by ST (t, Z) =

exp(kt + d′Xt + X ′
tEXt + c′Yt). Then, we substitute this form and equation (17) into

equation (19). Each coefficient of Xt with respect to degree has to be a zero matrix,
zero vector, or zero; hence,

−2EKQ
X + 2EΣXΣ′

XE + Φ − Ψ = 0N×N ,

(−KQ
X

′
+ 2EΣXΣ′

X)d + 2EKQ
X θQ + 2EΣXΣY c + δ1 = 0N×1,

k + d′KQ
X θQ + 1

2
Tr(ΣXΣ

′
X(2E + dd′) + 1

2
Tr(ΣY Σ

′
Y cc′)

+c′ΣY ΣX + c′ΣY ΣX + δ0 + c′µQ = 0.

(20)

Here, we note that c is a free parameter and E, d, and k are variables to be solved.
Taking the transposition of the first equation of equation (20), adding it to the first

equation and multiplying it by one half, we obtain the following equation:

EKQ
X + KQ

X

′
E − 2EΣXΣ′

XE + Ψ − Φ = 0N×N . (21)

Equation (21) is called an algebraic Riccati Equation. In general, there is no solution
to this equation. However, a sufficient condition for the unique existence of a solution in
an algebraic Riccati equation is known. The condition is that a matrix pair (KQ

X , ΣX)

is controllable and Ψ−Φ is positive definite. The solution Ê of this equation becomes
positive definite.

In terms of the existence of the solution to the second equation of equation (21), we

have to examine whether or not the coefficient of d, −KQ
X

′
+ 2ÊΣXΣ′

X has an inverse

matrix. This coefficient becomes equal to Ê−1(Ψ−Φ + ÊKQ
X ) from the first equation.

Hence, we have to only examine whether Ψ − Φ + ÊKQ
X has an inverse matrix. The

matrix obtained by adding this matrix to the transposition of this matrix is positive
definite. This is because the matrix becomes equal to Ψ − Φ + 2ÊΣXΣ′

XÊ, which
is positive, due to the assumption of the positivity of the diagonal elements of the
diagonal matrix ΣX . If the matrix is positive, then it has an inverse matrix. As a

result, we find that the coefficient of d, −KQ
X

′
+ 2ÊΣXΣ′

X has an inverse matrix, so
that d in the second equation always has the solution. Once we find the solution of E
and d, we easily compute k from the third equation.

Summing up the above discussion, we obtain the following proposition and lemma.

Proposition 1. State variables Xt and Yt follow equations (3) and (5), respectively.
The volatility term of Xt, ΣX is assumed to be a diagonal matrix with positive di-
agonal elements. As for rt, we define it by equation (7). In addition, the dividend
D(t, Zt) of the finite-maturity stock is given by equation (17). Here, E and Φ are
symmetric. Furtheremore, if we assume that Ψ − Φ is positive definite and a matrix
pair (KQ

X , ΣX) is controllable, then the finite-maturity stock price ST (t, Zt) has the
following representation:

ST (t, Zt) = exp(kt + d′Xt + X ′
tEXt + c′Yt),

where k, d and E are obtained from equation (20) while c is a free parameter.
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Lemma 1. Under the condition presented in Proposition 1, ST (t,Xt) = ST ′
(t,Xt) (T 6=

T ′) .

Proof. ST (t, Zt) = exp(kt + d′Xt + X ′
tEXt + c′Yt) does not depend on the time to

maturity. Hence, ST (t,Xt) = ST ′
(t,Xt) (T 6= T ′).

Since the dividend D(t, Zt) = (δ0 + δ′1Xt + X ′
tΦXt) exp(kt + d′Xt + X ′

tEXt + c′Yt)
and S(t, Zt) = exp(kt + d′Xt + X ′

tEXt + c′Yt), δ0 + δ′1Xt + X ′
tΦXt is interpreted as the

dividend yield.
Next, imposing condition (15) on the finite-maturity stock price leads to the fol-

lowing proposition.

Proposition 2. Under the condition presented in Proposition 1, assuming the transver-
sality condition (15), we obtain the following relationship:

lim
T→∞

EQ
t

[∫ T

t

exp

(
−

∫ s

t

r(u,Xu)du

)
D(s, Zs)ds

]
= exp(kt + d′Xt + X ′

tEXt + c′Yt)

Proof. By Lemma 1,

lim
T→∞

ST (t) = ST (t) = exp(kt + d′Xt + X ′
tEXt + c′Yt).

