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Abstract. This paper presents that robust control-based utility advocated
by Anderson, Hansen, and Sargent [1], and Hansen and Sargent [11], admits
a normalized representation, where future utility enters the recursion through
an aggregator, of stochastic differential utility (Duffie and Epstein [4]) under
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biguity aversion, risk aversion, time consistency, and other properties of the
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1. Introduction

Against the background of a growing dissatisfaction in Economics toward the
expedient assumption that each agent is positive that her or his subjective prob-
ability is true, utilities with “Knightian uncertainty” or “ambiguity” have been
intensively studied for the past decade1. Such utilities with ambiguity are expected
to contribute to solving unsolved puzzles in Economics, which includes the Ells-
berg paradox (Ellsberg [6]), the equity premium puzzle (Mehra and Prescott [16]),
and the home-bias puzzle where investers in many countries invest much less in
foreign securities than those implied by traditional economics models. Two promis-
ing ones among utilities with ambiguity are the multi-prior utility (see Remark 2)
developed by Gilboa and Schmeidler [10], Epstein and Wang [8], and Chen and
Epstein [3], and the utility introduced by Anderson, Hansen, and Sargent [1], and
Hansen and Sargent [11], which a robust control is applied to (see Definition 1). It
is shown that these two utilities are closely related to each other (Hansen, Sargent,
Turmuhambetva, and Williams [12]). This paper considers the existence, unique-
ness, representation, and properties of the robust control-based utility. Anderson,
Hansen, and Sargent [1] have shown the existence, uniqueness, and a semigroup
representation of the robust control-based utility under Markovian jump-diffusion
information, and Skiadas [18] has presented that the existence, uniqueness, and
Stochastic Differential Utility (SDU) (Duffie and Epstein [4]) representation of the
robust control-based utility under nonMarkovian pure diffusion information. Only
few studies have so far been made at properties of the robust control-based utility,
in particular, in the case of jump-diffusion information. Market crush is caused
by jump information, and the fear of market crush is amplified by ambiguity for
jump information. Therefore, it is essential to consider utility with ambiguity under
jump-diffusion information to examine the puzzles mentioned above. There are two
main results in this paper. One is to show sufficient conditions for the existence,
uniqueness and normalized SDU representation, where future utility enters the re-
cursion through an aggregator, of the robust control-based utility, and the other is
to give sufficient conditions for properties of the utility including ambiguity aver-
sion, risk aversion, and time consistency, both under nonMarkovian jump-diffusion
information. Many of the results are derived exploiting the normalized SDU repre-
sentation.

This paper is summarized as follows. An extended SDU (Duffie and Skiadas [5])
which includes not only usual SDU but also Hindy-Huang-Kreps utility (Hindy,
Huang, and Kreps [13]), is first introduced under jump-diffusion information. Then
the robust control advocated by Anderson, Hansen, and Sargent [1], and Hansen
and Sargent [11], is applied to the extended SDU to introduce “ambiguity aversion”
into the utility. This extended SDU which the robust control is applied to, is
called the Robust Control-based SDU (RCSDU, hereafter) in this paper. First, it
is presented that the RCSDU admits an (unnormalized) SDU representation under
jump-diffusion information if it exists. While any SDU is normalized under pure
diffusion information, this does not apply to the case of jump-diffusion information.
Very recently, a sufficient condition for the normalization of SDU has been revealed
under jump-diffusion information (Kusuda [14]). It is confirmed that this condition
holds for the RCSDU, and therefore the normalized RCSDU is obtained. Then
sufficient conditions for the existence and uniqueness of normalized RCSDU are
given exploiting the results of Duffie and Epstein [4] for normalized (usual) SDU.
Next, attitudes towards ambiguity and risk of an agent with RCSDU are examined

1Anderson, Hansen, and Sargent [1], Chen and Epstein [3], Epstein and Wang [8], Epstein and
Zhang [9], Hansen and Sargent [11], Hansen, Sargent, Turmuhambetva, and Williams [12], Lazrak
and Quenez [15], Skiadas [18], Wang [19], etc.
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mainly using the notions proposed by Chen and Epstein [3]. Finally, sufficient
conditions for the continuity, monotonicity, time consistency, and concavity of the
RCSDU are given utilizing the results of Duffie and Epstein [4] for normalized usual
SDU.

The remaining of this paper is organized as follows. Section 2 provides a spec-
ification of RCSDU under jump-diffusion information. Section 3 presents the ex-
istence, uniqueness and normalization of RCSDU. Section 4 shows sufficient con-
ditions for the ambiguity aversion and risk aversion of RCSDU. Section 5 gives
sufficient conditions for other properties of RCSDU. Appendix A, B, and C intro-
duces marked point process, Ito’s Formula and Girsanov’s Theorem, and extensions
of Gronwall-Bellman Inequality, respectively. Appendix D shows proofs of lemmas
and propositions.

2. Robust Control-based Stochastic Differential Utility
under Jump-Diffusion Information

In this section, a specification of RCSDU (Robust Control-based Stochastic Dif-
ferential Utility) is provided under jump-diffusion information.

A continuous-time economy with time span T := [0, T ] is considered. Agents’
common subjective reference probability and information structure is modeled by
a complete filtered probability space (Ω,F ,F, P ) where F = (Ft)t∈T is the natural
filtration generated by a d-dimensional Wiener process W and a jump process called
marked point process ν(dt × dz) on a Lusin space (Z,Z) (in usual applications,
Z = Rd′ , or Nd′ , or a finite set) with the P -intensity kernel λt(dz) (for marked
point process, see Appendix A). The expectation operator under P is denoted by
E, and the conditional expectation operator under P given Ft is denoted by Et.
A space of cumulative consumption process is denoted by C. Let X : C → L :=
[Lp(Ω,T),P, µ]n0 where 1 ≤ p ≤ ∞, the power n0 denotes a Cartesian product, P
is the predictable σ-algebra, and µ is the product measure of P and the Lebesgue
measure on T. Let L̄p denote the ‖ · ‖L̄p-normed space of P-measurable real-valued
processes where ‖Y ‖L̄p := ‖ supt∈T |Yt| ‖Lp . Let n ∈ N. The space of real-valued
P-measurable processes Y satisfying the integrability condition

∫ T
0
|Ys|n ds < ∞

P -a.s., is denoted by Ln. The space of real-valued P ⊗ Z-measurable process H
satisfying the integrability condition

∫ T
0

∫
Z |Hs(z)|n λs(dz) ds <∞ P -a.s., is denoted

by Ln(λt(dz)× dt).
Let β denote nonnegative constant. We call that a functional U : C → R is an

SDU with its aggregator (f,X, β) if and only if U(C) = U0(C) for every C ∈ C
where Ut(C) is a unique solution in L̄p of the recursive equation:

Ut(C) = Et

[∫ T

t

e−β(s−t)f(Xs(C), Us(C)) ds
]

∀t ∈ T. (2.1)

This extended SDU is first introduced by Duffie and Skiadas [5] as the name of
Dynamic Utility. Suppose that Ct =

∫ t
0
csds, and that Xt(C) = ct. Then U is the

original SDU introduced by Duffien and Epstein [4]. In particular, if f(ct, Ut) =
u(ct), then U is a standard time additive utility. Suppose that Xt(C) = β0e

−βt +∫ t
0
βe−β(t−s) dCs where β0 > 0. Then U is a Hindy-Huang-Kreps utility (Hindy,

Huang, and Kreps [13]).
Let P be the set of all probability measures on (Ω,F) that are equivalent to P ,

i.e. they define the same null events as P . It follows from Girsanov’s Theorem (see
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Appendix B.2) that an equivalent measure P v,m is characterized by the Radon-

Nikodym derivative
dP v,m

dP
= Λv,mT defined by

Λv,mT = exp
[∫ T

0

(
−1

2
‖vt‖2−

∫
Z
mt(z)λt(dz)

)
dt+

∫ T

0

vt· dWt+
∫ T

0

ln(1+mt(z)) ν(dt×dz)
]
.

