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1. Introduction

The LIBOR (London InterBank Offered Rate)1 market model, developed by
Brace, Gatarek, and Musiela [7], Miltersen, Sandmann, Sondermann [22], and
Jamshidian [14], is an interest rate version of the celebrated Black-Scholes model
(Black and Scholes [6]) of stock price. In the Black-Scholes model, the change
in stock price is subject to a lognormal distribution under the risk-neutral mea-
sure. In the LIBOR market (LM) model, the change in each forward LIBOR rate
(resp. forward swap rate) is subject to a lognormal distribution (resp. an approxi-
mate lognormal distribution) under the associated equivalent martingale measure.
Thus a Black-Scholes-like pricing formula (resp. approximate pricing formula) for
each caplet (resp. swaption) can be derived. The LM model therefore can be cali-
brated using the formulas, and other interest rate derivatives can be speedily priced
employing the calibrated model. Also, the bond markets in the LM model are
arbitrage-free unlike the Black model2 (Black [5]). These favorable properties make
the LM model currently the most popular interest rate derivative pricing models
among both practitioners and researchers. However, it is often observed that the
implied volatilities of forward LIBOR rates, which are derived by substituting the
market quoted prices of caps into the pricing formula, depend on the strike rates.
This suggests that the LM model can not capture the dynamics of interest rates in
real markets. Extended LM models – including the constant elasticity of volatility
(CEV) model (Andersen and Andreasen [1]) and the affine volatility (AV) model
(Zühlsdorff [31]) – have been proposed in order to account for the observation. In
each extended LM model, a pricing formula (resp. an approximate pricing formula)
for each caplet (resp. swaption) can be derived. An interesting question is whether
or not the extended LM models can accurately price interest rate derivatives. To
accurately price interest rate derivatives, the extended LM models should be statis-
tically acceptable. While many authors (Brace, Gatarek, and Musiela [7], De Jong,
Driessen, and Pelsser [11], Rebonato [24], Sidenius [27], etc) have calibrated the
extended LM models from market quoted prices of caps and swaptions using the
pricing formulas, no statistical test has been conducted for the extended LM models
due to certain difficulties in estimating and testing them. The main purpose of this
paper is to propose a statistical test of the extended LM models and to examine
whether or not the extended LM models are statistically acceptable using the test.

The difficulties in estimating and testing the extended LM models is summarized
as follows. Each extended LM model is expressed as a system of stochastic differen-
tial equations (SDEs) with a multidimensional Wiener process for forward LIBOR
rates with different maturities. The first difficulties are that in the system of SDEs
for forward LIBOR rates, neither the dimensionality of the Wiener process or the

1The LIBOR rate is the interest rate offered by banks on deposits from other banks in Eu-
rocurrency markets and is frequently a reference rate of interest for loans in international financial
markets. In the LIBOR market model, the dynamics of forward LIBOR rates are modeled. A rep-
resentative real example of forward LIBOR rate is a Eurodollar future rate traded on the Chicago
Mercantile Exchange. In the case of Eurodollar futures, the underlying instrument of Eurodollar
future contracts is the 90-day LIBOR and future rates with 48 different times to maturity, i.e.,
one month, two month,· · · , one year, one year and three month, one year and six month, · · · , ten
years, are traded.

2Practitioners had used the Black model in which the change in each forward LIBOR rate and
forward swap rate is subject to a lognormal distribution under the associated equivalent martingale
measure. However, if the change in a forward LIBOR rate is subject to a log-normal distribution
under the associated equivalent martingale measure, then a forward swap rate is not subject
to a lognormal distribution under the associated equivalent martingale measure in arbitrage-free
markets. Thus, there exists an arbitrage opportunity in the bond markets assumed in the Black
model.
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term structure of forward LIBOR rate volatilities is specified. Thus, some appro-
priate statistical methods of specifying the dimensionality of the Wiener process
and the term structure of forward LIBOR rate volatilities are required. The next
difficulty is that the likelihood function of forward LIBOR rates in the extended LM
model is unavailable in analytic form. Hence, the system of SDEs are discretized.
The discretized system of SDEs is a multivariate time series model with the dis-
cretized Wiener process i.e., unobservable common factors that follow an identically
and independently distributed multivariate normal distribution. However, the con-
ditional likelihood function of forward LIBOR rates is still unavailable in analytic
form in the time series model. Some approximations of the time series model are
required to have an analytic conditional likelihood function. The final difficulty
is that the traded future LIBOR rates are too many to compute the conditional
likelihood function. Thus, certain appropriate statistical method of selecting the
set of future LIBOR rates among all the traded future LIBOR rates is required.