On the other hand, by equation(16),

lim
T→∞

EQ
t

[∫ T

t

exp

(
−

∫ s

t

r(u,Xu)du

)
D(s, Zs)ds

]
= lim

T→∞
ST (t).

Therefore,

lim
T→∞

EQ
t

[∫ T

t

exp

(
−

∫ s

t

r(u,Xu)du

)
D(s, Zs)ds

]
= exp(kt + d′Xt + X ′

tEXt + c′Yt).

2.3.2 Infinite-Maturity Stock

In this subsection, let us consider an infinite-maturity stock. As is the case with a
finite-maturity stock, we postulate that an infinite-maturity stock continuously pays
the dividend D(t, Zt) per time to holders. Let S∞(t) denote the price of this stock at
time t. The discounted gain process from time 0, g∞(t) is given by

g∞(t) =

∫ t

0

exp

(
−

∫ s

0

rudu

)
D(s, Zs)ds + exp

(
−

∫ t

0

rsds

)
S∞(t). (22)

We note that g∞(t) needs to be a martingale under the Q measure. Hence, g∞(t) =
EQ

t [g∞(T )] holds. This relationship and equation (22) lead to the equation given by

S∞(t) = EQ
t

[∫ T

t

exp

(
−

∫ s

t

rudu

)
D(s, Zs)ds + exp

(
−

∫ T

t

rsds

)
S∞(T )

]
. (23)

This holds for T ≥ t.
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Now, imposing the transversality condition for the infinite-maturity stock price
given by

lim
T→∞

EQ
t

[
exp

(
−

∫ T

t

r(s, Xs)ds

)
S∞(T )

]
= 0, (24)

equation (23) reduces to the following

S∞(t) = lim
T→∞

EQ
t

[∫ T

t

exp

(
−

∫ s

t

r(u,Xu)du

)
D(s, Zs)ds

]
. (25)

From the above, we obtain the proposition:

Proposition 3. If two transversality conditions (15) and (24) hold under the condition
presented in Proposition 1, then the infinite-maturity stock price has the following
representation:

S∞(t) = exp(kt + d′Xt + X ′
tEXt + c′Yt).

Accordingly, the infinite-maturity-stock price representation is obtained when the
two transversality conditions hold.

2.3.3 Theorem on Stock Price Representation

With Proposition 3, when the two transversality conditions hold, the infinite-maturity
stock price has a closed-form representation. Here, let us discuss the sufficient condition
for terminal transversality.

According to [11], as for the transversality condition for the dividend, we can prove
the following proposition.

Proposition 4. If the dividend yield δ0 + δ′1Xt + X ′
tΦXt > 0, then the transversality

condition for the terminal dividend (15) holds.

Proof. First, we denote the dividend yield δ0+δ′1Xt+X ′
tΦXt by δ(t,Xt). Let us define

ζt by

ζt = exp

(∫ t

0

(δ(u,Xu) − r(u,Xu))du

)
D(t, Zt).

Applying Ito’s lemma into this equation, we can write the process of ζt given by

dζt = exp

(∫ t

0

(δ(u,Xu) − r(u,Xu))du

)
∂D(t, Zt)

∂Zt

ΣZdWQ
t .

This leads to the following equation:

ζT = ζt +

∫ T

t

exp

(∫ s

0

(δ(u,Xu) − r(u,Xu))du

)
∂D(s, Zs)

∂Zs

ΣZdWQ
s .

The dividend yield δ0 + δ′1Xt + X ′
tΦXt > 0 is equivalent to δ0 > 1

4
δ′1Φ

−1δ1.
Let us denote the second term of the right hand side of the above equation by It(T ).

It(T ) is a local martingale because it is a stochastic integral with respect to a Brownian
motion. In addition, It(T ) is more than −ζt, since ζt is, by definition, positive. Hence,
we find that It(T ) is a super-martingale because it is a local martingale with a lower
bound.

9



Here, we assume that δ(t,Xt) ≥ ε > 0. From this, we have the following inequality:

exp

(∫ T

0

(δ(u,Xu) − r(u,Xu))du

)
D(T, ZT ) > eεT exp

(∫ T

0

−r(u,Xu)du

)
D(T, ZT ).