(2.2)
where vt ∈ Πd

i=1Ln, mt(z) ∈ L(λt(dz) × dt) and mt(z) > −1 P -a.s. for every
(t, z) ∈ T× Z. The expectation operator under P v,m is denoted by Ev,m, and the
conditional expectation operator under P v,m given Ft is denoted by Ev,mt .

A robust control exploits the discounted relative entropy of P with respect to
P v,m, which is defined by

Rv,m
t = Ev,mt

[
β

∫ T

t

e−β(s−t) ln
(
Λv,ms
Λv,mt

)
ds+ e−β(T−t) ln

(
Λv,mT
Λv,mt

)]
∀t ∈ T.

(2.3)
The notion of RCSDU is defined in the following.

Definition 1. Let ζ denote a positive constant. A functional Û : C → R is said to
be an RCSDU with its aggregator (f,X, β, ζ) if and only if Û(C) = Û0(C) for every
C ∈ C where Ût(C) is a unique solution in L̄p of the recursive equation:

Ût(C) = min
Pv,m∈P

Uv,mt (C) ∀t ∈ T (2.4)

where

Uv,mt (C) = Ev,mt

[∫ T

t

e−β(s−t)f(Xs(C), Uv,ms (C)) ds
]

+
1
ζ
Rv,m
t . (2.5)

Remark 1. It is shown in Section 4 that the parameter ζ represents ambiguity
aversion. For ζ = 0+, the minimizer of (2.4) is the reference probability measure
P . As ζ increases, the relative entropy of P with respect to the minimizer of (2.4)
becomes larger. Refer to Wang [19] for an axiomatic treatment of robust control-
based preference orders.

Remark 2. It is suggested by Hansen, Sargent, Turmuhambetva, and Williams [12]
that the RCSDU for jump-diffusion information is closely related to a Recursive
Multiple-Priors Utility (RMPU), also called Maxmin Expected Utility, defined by

U∗
t (C) = min

Pv,m∈P(η)
Ev,mt

[∫ T

t

e−β(s−t)f(Xs(C), U∗
s (C)) ds

]
∀t ∈ T (2.6)

where η is a positive constant, and P(η) = {P v,m ∈ P : Rv,m ≤ η}. The notion
of MPU was introduced by Gilboa and Schmeidler [10] in atemporal setting, and
extended to discrete-time setting (Epstein and Wang [8]), and to continuous-time
setting with diffusion information (Chen and Epstein [3]). Recently, Lazrak and
Quenez [15] have advocated a Generalized SDU (GSDU) under diffusion informa-
tion, the class of which includes the RMPU and an RCSDU in which the underlying
SDU in (2.1) is the standard time additive utility.

3. Existence, Uniqueness, and Normalization of RCSDU

In this section, a sufficient condition is presented for the existence, uniqueness,
and normalization of RCSDU.

The following lemma follows from integration by part and Girsanov’s Theorem.
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Lemma 1. It follows that for every P v,m ∈ P and C ∈ C,

Rv,m
t = Ev,mt

[∫ T

t

e−β(s−t)
{

1
2
‖vs‖2+

∫
Z

( ms(z)
1 +ms(z)

+ln(1+ms(z))
)
λv,ms (dz)

}
ds

]
(3.1)

for every t ∈ T.

Proof. See Appendix D.1. �

Using expression (3.1), equation (2.5) is rewritten to

Uv,mt (C) = Ev,mt

[∫ T

t

e−β(s−t)
{
f(Xs(C), Uv,ms (C))

+
1
ζ

(
1
2
‖vs‖2 +

∫
Z

( −ms(z)
1 +ms(z)

+ ln(1 +ms(z))
)
λv,ms (dz)

)}
ds

]
. (3.2)

For every x ∈ R, let x+ := max {x, 0} and x− := min {x, 0}. The following
condition on f is imposed in order to guarantee the existence of minimizer in utility
decision problem (2.4).

Assumption 1. The aggregator f is C0,1 and satisfies either the following condi-
tions:

• f is concave in its second (utility) argument, and such that for every Pv,m ∈
P and every C ∈ C, Ev,m[

∫ T
0
f−u (Xt, Ut) dt] <∞ and Ev,m[

∫ T
0
e−βtf−u (Xt, Ut)

(Ut − Uv,mt )+ dt] <∞.
• f is convex in its second (utility) argument, and such that for every Pv,m ∈

P and every C ∈ C, Ev,m[
∫ T
0
f+
u (Xt, Ut) dt] <∞ and Ev,m[

∫ T
0
e−βtf+

u (Xt, Ut)
(Ut − Uv,mt )+ dt] <∞.

Here U is a solution in L̄p of the backward stochastic differential-difference equation
(BSDDE, hereafter) (3.3).

The following proposition extends the result for nonMarkovian pure diffusion
information (Skiadas [18]) to nonMarkovian jump-diffusion information, although
Skiadas [18] also shows the existence and uniqueness of RCSDU using the result of
Schroder and Skiadas [17]. The existence and uniqueness of RCSDU is shown in
Theorem 1.

Proposition 1. Let C ∈ C. Suppose that for every P v,m ∈ P, U is a unique
solution in L̄p of the BSDDE

dUt = −

{
f(Xt, Ut)− βUt −

ζ

2
‖σUt ‖2 −

∫
Z

∫ (1+mt(z))Ut−

Ut−

(
1− e−ζ(u−Ut−)

)
duλt(dz)

}
dt

+ σUt · dWt + Ut−

∫
Z
mU
t (z) { ν(dt× dz)− λt(dz) dt} ∀t ∈ T (3.3)

with UT = 0 where σUt ∈ Πd
i=1Ln, mU

t (z) ∈ L(λt(dz) × dt) and mU
t (z) > −1

P -a.s. for every (t, z) ∈ T× Z. Then Uv,m satisfies

Uv,mt = Ut + Ev,mt

[∫ T

t

e−β(s−t){f(Xs, U
v,m
s )− f(Xs, Us) +Qv,ms

}
ds

]
(3.4)
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where

Qv,ms =
1
ζ

{
1
2
‖vs − ζσUs ‖2

+
∫

Z

(
−ms(z)

1 +ms(z)
+ ln(1 +ms(z)) +

e−ζm
U
s (z)Us− − 1

1 +ms(z)
+ ζmU

s (z)Us−

)
λv,ms (dz)

}
.

(3.5)

Furthermore, if Assumption 1 is satisfied, then the minimizer of (2.4) is P v̂,m̂ where
(v̂t, m̂t(z)) = (−ζσUt , e−ζm

U
t (z)Ut− − 1), and Û(C) = U .

Proof. See Appendix D.2. �

Suppose that U is a unique solution in L̄p of the BSDDE (3.3). Then a RCSDU
process U has the following representation:

Ut = Et

[∫ T

t

{
fβ(Xs, Us)−

ζ

2
‖σUs ‖2−

∫
Z

∫ (1+ms(Z))Us−

Us−

(
1− e−ζ(u−Us−)

)
duλs(dz)

}
ds

]
(3.6)

for every t ∈ T where fβ(x, u) := f(x, u)− βu, or equivalently

Ut = Et

[∫ T

t

e−β(s−t)
{
f(Xs, Us)−

ζ

2
‖σUs ‖2

−
∫

Z

∫ (1+ms(Z))Us−

Us−

(
1− e−ζ(u−Us−)

)
duλs(dz)

}
ds

]
(3.7)

for every t ∈ T. These representations are analytically intractable. In order to
obtain an analytically tractable representation, the notion of an ordinally equivalent
utility (Duffie and Epstein [4]) is exploited, which is defined as follows. A utility
Ū : C → R is said to be ordinally equivalent to a utility U : C → R if and only if
there exists a strictly increasing C2-function ϕ : R → R with ϕ(0) = 0 such that
Ū = ϕ ◦ U .

Definition 2. An RCSDU U : C → R is normalizable if and only if there exists
an ordinally equivalent utility Ū such that for every C ∈ C, Ū(C) = Ū0(C) where
Ū(C) is a unique solution in L̄p of the equation:

Ūt(C) = Et

[∫ T

t

f̄(Xs(C), Ūs(C)) ds
]

∀t ∈ T. (3.8)

The RCSDU Ū in (2) is called the normalized RCSDU. It is shown by Duffie and
Epstein [4] that any SDU is normalized under pure diffusion information. However,
this does not apply to the case of jump-diffusion information. Recently, Kusuda [14]
has presented a necessary and sufficient condition for an SDU to be normalized
under jump-diffusion information. The following lemma immediately follows from
the result.

Lemma 2. Suppose that for every C ∈ C, an SDU process Ut := Ut(C) satisfies
the BSDDE

dUt = −µUt dt+σUt ·dWt+Ut−

∫
Z
mU
t (z) { ν(dt×dz)−λt(dz) dt } ∀t ∈ T (3.9)
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with UT = 0 where µU ∈ L1, σU ∈
∏d
j=1 L2, mU ∈ L1(λt(dz)×dt) and mU

t (z) > −1
P -a.s. for every (t, z) ∈ T× Z, and satisfy

µUt = f(Xt−, Ut−)− 1
2
ψ(Ut) ‖σUt ‖2

−
∫

Z

∫ (1+mU
t (z))Ut−

Ut−

(
1− exp

(
−

∫ u

Ut−

ψ(u′) du′
))

duλt(dz) (3.10)

where ψ : R → R is a continuous function such that ψ ≥ 0. Define a transform
ϕ : R → R by

ϕ(u) =
∫ u

0

exp
(
−

∫ u′′

u0

ψ(u′) du′
)
du′′ ∀u ∈ R (3.11)

where u0 ∈ R. Suppose that the function f̄ : R+ × R → R defined by

f̄(x, ū) = ϕ′(ϕ−1(ū))f(x, ϕ−1(ū)) ∀(x, ū) ∈ R+ × R. (3.12)

satisfies the following conditions:

• f̄ is uniformly Lipschitz in its utility argument: There exists a constant
k such that for every x ∈ R+ and every (ū1, ū2) ∈ R2, it follows that
|f̄(x, ū1)− f̄(x, ū2)| ≤ k |ū1 − ū2|.

• f̄ satisfies a growth condition in its second argument: There exist constants
k0 and k1 such that for every x ∈ R+, it follows that |f̄(x, 0)| ≤ k0 +k1‖x‖.

Then Ū = ϕ(U) is a normalized RCSDU with its aggregator (f̄ , X), i.e. Ū is a
unique solution in L̄p of the recursive equation

Ūt = Et

[∫ T

t

f̄(Xs, Ūs) ds
]

∀t ∈ T. (3.13)

Proof. See Appendix D.3. �

Specifying the function ψ in the BSDDE (3.10) by ψ(x) = ζ leads to the BSDDE
(3.3). Thus, the RCSDU U is normalized by the transform ϕ defined by

ϕ(u) = ζ−1(1− e−ζu) ∀u ∈ R. (3.14)

Then it follows from Lemma 2 that the functional form of normalized aggregator f̄
and a sufficient condition for the existence, uniqueness and normalization of BSDDE
(3.3) are given as follows.

Assumption 2. The function f̄ defined by

f̄(x, ū) = −ζū fβ(x,−ζ−1 ln(1− ζū)) ∀(x, ū) ∈ R2, (3.15)

is uniformly Lipschitz in its first (utility) argument , and satisfies the growth con-
dition in its first argument.

Theorem 1. Under Assumption 1 and 2, Û is normalized by the ordinally equiva-
lent trasnsform ϕ defined by (3.14), and the normalized RCSDU Ū is characterized
by its aggregator (f̄ , X), i.e. Ū is a unique solution in L̄p of the recursive equation

Ūt(C) = Et

[∫ T

t

f̄(Xs(C), Ūs(C)) ds
]

∀t ∈ T. (3.16)
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4. Aversions for Ambiguity and Risk

In this section, attitudes towards ambiguity and risk of an agent with RCSDU are
examined mainly using the notions advocated by Epstein and Wang [8], Epstein [7],
and Chen and Epstein [3].

An aggregator (f,X) is said to be regular if and only if the following conditions
hold:

• f is continuous and satisfies Assumption 2, i.e. f is uniformly Lipschitz in
its second (utility) argument and satisfies the growth condition in its first
argument.

• X is continuous and satisfies the growth condition, and X(C̄) is a deter-
ministic process for every deterministic consumption process C̄ ∈ C.

The following lemma is useful to explore comparative aversions for ambiguity
and risk.

Lemma 3. Let C ∈ C. Let ψ be given in Lemma 2. Suppose that U∗ := U∗(C) is
a unique solution in L̄p of the equation

U∗
t = Et

[∫ T

t

{
f(Xs, U

∗
s )− 1

2
ψ∗(U∗

s ) ‖σU
∗

s ‖2

−
∫

Z

∫ (1+mU∗
t (z))U∗

t−

U∗
t−

(
1− exp

(
−

∫ u

U∗
t−

ψ∗(u′) du′
))

duλs(dz)
}
ds

]
∀t ∈ T (4.1)

where (f,X) is regular, and ψ∗ : R → R is a continuous function such that ψ∗ ≥ ψ.
Let ϕ be defined by (3.11) and Ū∗ := ϕ(U∗). Then Ū∗ satisfies

Ū∗
t = Et

[∫ T

t

{
f̄(Xs, Ū

∗
s )− Zs(U∗, ψ∗, ψ)

}
ds

]
. (4.2)

where

Zs(U∗, ψ∗, ψ) =
1
2
ϕ′(U∗

s )
(
ψ∗(U∗

s )− ψ(U∗
s )

)
‖σŪ

∗

s ‖2

+ϕ′(U∗
s−)

∫
Z

∫ (1+mU∗
s (z))U∗

s−

U∗
s−

e
−

R u
U∗

t−
ψ(u′) du′

(
1−e

−
R u

U∗
t−

(ψ∗(u′)−ψ(u′)) du′
)
duλs(dz).