Hence,

eεT exp

(∫ T

0

−r(u,Xu)du

)
D(T, ZT ) < ζt + It(T ).

Taking the expecataion for both sides of the above inequality,

eεT EQ
t

[
exp

(∫ T

0

−r(u,Xu)du

)
D(T, ZT )

]
< ζt + EQ

t [It(T )] ≤ ζt + It(t) = ζt,

where the last inequality is given by the fact that It(T ) is a super-martingale. This
leads to the following inequality,

EQ
t

[
exp

(∫ T

0

−r(u,Xu)du

)
D(T, ZT )

]
< e−εT ζt.

Therefore, the left hand side of the above inequality approaches zero as T approaches
infinity.

Let us consider the transversality condition for the infinite-stock price.

Proposition 5. If the finite-maturity stock price and the infinite-maturity stock price
uniquely exist and the transversality condition for the terminal dividend holds, then
the transversality condition for the infinite-maturity stock price holds.

Proof. If S∞(t, Zt) = S(t, Zt), then equation (23) is satisfied. Then, since S∞(t, Zt) =
S(t, Zt) = D(t, Zt) for any time t and the transversality condition for the dividend
holds,

lim
T→∞

EQ
t

[
exp

(
−

∫ T

t

rsds

)
D(T, ZT )

]
= lim

T→∞
EQ

t

[
exp

(
−

∫ T

t

rsds

)
S∞(T, ZT )

]
= 0.

Therefore, the transversality condition for the infinite-maturity stock price holds.

Summing up our discussion so far, we have the following theorem.

Theorem 1. We assume the following:

� Φ and Ψ − Φ are positive definite,

� a matrix pair (KQ
X , ΣX) is controllable,

� δ0 > 1
4
δ′1Φ

−1δ1.

Then, the non-defaultable stock price is well defined and has the following representa-
tion:

S(t, Zt) = exp(kt + d′Xt + X ′
tEXt + c′Yt),

where the coefficients of Xt and Yt satisfy the stock-price matrix equation given by

−2EKQ
X + 2EΣXΣ′

XE + Φ − Ψ = 0N×N ,

(−KQ
X + 2EΣXΣ′

X)d + 2EKQ
X θQ + δ1 = 0N×1,

k + d′KQ
X θQ +

1

2
Tr(ΣXΣ′

X(2E + dd′)) + δ0 = 0.
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2.4 Processes of Stock and Bond Prices, Correlation, and Risk
Premiums

In this subsection, first, we write down the stochastic processes of stock and bond prices.
This gives us the instantaneous excess returns and volatilities of stock and bond prices.
In addition, we derive the correlation representation between stock and bond prices.
These evolve, depending on the state variable Xt. We find that our model can provide
more flexible structures to stock and bond dynamics and their dependencies.

Furthermore, we give the definitions of term premium and equity risk premium. In
section 4, we estimate these by using Japanese data.

First of all, we write the stochastic process of the n-year zero-coupon bond price
under the P measure. Using equation (10) and the fact that the drift term of the price
return is equal to rt under Q, the stochastic process under Q is given by

dP n(t)

P n(t)
= rtdt + {(An + A′

n)Xt + bn}′ ΣXdWQ
t,1. (26)

Here, remembering the setting of the essentially affine risk premium, or Λt = λ0+Λ1Xt,
we obtain the bond-price process under P as follows:

dP n(t)

P n(t)
= (rt + {(An + A′

n)Xt + bn}′ ΣX(λ0 + Λ1Xt))dt

+ {(An + A′
n)Xt + bn}′ ΣXdWP

t,1.

(27)

From equation (27), we find that the instantaneous excess return and the volatility of
the bond-price return depends on the state variable Xt.

Next, let us derive the stock price process under P. The cumulative gain associated
with holding the stock from time 0, g̃(t) is given by

g̃(t) =

∫ t

0

D(s)ds + S(t) =

∫ t

0

(δ0 + δ′1Xs + X ′
sΦXs)S(s)ds + S(t). (28)

Hence, from equation (28) and Ito’s lemma, the process of the return associated with
holding the stock is given under Q,

dg̃(t)

S(t)
= (δ0 + δ′1Xt + X ′

tΦXt)dt +
dS(t)

S(t)

= rtdt + ((d + 2EXt)
′ΣX + c′ΣY,1)dWQ

t,1 + c′ΣY,2dWQ
t,2.