(4.3)

Furthermore, Z(U∗, ψ∗, ψ) ≥ 0.

Proof. Equations (4.2) and (4.3) immediately follow from applying Ito’s Formula
(see Appendix B.1) to Ū∗ := ϕ(U∗). It is easy to see that Z(U∗, ψ∗, ψ) ≥ 0. �

4.1. Comparative Ambiguity Aversion. Chen and Epstein [3] define the notion
of comparative ambiguity aversion in the following way (for formal arguments, see
Epstein [7] and Epstein and Zhang [9]). An event A ∈ FT is said to be unambiguous
if and only if P̃ (A) = P (A) for every P̃ ∈ P. Let Ā denote the class of unambiguous
events. Let Āt := Ā ∩ Ft for every t ∈ T. A consumption process C is said to be
unambiguous if and only if Ct is Āt-measurable for every t ∈ T. Let CĀ denote the
set of all unambiguous consumption processes. The notion of comparative ambiguity
aversion is defined in the following.

Definition 3. Let Û and Û∗ be RCSDUs with corresponding classes Ā and Ā∗ of
unambiguous events. It is said that Û∗ is more ambiguity averse than Û if and only
if Ā ⊃ Ā∗ and for every consumption process C ∈ C and every Ā∗-unambiguous
consumption process C∗ ∈ CĀ∗ , the following holds:

Û(C) ≤ Û(CĀ∗
) =⇒ Û∗(C) ≤ Û∗(CĀ∗

).
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The condition Ā ⊃ Ā∗ in the definition of comparative ambiguity aversion,
means that the more ambiguous averse agent views more events as ambiguous.

Under Assupmption 1, for every unambiguous consumption process, an RCSDU
is reduced to the corresponding SDU.

Lemma 4. Let Û be an RCSDU with its aggregator (f,X, β, ζ). If f satisfies
Assumption 1, then for every CĀ ∈ CĀ, Û(CĀ) satisfies

Ût(CĀ) = Et

[∫ T

t

e−β(s−t)f(Xs(CĀ), Ûs(CĀ)) ds
]

∀t ∈ T, (4.4)

or equivalently

Ût(CĀ) = Et

[∫ T

t

fβ(Xs(CĀ), Ûs(CĀ)) ds
]

∀t ∈ T (4.5)

where fβ(x, u) = f(x, u)− βu.

Proof. See Appendix D.4. �

Suppose that an agent has an RCSDU with its aggregator (f,X, β, ζ). The
following proposition shows that the larger the parameter ζ is, the more the agent
is ambiguous averse.

Proposition 2. Let Û and Û∗ be RCSDUs with corresponding aggregators (f,X, β, ζ)
and (f,X, β, ζ∗) in which f satisfies Assumption 1. Suppose that the normalized
aggregator f̄ is regular. If ζ∗ ≥ ζ, then Û∗ is more ambiguity averse than Û .

Proof. It is obvious that Ā = Ā∗. Since the result is clear in the case ζ∗ = ζ, assume
that ζ∗ > ζ. It follows by Lemma 4 that Ût(CĀ∗

) = Û∗
t (CĀ∗

) for every CĀ ∈ CĀ.
Let C ∈ C. Let ϕ be defined by (3.14), and let Ū = ϕ(Û) and Ū∗ = ϕ(Û∗). It
is sufficient to show that Ū(C) ≥ Ū∗(C). The transform ϕ normalizes Û to Ū ,
and obtains the normalized representation (3.16). Since ζ∗ > ζ, it follows from
Lemma 3 that Ū∗ := Ū∗(C) satisfies

Ū∗
t = Et

[∫ T

t

{
f̄(Xs, Ū

∗
s )− Zs(Û∗, ζ∗, ζ)

}
ds

]
t ∈ T (4.6)

where Z(Û∗, ζ∗, ζ) is given in (4.3). Subtracting (3.16) from (4.6) yields

Ūt − Ū∗
t = Et

[∫ T

t

{
f̄(Xs, Ūs)− f̄(Xs, Ū

∗
s )− Zs(Û∗, ζ∗, ζ)

}
ds

]
∀t ∈ T. (4.7)

By the Lipschitz condition in utility, the integrand dominates −k |Ūs − Ū∗
s | +

Zs(Û∗, ζ∗, ζ), while Zs(Û∗, ζ∗, ζ) ≥ 0. Then it follows from Lemma 12 in Ap-
pendix C that Ū(C) ≥ Ū∗(C). �

4.2. Comparative Risk Aversion. Let C̄t := E[Ct] for every t ∈ T. The follow-
ing notion of comparative risk aversion is advocated by Chen and Epstein [3].

Definition 4. Let Û and Û∗ be RCSDUs with corresponding classes Ā and Ā∗

of unambiguous events. It is said that U∗ is more risk averse than U if and only
if Ā ⊂ Ā∗ and for every unambiguous comsumption process CĀ ∈ CĀ and every
deterministic process C̄, the following holds:

Û(CĀ) ≤ Û(C̄) =⇒ Û∗(CĀ) ≤ Û∗(C̄).

Proposition 3. Let Û and Û∗ be RCSDUs with corresponding aggregators (f,X, β, ζ)
and (f∗, X, β, ζ∗) such that (f,X) is regular and satisfy Assumption 1. Let Ǔ and
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Ǔ∗ be corresponding ordinally equivalent utilities such that for every CĀ ∈ CĀ and
every t ∈ T, Ǔ := Ǔ(CĀ) and Ǔ∗ := Ǔ∗(CĀ) satisfy

Ǔt = Et

[∫ T

t

{
f̌(Xs, Ǔs)−

1
2
ψ(Ǔs) ‖σǓs ‖2

−
∫

Z

∫ (1+mǓ
t (z))Ǔt−

Ǔt−

(
1− exp

(
−

∫ u

Ǔt−

ψ(u′) du′
))

duλs(dz)
}
ds

]
, (4.8)

Ǔ∗
t = Et

[∫ T

t

{
f̌(Xs, Ǔ

∗
s )− 1

2
ψ∗(Ǔ∗

s ) ‖σǓ
∗

s ‖2

−
∫

Z

∫ (1+mǓ∗
t (z))Ǔ∗

t−

Ǔ∗
t−

(
1− exp

(
−

∫ u

Ǔ∗
t−

ψ∗(u′) du′
))

duλs(dz)
}
ds

]
, (4.9)

respectively. If ψ∗(x) ≥ ψ(x) for every x ∈ R, then Û∗ is more risk averse than Û .

Proof. See Appendix D.5. �

4.3. Absolute Ambiguity Aversion. In order to define the absolute ambiguity
aversion of a utility, Chen and Epstein [3] introduces the notion of probabilistically
sophisticated utility for timeless prospects (see Chen and Epstein [3]) as the “ambi-
guity neutral version” of the ambiguity averse utility. In this paper, the following
notion is introduced.

Definition 5. The ambiguity neutral version of an RCSDU Û with its aggregator
(f,X, β, ζ) is the SDU whose aggregator is (f,X, β).

It is conjectured that an RCSDU Û with its aggregator (f,X, β, ζ) is probabilis-
tically sophisticated utility for timeless prospects if and only if Û is the SDU with
(f,X, β), but it is beyond the scope of this paper to explore the conjecture. Let Ũ
denote the ambiguity neutral version of RCSDU Û . Suppose that Û is an RCSDU
with its aggregator (f,X, β, ζ), and that the normalized aggregator (f̄ , X) is regu-
lar. Since Ũ can be interpreted as the RCSDU with its aggregator (f,X, β, 0+), it
follows from the proof of Proposition 2 that

Û(C) ≤ Ũ(C) ∀C ∈ C. (4.10)

The meaning of the following definition is intuitively clear, which states that
whenever the ambiguity neutral version of an ambiguous averse RCSDU rejects
an ambiguous consumption plan against an unambiguous consumption plan, the
RCSDU rejects the ambiguous consumption plan against the unambiguous con-
sumption plan.

Definition 6. An RCSDU Û is ambiguity averse if and only if for every unambiguos
consumption process CĀ ∈ CĀ and every consumption process C ∈ C, the following
holds:

Ũ(C) ≤ Ũ(CĀ) =⇒ Û(C) ≤ Û(CĀ). (4.11)

Proposition 4. Let Û be an RCSDU with its aggregator (f,X, β, ζ) such that f
satisfy Assumption 1. Suppose that the normalized aggregator (f̄ , X) is regular.
Then Û is ambiguity averse.

Proof. Suppose that CĀ ∈ CĀ and C ∈ C are such that Ũ(C) ≤ Ũ(CĀ). Then it
follows from (4.10) and Ũ(CĀ) = Û(CĀ) that Û(C) − Û(CĀ) = Û(C) − Ũ(C) +
Ũ(C)− Ũ(CĀ) + Ũ(CĀ)− Û(CĀ) ≤ 0.

�
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4.4. Absolute Risk Aversion. A utility Û is risk averse if and only if for every
CĀ ∈ CĀ, the following holds.

Û(CĀ) ≤ Û(C̄Ā). (4.12)

Lemma 5. Let Û be an RCSDU with its aggregator (f,X, β, ζ) such that (f,X) is
regular and satisfies Assumption 1. Suppose that X is concave and that f( · , u) is
concave for every u ∈ R, then Û is risk averse.

Proof. See Appendix D.6. �

5. Other Properties

In this section, sufficient conditions for the continuity, monotonicity, time con-
sistency, and concavity of RCSDU are presented. Sufficient conditions for these
properties of normalized SDU are shown by Duffie and Epstein [4]. In virtue of
the normalized representation of RCSDU, the results of Duffie and Epstein [4] are
easily extended to the RCSDU.

5.1. Continutiy and Monotonicity.

Lemma 6. Let Ū be a normalized RCSDU with its regular aggregator (f̄ , X). Then
Ū is continuous.

Proof. See Appendix D.7. �

Lemma 7. Let Ū be a normalized RCSDU with its regular aggregator (f̄ , X). If
X is increasing in consumption and f is increasing in its first argument, then Ū is
increasing. If X is strictly increasing in consumption and f̄ is strictly increasing
in its first argument, then Ū is strictly increasing.

Proof. Let C,C ′ ∈ C such that C ≥ C ′. For every t ∈ T, ŪC := Ū(C) and
ŪC

′
:= Ū(C ′) satisfy

ŪCt − ŪC
′

t = Et

[∫ T

t

{
f̄(XC

s , Ū
C
s )− f̄(XC′

s , ŪC
′

s )
}
ds

]
,

and since f̄ is Lipschitz in utility,

f̄(XC
s , Ū

C
s )− f̄(XC′

s , ŪC
′

s ) = f̄(XC
s , Ū

C
s )− f̄(XC′

s , ŪCs ) + f̄(XC′

s , ŪCs )− f̄(XC′

s , ŪC
′

s

≥ f̄(XC
s , Ū

C
s )− f̄(XC′

s , ŪCs ) + k |ŪCs − ŪC
′

s |.

The result follows by Lemma 12 in Appendix C. �

5.2. Time Consistency. Consider a family <:= {<ω,t: (ω, t) ∈ Ω×T} of binary
orders on C. A binary order < is said to be adapted if and only if C <t C

′ ∈ Ft for
every (C,C ′) in C2 and every t ∈ T.

Definition 7. An adapted binary family <:= {<ω,t} of binary orders on C is
said to be time consistent if and only if the following conditions hold. For every
stopping time τ and every pair C and C ′ of consumption processes in C such that
the restrictions of C and C ′ to [0, τ ] conincide, then

P (C <τ C
′) = 1 =⇒ C <0 C

′, (5.1)

and
P (C <τ C

′) = 1 and P (C �τ C ′) > 0 =⇒ C �0 C
′. (5.2)
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The definition of RCSDU is momentarily extended in order that there is a ter-
minal reward at a T-valued stopping time τ . The terminal reward is defined by a
Fτ -measurable Y ∈ L1(P ). Proprosition A1 in Duffie and Epstein [4] implies that
there exists a unique solution for the recursive equation

UC,Yt = Et

[∫ τ

t

f̄(XC
s , U

C,Y
s ) ds+ Y

]
∀t ∈ T. (5.3)

Lemma 8. Let τ be a T-valued stopping time τ . Suppose that Y ≥ Y ′ for Fτ -
measurable random variable Y, Y ′ ∈ L1(P ). For every C ∈ C, let UC,Y and UC,Y

′

be defined by (5.3). Then UC,Y > UC,Y
′
.

Proof. See Appendix D.8.
�

It is an immediate consequence of monotonicity for terminal value that the nor-
malized RCSDU is time consistent.

Lemma 9. Let Ū be a normalized RCSDU with its regular aggregator (f̄ , X). Then
Ū is time consistent.

Proof. Let τ, C, and C ′ as in the definition of consistency. Let UC,U
C
τ and UC,U

C′
τ

be defined by (5.3). Then the result follows from Lemma 8. �

5.3. Concavity. The concavity is important partly because it is one of sufficient
conditions for the existence of general equilibria.

Lemma 10. Let Ū be an RCSDU with its regular aggregator (f̄ , X). If f̄ and X
are concave, then Ū is concave.

Proof. See Appendix D.9. �

Appendix A. Marked Point Process

A.1. Definitions. A double sequence (sn, Zn)n∈N is considered, where sn is the
occurrence time of an nth jump and Zn is a random variable taking its values on a
measurable space (Z,Z) at time sn. Define a random counting measure ν(dt× dz)
by

ν([0, t]×A) =
∑
n∈N

1{sn≤t, Zn∈A} ∀(t, A) ∈ T×Z.

This counting measure ν(dt× dz) is called the Z-marked point process.
Let λ be such that
(1) For every (ω, t) ∈ Ω×T, the set function λt(ω, · ) is a finite Borel measure

on Z.
(2) For every A ∈ Z, the process λ(A) is P-measurable and satisfies λ(A) ∈ L1.

The marked point process ν(dt×dz) is said to have the P -intensity kernel λt(dz) if
and only if the equation E

[∫ T
0
Xs ν(ds×A)

]
= E

[∫ T
0
Xsλs(A) ds

]
holds for every

A ∈ Z for any nonnegative P-measurable process X, then it is said that the marked
point process ν(dt× dz) has the P -intensity kernel λt(dz).