(29)

The second equality is due to the fact that the drift term must be the risk-free rate
under Q.

By equation (29) and the assumption of the essentially affine risk premium, we
obtain the return process associated with holding the stock under P,

dg̃(t)

S(t)
=rtdt + ((d + 2EXt)

′ΣX + c′ΣY,1)(λ0 + Λ1Xt)dt

+ ((d + 2EXt)
′ΣX + c′ΣY,1)dWP

t,1 + c′ΣY,2dWP
t,2.

(30)

As with the bond return, excess return and the volatility of a stock holding’s return
depends on the state variable Xt.

11



Equation (27) and (30) lead to the following correlation between the bond return
and the stock holding return.

(D′ΣX + c′ΣY,1)Σ
′
X

{
ÃnXt + bn

}
√

(D′ΣX + c′ΣY,1)(D′ΣX + c′ΣY,1)′ + c′ΣY,2Σ′
Y,2c

√{
ÃnXt + bn

}′
ΣXΣ′

X

{
ÃnXt + b(t)

} ,

(31)
where Ãn = An + A′

n and D = d + 2EXt.
Next, let us define the bond and equity risk premium. As for the bond risk premium,

the term premium defined below is estimated and analyzed in many empirical studies.
The term premium TP n

t of the n-year zero-coupon yield at time t is defined as:

TP n
t =

1

n
log EP

t

[
exp

(
−

∫ t+n

t

r(u,Xu)du

)]
− 1

n
log EQ

t

[
exp

(
−

∫ t+n

t

r(u,Xu)du

)]
= yn

t +
1

n
log EP

t

[
exp

(
−

∫ t+n

t

r(u,Xu)du

)]
,

(32)
where yn

t represents the n-year zero-coupon yield.
The equity risk premium EP n

t for n years is defined as the excess return of the
expected holding return of the stock for n years over the n-year zero-coupon yield.
Expressing the mathematical form, we define it as follows:

EP n
t =

1

n
EP

t

[∫ t+n

t

D(s)ds + S(t + n) − S(t)

]
/S(t) − yn

t . (33)

In section 4, we estimate and analyze the term premium and the equity risk premium
based on Japanese stock and bond data.

3 Estimation Methodology

In this section, we explain the estimation methodology we use for conducting our empir-
ical studies. Our model can be regarded as the state-space model. As the observation
equation becomes a nonlinear function, we can not use the Kalman filter in order to
estimate the latent state variables. Thus, we apply the unscented Kalman filter, one
of the nonlinear filters, to actual financial market data. Furthermore, we estimate the
model parameter by using the quasi-maximum likelihood method.

3.1 State Space Representation

Moving towards our empirical study, we approximate our continuous-time model to
the discrete-time model. We set the unit of time as one month. We can write Xt’s and
Yt’s processes in discrete time as follows:

Xt+1 = exp(−KP
X)Xt + (I − exp(−KP

X))θP +
√

V εP1,t+1

Yt+1 = Yt + µP + KP
Y Xt + ΣY,2ε

P
2,t+1

12



where V =
∫ 0

−1
eKP

XuΣXΣ′
XeKP

Xu′du and
√

V represents the Cholesky decomposition of

V . In addition, εP1,t+1 and εP2,t+1 are random variables, each with a standard normal
distribution, and each is independent from the other. For simplicity’s sake here, we
assume that ΣY,1 in equation (2) is the zero matrix. The above equation indicates the
transition equation of the state variable Zt. Summarizing Xt’s and Yt’s processes, we
write this as Zt+1 = f(Zt) + Σεt+1.

We specify the setting of this transition equation. This specification imposes some
restrictions on the model parameters. As a result, it becomes possible for us to estimate
the parameters without ending up with over-fitting or under-fitting.

In our empirical analysis, we let N , the dimension of Xt be 3, while we do not con-
sider Yt; in other words, we let M be 0. This setting aims to reduce the computational
burden associated with an estimation. Here, we note that Xt with 3 factors is flexible
enough to represent a variety of shapes that the yield curve generally adopt.

Considering Xt’s correlation structure, we find that it is determined by KP
X and ΣX .

However, since the correlation matrix is symmetric, KP
X and ΣX are unidentifiable in

an estimation. Thus, we assume that KP
X is a lower triangular matrix and ΣX is a

diagonal matrix.
Furthermore, according to the invariant transformation by [6] and [1] in order to

exclude an arbitrariness associated with a nonsingular linear transformation of Xt, we
can assume that ΣX is the following matrix:

ΣX =

 0.1 0 0
0 0.1 0
0 0 0.1

 .

If we deal with the case where M > 1, by the same argument as ΣX , we can assume
that ΣY,2 is the following matrix:

ΣY,2 =

[
0.1 0
0 0.1

]
,

where we let M be 2.
We impose a restriction on Λt, the market price of risk, in order that KQ

X becomes
a lower triangular matrix. That is, KQ

X and KP
X have the same matrix form. If Λ1 is

a lower triangular matrix, then KQ
X becomes a lower triangular matrix from equation

(4) because ΣX is diagonal. Hence, we assume that Λ1 is a lower triangular. As for λ0,
we do not have any restrictions.

The measurement equation is defined by

Tt =


zyield

(n1)
t

...

zyield
(nl)
t

logS(t)
dyieldt

 =


g1(Xt)

...
gl(Xt)

gl+1(Xt)
gl+2(Xt)

 +


ηt,1
...

ηt,l

ηt,l+1

ηt,l+2

 ,

where zyield
(ni)
t is the zero-coupon yield with the ni-month time to maturity at time

t, logS(t) is the log stock price, and dyieldt is the dividend yield of the stock. The
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function gi(Xt) (i = 1, . . . , l) is given by

gi(Xt) = − 1

ni

(
X ′

tAni
Xt + b′ni

Xt + cni

)
,

from equation (10). The coefficients Ani
, bni

, and cni
are solutions to equation (12).

The function gl+1(Xt) is given by

gl+1(Xt) = kt + d′Xt + X ′
tEXt,

where k, d, and E are solutions to equation (20), and c is a parameter to be estimated.
The function gl+2(Xt) is given by

gl+2(Xt) = δ0 + δ′1Xt + X ′
tΦXt.

Furthermore, (ηt,1, . . . , ηt,l, ηt,l+1, ηt,l+2) is the measurement error following a multi-
variate normal distribution. This variance-covariance matrix is given by

Cov(ηt,1, . . . , ηt,l, ηt,l+1, ηt,l+2) = diag(h1, · · · , h1, h2, h3) ≡ H.

3.2 Unscented Kalman Filter

As we can see in the previous subsection, because the form of gi(Xt) is nonliner, the
measurement equation is a nonlinear function. Hence, we cannot rely on the Kalman
filter to estimate the latent state variable Xt. Thus, we instead apply the unscented
Kalman filter developed by [14] to the actual financial market data.

The first step of the unscented Kalman filter is an initialization:

X̂0 = EP[X0], P0 = EP[(X0 − X̂0)(X0 − X̂0)
′].

In this initialization, we calculate the unconditional expectation and variance-covariance
matrix of the state variable Xt.

Next, let us explain the prediction step of the filter. Here, we calculate the pre-
diction of Xt by using ”sigma points.” For k = 1, . . . , S where S is the number of
observation dates, we calculate 2N + 1 points called sigma points, given by

χk−1 = [X̂k−1, X̂k−1 + γ
√

Pk−1, X̂k−1 − γ
√

Pk−1],

where χk−1 is an N × (2N + 1) matrix and
√

Pk−1 represents the square root matrix
of Pk−1. X̂k−1 ± γ

√
Pk−1 in the above equation is defined as follows:

X̂k−1 ± γ
√

Pk−1 = (X̂k−1, . . . , X̂k−1) ± γ
√

Pk−1,

where γ =
√

α2(N + κ) is called the scaling parameter. In this work, we assume that
α = 1 and κ = 0.

The next step is the time updating of the state variable Xt. Here, we transform
the above-defined sigma points by function f as follows:

χ∗
k|k−1 = [f(X̂k−1), f(X̂k−1 + γ

√
Pk−1), f(X̂k−1 − γ

√
Pk−1)],

where χ∗
k|k−1 has an N × (2N + 1) matrix.