A.2. Integration Theorem. Let ν(dt×dz) be a Z-marked point process with the
P -intensity kernel λt(dz). Let m be a P ⊗ Z-measurable function. It follows that:

(1) If the integrability condition E
[∫ T

0

∫
Z |ms(z)|λs(z) ds

]
<∞ holds, then the

process
∫ t
0

∫
Z ms(z){ ν(ds× dz)− λs(dz) ds } is a P -martingale.

(2) Ifm ∈ L1(λt(dz)×dt), then the process
∫ t
0

∫
Z ms(z){ ν(ds×dz)−λs(dz) ds }

is a local P -martingale.

Proof. See p. 235 in Brémaud [2]. �
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Appendix B. Ito’s Formula and Girsanov’s Theorem

B.1. Ito’s Formula. Let X = (X1, · · · , Xd)′ be a d-dimensional semimartingale,
and g be a real-valued C2 function on Rd+1. Then g(X) is a semimartingale of the
form

g(t,Xt) = g(0, X0) +
∫ t

0

∂

∂s
g(s,Xs) ds

d∑
i=1

∫ t

0

∂

∂xi
g(s−, Xs−) dXi

s +
1
2

d∑
i=1

d∑
j=1

∫ t

0

∂2

∂xi∂xj
g(s−, Xs−) d〈Xic, Xjc〉

+
∑

0≤s≤t

{
g(s−, Xs)− g(s−, Xs−)−

d∑
i=1

∂

∂xi
g(s−, Xs−) ∆Xi

s

}
where Xic is the continuous part of Xic and 〈Xic, Xjc〉 is the quadratic covariation
of Xic and Xjc.

B.2. Girsanov’s Theorem.
(1) Let v ∈

∏d
j=1 L2 and m ∈ L1(λt(dz)× dt) such that mt(z) > −1 P -a.s. for

every (t, z) ∈ T× Z. Define a process Λ by

dΛt
Λt−

= vt · dWt +
∫

Z
mt(z) { ν(dt× dz)− λt(dz) dt} ∀t ∈ T

with Λ0 = 1, and suppose E [ΛT ] = 1. Then there exists a probability
measure P̃ on (Ω,F ,F) given by the Radon-Nikodym derivative

dP̃ = ΛT dP

such that:
(a) The measure P̃ is equivalent to P .
(b) The process given by W̃t = Wt−

∫ t
0
vs ds for every t ∈ T, is a P̃ -Wiener

process.
(c) The marked point process ν(dt × dz) has the P̃ -intensity kernel such

that λ̃t(dz) = (1 +mt(z))λt(dz) for every (t, z) ∈ T× Z.
(2) Every probability measure equivalent to P has the structure above.

Appendix C. Extensions of Gronwall-Bellman Inequality

Let (Ω,F ,F, P ) be a filtered probability whose filtration F := (Ft)t∈T satis-
fies the usual conditions. The following lemma is called the Stochastic Gronwall-
Bellman Inequality.

Lemma 11. Suppose Y and X are integrable optional processes, and k is a con-
stant. Suppose the map defined by s 7→ Et[Ys] is continuous P -a.s. for every t ∈ T.
If Yt ≤ Et[

∫ T
t

(Xs + kYs) ds] + YT for every t ∈ T, then

Yt ≤ ek(T−t)Et[YT ] + Et[
∫ T

t

ek(s−t)Xs ds] P -a.s. t ∈ T.

Alternatively, if Yt ≥ Et[
∫ T
t

(Xs + kYs) ds] + YT for every , then

Yt ≥ ek(T−t)Et[YT ] + Et[
∫ T

t

ek(s−t)Xs ds] P -a.s. t ∈ T.

Proof. See Duffie and Epstein [4]. �

The following lemma was shown by Skiadas in Duffie and Epstein [4].
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Lemma 12. Suppose Y and G are integrable optional processes, and k is a con-
stant. Suppose the map defined by s 7→ Ys is right continuous, and the map defined
by s 7→ Et[Ys] is continuous P -a.s. for every t ∈ T. If YT ≥ 0 P -a.s., and for
every t ∈ T, Yt = Et[

∫ T
t
Gs ds + YT ] P -a.s., and Gt ≥ −k|Yt| P -a.s., then Yt ≥ 0

P -a.s. for every t ∈ T.

Proof. See Duffie and Epstein [4]. �

For every x ∈ R, let x+ := max {x, 0}. The following lemma was shown by
Schroeder and Skiadas [17].

Lemma 13. Suppose Y and Z are optional processes satisfying E[
∫ T
0
Z+
t dt] <∞

and E[
∫ T
0
Z+
t Y

+
t dt] < ∞. Suppose Z is right continuous. If YT ≤ 0 P -a.s., and

for every t ∈ T,

Yt ≤ E

[∫ T

t

ZsYs ds+ YT

]
P -a.s.,

then Yt ≤ 0 P -a.s. for every t ∈ T.

Proof. See the proof for Lemma C3 in Schroeder and Skiadas [17]. �

Appendix D. Proofs

D.1. Proof of Lemma 1. Applying integration by parts to (2.3) yields

Rv,m
t = Ev,mt

[∫ T

t

e−β(s−t)d ln
Λv,ms
Λv,mt

ds

]
∀t ∈ T. (D.1)

It follows from (2.2) that

ln
Λn,ms
Λv,mt

=
∫ s

t

{
−1

2
‖vs′‖2 −

∫
Z
ms′(z)λs′(dz)

}
ds′

+
∫ s

t

vs′ · dWs′ +
∫ s

t

ln(1 +ms′(z)) ν(ds′ × dz) ∀s ∈ [t, T ] (D.2)

for every t ∈ T. It follows from Girsanov’s Theorem that a P v,m-Wiener process
W v,m and the P v,m-intensity kernel λv,m of ν satisfies

dWt = dW v,m
t + vt dt ∀t ∈ T, (D.3a)

λt(dz) =
λv,mt (dz)
1 +mt(z)

∀(t, z) ∈ T× Z, (D.3b)

respectively. Substituting (D.3a) and (D.3b) into (D.2) yields

ln
Λv,ms
Λv,mt

=
∫ s

t

{
1
2
‖vs′‖2 +

∫
Z

( −ms′(z)
1 +ms′(z)

+ ln(1 +ms′(z))
)
λv,ms′ (dz)

}
ds

+
∫ s

t

vs′ · dW v,m
s′ +

∫ s

t

∫
Z

ln(1 +ms′(z)){ν(ds′ × dz)− λv,ms′ (dz) ds′}. (D.4)

for every s ∈ [t, T ] and every t ∈ T. Substituting (D.2) into (D.1) gives (3.1).
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D.2. Proof of Proposition 1. For every process Y , let Ỹ denote its discounted
process, i.e. Ỹt := e−βtYt for every t ∈ T. Substituting (D.3a) and (D.3b) into
(3.3) gives the BSDDE

dŨt = −e−βt
{
f(Xt, Ut)−

(
ζ

2
‖σUt ‖2 + σUt · vt

)
+

∫
Z

(
1
ζ

(
1− e−ζm

U
t (z)Ut−

)
1 +mt(z)

−mU
t (z)Ut−

)
λv,mt (dz)

}
dt

+ σ̃Ut · dW
v,m
t + Ũt−

∫
Z
mU
t (z) { ν(dt× dz)− λv,mt (dz) dt} ∀t ∈ T (D.5)

with ŨT = 0. It follows from (3.2) and Martingale Representation Theorem that
there exists a (σv,m,mv,m

t (z)) such that Ũv,m is subject to the BSDDE

dŨv,mt = −e−βt
{
f(Xt, U

v,m
t ) +

1
ζ

(
1
2
‖vt‖2 +

∫
Z

( −mt(z)
1 +mt(z)

+ ln(1 +mt(z))
)
λv,mt (dz)

)}
dt

+ σ̃v,mt · dW v,m
t + Ũv,mt−

∫
Z
mv,m
t (z) { ν(dt× dz)− λv,mt (dz) dt} ∀t ∈ T (D.6)

with Ũv,mT = 0. Combining (D.5) with (D.6) yields

d(Ũt − Ũv,mt ) = e−βt
[
f(Xt, U

v,m
t )− f(Xt, Ut) +

1
ζ

{
1
2
‖vt + ζσUt ‖2

+
∫

Z

(
−mt(z)

1 +mt(z)
+ln(1+mt(z))+

e−ζm
U
t (z)Ut− − 1

1 +mt(z)
+ζmU

t (z)Ut−

)
λv,mt (dz)

}]
dt+dMv,m

t

(D.7)

for every t ∈ T where

Mv,m
t = (σ̃Ut −σ̃

v,m
t )· dW v,m

t +
∫

Z

(
Ũt−m

U
t (z)−Ũv,mt− mv,m

t (z)
)
{ ν(dt×dz)−λv,mt (dz) dt}.

Equation (3.4) follows from (D.7). It is easy to see thatQv,m in (3.4) is nonnegative,
and attains zero if and only if (vt,mt(z)) = (v̂t, m̂t(z)) := (−ζσUt , e−ζm

U
t (z)Ut−−1).

It is obvious that U v̂,m̂ = U . Finally, it is claimed that Uv,mt ≥ Ut P
v,m-a.s. for

every t ∈ T. If f is concave in its second argument, then the gradient inequality
and the fact that Qv,m is nonnegative, gives

Uv,mt − Ut ≥ Ev,mt

[∫ T

t

e−β(s−t)(−fu(Xs, Us)
)
(Uv,ms − Us) ds

]
. (D.8)

Similarly, if f is convex in its second argument, then the gradient inequality and
the fact that Qv,m is nonnegative, yields

Uv,mt − Ut ≥ Ev,mt

[∫ T

t

e−β(s−t)fu(Xs, Us)(Uv,ms − Us) ds
]
. (D.9)

In either case, Lemma 13 in Appendix C implies that Uv,mt ≥ Ut P
v,m-a.s. for every

t ∈ T.

D.3. Proof of Lemma 2. Applying Ito’s Formula to Ūt = ϕ(Ut) yields

dŪt = −µŪt dt+ ϕ′(Ut−)σŪt · dWt

+
∫

Z

{
ϕ((1 +mU

t−(z))Ut−)− ϕ(Ut−)
}
{ ν(dt× dz)− λt(dz) dt } ∀t ∈ T

(D.10)
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with ŪT = ϕ(UT ) = 0 where

µŪt = ϕ′(Ut−)
{
µUt− + Ut−

∫
Z
mU
t (z)λt(dz)

}
− 1

2
ϕ′′(Ut−) ‖σUt ‖2

−
∫

Z

{
ϕ((1 +mU

t (z))Ut−)− ϕ(Ut−)
}
λt(dz). (D.11)

Substituting (3.10) and (3.12), i.e. ϕ′(Ut−)f(Xt−, Ut−) = f̄(Xt−, Ūt−), into (D.11)
gives

µŪt =ϕ′(Ut−)f(Xt−, Ut−)− 1
2
ϕ′(Ut−)ψ(Ut−) ‖σUt ‖2

−ϕ′(Ut−)
∫

Z

∫ (1+mU
t (z))Ut−

Ut−

(
1− exp

(
−

∫ u

Ut−

ψ(u′) du′
))

duλt(dz)

− 1
2
ϕ′′(Ut−) ‖σUt ‖2 −

∫
Z

{
ϕ((1 +mU

t (z))Ut−)− ϕ(Ut−)−mU
t (z)Ut−ϕ′(Ut)

}
λt(dz)

= f(Xt−, Ūt−)− 1
2

{
ϕ′(Ut−)ψ(Ut−) + ϕ′′(Ut−)

}
‖σUt ‖2

+
∫

Z

[
ϕ′(Ut−)

{∫ (1+mU
t (z))Ut−

Ut−

exp
(
−

∫ u

Ut−

ψ(u′) du′
)
du

}
−

{
ϕ((1 +mU

t (z))Ut−)− ϕ(Ut−)
}]

λt(dz)

=f(Xt−, Ūt−).
(D.12)

Substituting (D.12) into (D.10) and integrating from t to T yield

Ūt =
∫ T

t

f(Xs, Ūs) ds−
∫ T

t

ϕ′(Us)σŪs · dWs

−
∫ T

t

∫
Z

{
ϕ((1 +mU

s (z))Us−)− ϕ(Us−)
}
{ ν(ds× dz)− λs(dz) ds }. (D.13)

The normalized representation (3.16) follows from (D.13).

D.4. Proof of Lemma 4. For every process Y , let Ỹ denote its discounted process,
i.e. Ỹt := e−βtYt for every t ∈ T. It follows from (4.4) and Martingale Represen-
tation Theorem that there exists a (σ′,m′

t(z)) such that Ũ := Ũ(CĀ) satisfies the
BSDDE

dŨt = −e−βtf(Xt, Ut) dt+σ̃′Ut ·dWt+Ũt−
∫

Z
m′
t(z) { ν(dt×dz)−λt(dz) dt} ∀t ∈ T

(D.14)
with ŨT = 0. It follows from expression (3.2) and definition of CĀ ∈ CĀ that
Uv,m := Uv,m(CĀ) satisfies

Uv,mt = Et

[∫ T

t

e−β(s−t)
{
f(Xs, U

v,m
s )

+
1
ζ

(
1
2
‖vs‖2 +

∫
Z

( −ms(z)
1 +ms(z)

+ ln(1 +ms(z))
)
λv,ms (dz)

)}
ds

]
(D.15)

for every t ∈ T. It follows from (D.15) and Martingale Representation Theorem
that that Uv,mt satisfies the BSDDE

dŨv,mt = −e−βt
{
f(Xt, U

v,m
t ) +

1
ζ

(
1
2
‖vt‖2 +

∫
Z

( −mt(z)
1 +mt(z)

+ ln(1 +mt(z))
)
λt(dz)

)}
dt

+ σ̃t · dWt + Ũv,mt−

∫
Z
mv,m
t (z) { ν(dt× dz)− λt(dz) dt} ∀t ∈ T (D.16)



16

with Uv,mT = 0. Combining (D.14) with (D.16) gives

d(Ũt − Ũv,mt ) = e−βt
[
f(Xt, U

v,m
t )− f(Xt, Ut) +

1
ζ

{
1
2
‖vt‖2

+
∫

Z

(
−mt(z)

1 +mt(z)
+ ln(1 +mt(z))

)
λv,mt (dz)

}]
dt+ dM ′v,m

t (D.17)

where

M ′v,m
t = (σ̃′Ut −σ̃

v,m
t )· dW v,m

t +
∫

Z

(
Ũt−m

′U
t (z)−Ũv,mt− mv,m

t (z)
)
{ ν(dt×dz)−λv,mt (dz) dt}.