14



Using each column of χ∗
k|k−1, χ∗

i,k|k−1, we calculate the“mean” and“ covariance”
of the state variable given by

X̂−
k =

2N∑
i=0

Wm
i χ∗

i,k|k−1,

P−
k =

2N∑
i=0

W c
i (χ∗

i,k|k−1 − X̂−
k )(χ∗

i,k|k−1 − X̂−
k )′ + ΣXΣ′

X ,

where weights are assigned as follows:

Wm
0 =

α2(N + κ) − N

α2(N + κ)
, W c

0 = Wm
0 + 1 − α2 + β,

Wm
i = W c

i =
1

2α2(N + κ)
, i = 1, . . . , 2N,

where β, above, is a non-negative weighting parameter used to incorporate knowledge
of higher order distribution moments. In this work, we set β = 0. We define the sigma
points of the predicted state variables as follows:

χk|k−1 = [X̂−
k , X̂−

k + γ
√

P−
k , X̂−

k − γ
√

P−
k ].

Next, we transform these sigma points χk|k−1 with a g function that gives the yields
and the log stock price.

Tk|k−1 = [g(X̂−
k ), g(X̂−

k ) + γ
√

P−
k , g(Ẑ−

k − γ
√

P−
k )],

T−
k =

2N∑
i=0

Wm
i Ti,k|k−1.

Finally, we obtain the following measurement-update equations,

PTk,Tk
=

2N∑
i=0

W c
i (Ti,k|k−1 − T̂−

k )(T ∗
i,k|k−1 − T̂−

k )′,

PXk,Tk
=

2N∑
i=0

W c
i (χi,k|k−1 − X̂−

k )(Ti,k|k−1 − T̂−
k )′ + H.

Using these variance-covariance matrices, we compute the Kalman gain, Kk, given by

Kk = PXk,Tk
P−1

Tk,Tk
.

With the Kalman gain, the time update of the conditional expectation and variance
of Xt is given by

Xk = X̂−
k + Kk(Tk − T̂−

k ), Pk = P−
k − KkPTk,Tk

K ′
k.

Given the model parameters, we can estimate the latent state variables through the
above steps of the unscented Kalman filter.
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3.3 Quasi-Maximum Likelihood Method

As for the model parameters, we estimate them by the quasi-maximum likelihood
method. The log likelihood function in this model is given by

log L(Θ) = −NS

2
log 2π − 1

2

S∑
k=1

(
log |PTk,Tk

| + (Tk − T−
k )′P−1

Tk,Tk
(Tk − T−

k )
)
,

where Θ is a set of model parameters and S is the number of our observation dates.
The optimal model parameter Θ is estimated as the solution of the maximization

of log L(Θ).

3.4 Data

We use monthly data from January 1996 to September 2013 for the JGB zero-coupon
yields, the Topix, and the dividend yield of the Topix. Zero-coupon yields are computed
from the Broker’s JGB prices by the method presented in [12]. The maturities included
are six months and 2, 5, 10, and 20 years. Data for the JGB prices, the Topix, and its
monthly dividend yield are downloaded from the Nikkei NEEDS Financial Quest.

4 Estimation Result

4.1 Model Fit

In this subsection, we illustrate the fit of our model to the actual financial market
data. The estimation of the state variable Xt and the model parameters is conducted
based on the methodology described in section 3. The Appendix presents estimates of
the model parameters. Estimates for each factor of the state variable Xt are shown in
Figure 1.
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Figure 1: Estimates of the state variable Xt

Based on the estimated parameters and state variable, we can examine the perfor-
mance of our model. Figure 2 displays the comparison between the observation data
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Figure 2: Model Fit: The graphs show a comparison between estimated values and
actual data. Yields, including zero coupon and dividend yields, are shown in percentage
terms. Two values for Topix are shown in points.
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and the estimates of zero-coupon yields, stock index, and dividend yield as calculated
from the filtered variable Xt|t. For the zero-coupon yields and stock price, the estima-
tion results show a good fit to the market data. Table 1 reports the summary statistics
of the estimation errors. The table indicates that the mean absolute errors for almost
all zero-coupon yields are below ten basis points. For the Topix, the mean absolute
relative error is about 5 %. Measuring the explained percentage variation for the Topix,
defined as one minus the ratio of error variance to the observation variance, we obtain
91.8 %. Accordingly, our model displays a good fit to the zero-coupon yields and stock
index.

The model’s performance for the dividend yield is worse than that for the zero-
coupon yields and stock index. This can most likely be attributed to the misspecifica-
tion of our model. In reality, investors value a company’s stock not only by dividend
amount but also internal reserve amount. With this in mind, the estimated dividend
yield of our model can be regarded as the adjustment of the realized dividend yield
by internal reserves. Hence, the estimated dividend yield could take a value different
from the observed dividend yield. Conducting an estimation with the exclusion of the
dividend yield from the measurement data is possible; however, this approach can lead
to an unrealistic estimate of the dividend yield. Thus, to obtain a realistic estimate,
we incorporate the actual dividend yield into the observation data, although this might
introduce measurement errors for the dividend yield to some extent.

0.5-year 2-year 5-year 10-year
Mean Estimated Error -1.713 4.186 5.044 -2.400
Mean Absolute Error 7.677 8.320 14.48 9.593

20-year Stock dividend yield
Mean Estimated Error -1.852 -1.949 -12.60
Mean Absolute Error 8.887 4.946 56.33

Table 1: Summary statistics of the estimation errors on the zero-coupon yields, the
Topix, and its monthly dividend yield: The estimation errors on the zero-coupon yields
and dividend yield are defned as the difference between the observed data and esti-
mates. These are indicated in basis points. As for the Topix, the estimation error is
defined as the relative error, indicated in percentage terms.

4.2 Correlation between Stocks and Bonds

When investors make decisions regarding their asset allocations, they need correlations
among financial assets as the input data. However, the use of correlations computed
directly from historical returns is at a risk of deterioration in the portfolio diversification
in case where correlations of the future largely vary from those of the past. Hence, the
correlations should contain forward-looking information on asset prices. As shown in
equation (31), our model enables us to compute the implied correlation between stocks
and bonds once we estimate the filtered state variable.

Figure 3 displays the implied correlations between the Topix and the Japanese
government bond prices. One is the correlation between the Topix and bonds with a
six-month time period to maturity, and the other is the Topix’s correlation with bonds
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having a 10-year time to maturity.

TOPIX versus the 6-month government bond
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Figure 3: Correlations between the Topix and the Japanese government bonds: the
graphs are shown in percentage terms.

As for the correlation between the Topix and the longer-term to maturity bonds, no
large fluctuation continued to have negative values over the sample period, as the right-
hand graph indicates. On the other hand, the correlation between the Topix and the
shorter-maturity term bonds takes mild negative values for most of the sample period;
however, it takes positive values during a certain interval of the sample period. Since
the spring of 2012 when the BOJ decided to further enhance the CME introduced in
October 2010, the correlation has taken significant positive values. This decision by the
BOJ is likely to cause widespread expectations that prolonged quantitative easing may
increase interest in the liquidity-driven market among investors. Accordingly, from the
above discussion, it can be said that the sign of the implied correlation changed from
negative to positive because of the BOJ’s action.

4.3 Risk Premium

In this subsection, we analyze the estimates of bond and stock risk premiums. In
particular, we are interested in how the unconventional monetary policies that the
BOJ introduced after the financial crisis beginning in the fall of 2008 have affected risk
premiums.

Figure 4 illustrates estimates of the term premiums for the shorter- and the longer-
term maturity bonds, defined as equation (32). Focusing on developments after the
beginning of 2009, we can observe the contrast between two developments. For the
shorter term maturity bonds, premiums have remained approximately constant. On
the other hand, the term premium for longer-term maturity bonds has largely continued
to decline since the beginning of 2011. This might reflect the fact that the BOJ began
the CME in October 2010. Before introducing this policy, the BOJ had primarily
bought the Japanese government bonds with relatively shorter durations. However,
the asset purchase program established via the CME attempted to buy longer-term
maturity bonds on a large scale and lower both the longer-term interest rates and their
term premiums. Notably, the BOJ’s purchase of longer-term bonds could reduce the
investors’ concerns about a deteriorated balance of supply and demand and thus lead
to a decline in the longer-term maturity bonds’ risk premium.
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Figure 4: Term Premiums (shown in percentage terms)

Figure 5 displays the equity risk premiums for two, five, and 10 years, defined as
equation (33). From this figure, we can observe that the equity risk premiums rose
sharply when Lehman Brothers collapsed. Looking back at past stress events in Japan,
for example, in November 1997 when Hokkaido Takushoku Bank, one of the city banks,
and Yamaichi Securities Company went bankrupt and in early 2003 when the Resona
Holdings capital adequacy ratio fell drastically low, equity risk premiums showed large
increases. In this manner, the equity risk premiums estimated based on our model
appear to capture the developments following the stress events.