It follows from Assumption 1 that the result is derived in the similar way as in the
proof of Proposition 1.

D.5. Proof of Proposition 3. It is obvious that Ā∗ = Ā. Since the result is clear
in the case ψ∗ = ψ, assume that ψ∗ > ψ, i.e. ψ∗(x) ≥ ψ(x) for every x ∈ R and that
ψ∗(x) > ψ(x) for some x ∈ R. It is clear that Ǔ(C̄) = Ǔ∗(C̄) for every deterministic
process C̄. Let CĀ ∈ CĀ. It is sufficient to show that Ǔ(CĀ) ≥ Ǔ∗(CĀ). Let ϕ be
defined by (3.11). Applying ϕ to Ǔ yields Û , and Û := Û(CĀ) satisfies

Ût = Et

[∫ T

t

fβ(Xs, Ûs) ds
]

∀t ∈ T (D.18)

where fβ(x, u) = f(x, u) − βu. Since ψ∗(x) ≥ ψ(x) for every x ∈ R and that
ψ∗(x) > ψ(x) for some x ∈ R. It follows from Lemma 3 that U̇∗ := ϕ(U∗)(CĀ)
satisfies

U̇∗
t = Et

[∫ T

t

{
fβ(Xs, U̇

∗
s )− Zs(Ǔ∗, ψ∗, ψ)

}
ds

]
(D.19)

for every t ∈ T. Subtracting (D.18) from (D.19) yields

Ût − U̇∗
t = Et

[∫ T

t

{
fβ(Xs, Ûs)− fβ(Xs, U̇

∗
s ) + Zs(Ǔ∗, ψ∗, ψ)

}
ds

]
(D.20)

for every t ∈ T. By the Lipschitz condition in utility, the integrand in (D.20)
dominates −k |Ûs − U̇∗

s | + Zs(Ǔ , ψ∗, ψ), while Zs(Ǔ∗, ψ∗, ψ) ≥ 0. Then it follows
from Lemma 12 in Appendix C that Û(CĀ) ≥ U̇(CĀ), and therefore Ǔ(CĀ) ≥
Ǔ∗(CĀ).

D.6. Proof of Lemma 5. Let Û be an RCSDU with its aggregator (f,X, β, ζ).
Suppose (f,X) is regular, X is concave, and f( · , u) is concave for every u ∈ R.
Then (fβ , X) is also regular, and fβ( · , u) is concave for every u ∈ R. Let CĀ ∈ CĀ.
Then it follows from Lemma 4 that

Ût(C̄Ā)− Ût(CĀ) = Et

[∫ T

t

{
fβ(Xs(C̄Ā), Ûs(C̄Ā))− fβ(Xs(CĀ), Ûs(CĀ))

}
ds

]
.

(D.21)
It follows from the assumption that X(C̄) is a deterministic process for every de-
terministic consumption process C̄ ∈ C, and Fubini’s Theorem for conditional ex-
pectations to (D.21) that

Ût(C̄Ā)− Ût(CĀ) = Et

[∫ T

t

{
Et

[
fβ(Xs(C̄Ā), Ûs(C̄Ā))− fβ(Xs(CĀ), Ûs(C̄Ā))

]
+ fβ(Xs(CĀ), Ûs(C̄Ā))− fβ(Xs(CĀ), Ûs(CĀ))

}
ds

]
.

By the Lipschitz condition in utility, the intgrand dominates

Et

[
fβ(Xs(C̄Ā), Ûs(C̄Ā))− fβ(Xs(CĀ), Ûs(C̄Ā))

]
−k |Û(C̄Ā)− Û(CĀ)|
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while it follows from Jensen’s Inequality for conditional expectations and concavities
of X and f in its first argument that

Et

[
fβ(Xs(C̄Ā), Ūs(C̄Ā))− fβ(Xs(CĀ), Ūs(C̄Ā))

]
≥ 0.

Therefore, it follows from Lemma 12 in Appendix C that Û(C̄Ā) ≥ Û(CĀ).

D.7. Proof of Lemma 6. Let (Cn)n∈N be a convergence sequence in C to C. For
every n ∈ N and t ∈ T, ŪCn := Ū(Cn) and ŪC := Ū(C) satisfy

ŪCn
t − ŪCt ≤ Et

[∫ T

t

∣∣f̄(XCn
s , ŪCn

s )− f̄(XC
s , Ū

C
s )

∣∣ ds].
≤ Et

[∫ T

t

(∣∣f̄(XCn
s , ŪCn

s )− f̄(XC
s , Ū

Cn
s )

∣∣ +
∣∣f̄(XC

s , Ū
Cn
s )− f̄(XC

s , Ū
C
s )

∣∣) ds].
≤ Et

[∫ T

t

(∣∣f̄(XCn
s , ŪCn

s )− f̄(XC
s , Ū

Cn
s )

∣∣ + k |ŪCn
s − ŪCs |

)
ds

]
.

By Lemma 11 in Appendix C, the following holds:

|ŪCn − ŪC | ≤ Et

[∫ T

0

ekt
∣∣f̄(XCn

s , ŪCn
s )− f̄(XC

s , Ū
Cn
s )

∣∣ ds].
Since Cn converges to C, X and f̄ are continuous and satisfy the growth condition,
Dominated Convergence Theorem and Hölder’s Inequality imply that the integral
on the right-hand side converges to zero. Therefore, Ū is continuous.

D.8. Proof of Lemma 8. First, suppose τ = T . It follows that

ŪC,Yt − ŪC,Y
′

t = Et

[∫ T

t

{
f̄(XC

s , Ū
C,Y
s )− f̄(XC

s , Ū
C,Y ′

s )
}
ds+ Y − Y ′

]
,

and

f̄(XC
s , Ū

C,Y
s )− f̄(XC

s , Ū
C,Y ′

s ) ≥ −k |ŪC,Ys − ŪC,Y
′

s |.

The result follows by Lemma 12 in Appendix C. For general τ , f̄(XC
s , Ū

C,Y
s ) can

be replaced with 1{s≤τ}f̄(XC
s , Ū

C,Y
s ) throughout the above, and the same answer

is obtained.

D.9. Proof of Lemma 10. Let C0, C1 ∈ C and for every α ∈ [0, 1], let Cα :=
αC1 + (1 − α)C0, Ūα := Ū(Cα), and Xα = X(Cα). Let t ∈ T and Yt := Ūαt −
{αŪ1 + (1− α)Ū0}. Then

Yt = Et

[∫ T

t

{
f̄(Xα

s , Ū
α
s )− αf̄(X1

s , Ū
1
s )− (1− α)f̄(X0

s , Ū
0
s )

}
ds

]
= Et

[∫ T

t

{
f̄(Xα

s , Ū
α
s )− f̄(Xα

s , αŪ
1
s + (1− α)Ū0

s ) + Zs

}
ds

]
where

Zs = f̄(Xα
s , αŪ

1
s + (1− α)Ū0

s )− αŪ1 − (1− α)Ū0.

Then the integrand in the last expression dominates Zs− k|Ys|, and by concavities
of f and X, Zs ≥ 0. The result follows by Lemma 12 in Appendix C.
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