Turning focus to developments in the equity risk premiums after the Lehman crash,
we can observe that the risk premiums have remained high. Until at least the end of
our sample period, September 2013, derailing the course of the BOJ, the decline in
the term premium of the longer-term maturity bonds has not impacted equity risk
premiums.
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Figure 5: Equity Risk Premiums (shown in percentage terms)
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5 Conclusion

This paper proposed a joint pricing model for stocks and bonds in a no-arbitrage
framework. Specifically, our bond-pricing model is based on the quadratic Gaussian
term structure model studied in [1] and [9]. This setting ensures a positive nominal
interest rate. On the other hand, our stock price is defined as the dividend discount
cash flow model incorporating the quadratic Gaussian term structure model in a no-
arbitrage condition. Specifying the dividend as a function using the quadratic form of
the state variables leads to a stock price representation that is exponential-quadratic
in the state variables. We proved that the coefficients determining the stock price have
to satisfy some matrix equations, including an algebraic Riccati equation. Moreover,
in general, these matrix equations do not have any solutions; however, we specified the
sufficient condition in which the matrix equations do have a unique solution.

In an empirical analysis using Japanese data, we estimated the latent state variables
and the model parameters based on the quasi-maximum likelihood method with an un-
scented Kalman filter. As a result, we obtained a good fit to the actual financial market
data. This could be because our model, which ensures a positive nominal interest rate,
works well with Japanese data, which contain a lengthly low interest environment.
Using estimated filtered state variables, we computed the implied correlation between
stocks and bonds. While the correlation between the Topix and longer-term maturity
government bond price evolves in a relatively stable manner with negative values, the
correlation between the shorter-term bonds and the stock index takes positive values
since the beginning of the BOJ’s CME, although it takes negative values for most of
the sample period. As for the risk premiums, the term premium of bonds with the
longer-term maturities has continued to decrease since the introduction of CME. On
the other hand, equity risk premiums have not decreased since the collapse of Lehman
Brothers. At least until September 2013, the end of our sample period, we did not
observe spillover effects of prompting to lower the risk premiums of more risky assets.

Although our study focused on Japanese data, our model can be applied to other
countries. In particular, our model should be effective in analyzing countries with low
interest rates, such as the U.S. and European countries. In the U.S, the quantitative
easing policy ended in October 2014 and investors have now developed a strong interest
in the period of the next policy rate rise. An analysis using our model would clarify
the development of the risk premiums for the stocks and bonds during the exit from
an accommodative monetary policy.
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Appendix: Estimated Model Parameters

Φ1,1 Φ2,1 Φ2,2 Φ3,1 Φ3,2 Φ3,3

1.130 × 10−5 4.471 × 10−6 8.449 × 10−6 -1.571 × 10−5 -1.818 × 10−5 5.534 × 10−4

KP
X,1,1 KP

X,2,1 KP
X,2,2 KP

X,3,1 KP
X,3,2 KP

X,3,3

0.05021 0.01031 0.00541 -0.01226 -0.01643 0.06484
Ψ1,1 Ψ2,1 Ψ2,2 Ψ3,1 Ψ3,2 Ψ3,3

1.464 × 10−5 5.319 × 10−6 1.250 × 10−5 -1.489 × 10−5 -1.796 × 10−5 5.895 × 10−4

Λ1,1,1 Λ1,2,1 Λ1,2,2 Λ1,3,1 Λ1,3,2 Λ1,3,3

-0.4928 0.1552 -0.02693 -0.02056 0.1191 -0.6327
θP
1 θP

2 θP
3 λ0,1 λ0,2 λ0,3

0.2055 0.2522 -0.1511 -0.1199 -0.0915 0.1486
δ1,1 δ1,2 δ1,3

-4.262 × 10−5 -1.074 × 10−4 0.001731
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