This paper first presents estimable approximate extended LM models, which
can be regarded as factor analysis models. Thus, methods for selecting explaining
variables and choosing the number of common factors in factor analysis can be
applied to the approximate extended LM models. The set of future LIBOR rates
and the dimensionality of the Wiener process are chosen in this way. Moreover,
a method for specifying the term structure of future LIBOR rate volatilities is
presented using the factor analysis. Then the approximate extended LM models are
specified by the factor analysis of data of Eurodollar future rates. Next, the specified
approximate extended LM models are estimated using the maximum likelihood
method, and some models are selected among them using the likelihood test and
Schwartz-Bayesian information criterion. The result indicates that the approximate
LM model is completely rejected while some of the approximate CEV and AV
models are selected. Finally, a test for the selected models is conducted and the
result shows that the distribution of factors’ estimates for every selected model has
a much fatter tail than the normal distribution.

The result suggests the following three promising extensions of the extended LM
models. The first one is to replace the deterministic volatility in an extended LM
model with a stochastic one. The second one is to introduce a jump process into
an extended LM model. The third one is to conduct these two extensions together.
Recently, a stochastic volatility LIBOR market model (Andersen and Ratcliffe [2]),
jump-diffusion LIBOR market models (Glasserman and Kou [13], Kusuda [16]),
and a stochastic volatility jump-diffusion LIBOR market model (Kusuda [18]) have
been proposed.

The remainder of this paper is organized as follows. Section 2 reviews the ex-
tended LM models. Section 3 presents approximate extended LM models and the
specification methods of the models. Section 4 specifies the approximate extended
LM models based on the factor analysis of data of Eurodollar future rates. Section
5 estimates and and tests the approximate extended LM models. Section 6 offers a
conclusion.

2. Extended LIBOR Market Models

In this section, the extended LM models are reviewed following Brace, Gatarek,
and Musiela [7], Musiela and Rutkowski [23], Andersen and Andreasen [1], and
Zühlsdorff [31].

Continuous-time frictionless security markets with time span [0, T †] for a fixed
horizon time T † > 0 are considered. investors’ common subjective probability
and information structure are modeled by a complete filtered probability space
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(Ω,F ,F, P ) where the filtration F = (Ft) is the natural filtration generated by a
d-dimensional Wiener process W .

There are markets for securities at every time t ∈ [0, T †]. The traded securities
are nominal-risk-free security (NOT the risk-free security) called the money market
account and K† zero-coupon bonds whose maturities are T1, T2, · · · , TK† where
δ ∈ (0, 1] and Tk = kδ for k ∈ {1, 2, · · · ,K†} and TK† = T †, each of which pays one
unit of cash at its maturity. Let B and (Bk)k∈{1,2,··· ,K†} denote the nominal money
market account price process and nominal bond price processes, respectively. The
collection (B, (Bk)k∈{1,2,··· ,K†}) is abbreviated by B and called the family of bond
prices.

A family B of bond prices is said to be viable if and only if the following conditions
hold:

(1) The dynamics of nominal money market account price process satisfy

dBt

Bt
= rB

t dt ∀t ∈ [0, T †) (2.1)

with B0 = 1 where rB is an absolutely integrable nonnegative adapted
process.

(2) For every K ∈ {1, 2, · · · ,K†}, the dynamics of nominal bond price process
BK satisfy the following SDE

dBK
t

BK
t

= rK
t dt+ vK

t · dWt ∀t ∈ [0, TK) (2.2)

with BK
TK

= 1 where rK
t = rB

t + vBt · vK
t where vB and vK are square

integrable adapted processes.
The process vB is called the market price of risk. It immediately follows from Ito’s
formula (see Appendix A.1) and Girsanov’s Theorem (see Appendix A.2) that there
is no arbitrage (for definitions of arbitrage, see Appendix B) in the bond markets
with any viable family of bond prices are arbitrage-free.

For every K ∈ {1, 2, · · · ,K† − 1}, the TK-forward LIBOR rate process LK over
the future time period [TK , TK+1] is defined by

LK
t =

1
δ

(
BK

t

BK+1
t

− 1
)

∀t ∈ [0, TK ].

Let Kt = �K − t
δ � − 1. The extended LM models are specified by the following

assumption.

Assumption 1. The family B of bond prices is viable and such that for every
K ∈ {1, 2, · · · ,K† − 1} and t ∈ [0, TK), there exist functions ϕ : R+ → R+ and
b : [0, T †] × {1, 2, · · · ,K†} → R

d satisfying

vK
t =

{
−∑Kt

k=1
δϕ(LK−k

t )

1+δLK−k
t

bK−k
t ∀t ∈ [0, TK−1)

0 ∀t ∈ [TK−1, TK).
(2.3)

Here the notion of forward martingale measure is introduced.

Definition 1. Let K ∈ {1, 2, · · · ,K†}. A probability measure PK on (Ω,F) is a
TK-forward martingale measure if and only if PK is equivalent to P , and B

BK and
( Bk

BK )k∈{1,2,··· ,K†} are local martingales under PK .

The following lemma shows the dynamics of TK-forward LIBOR rate process
under the investors’ subjective probability P and the TK+1-forward martingale
measure PK+1 in the extended LM models.
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Lemma 1. Under Assumption 1, it follows that for every K ∈ {1, 2, · · · ,K† − 1}
the dynamics of TK-forward LIBOR rate process satisfy for every t ∈ [0, TK),

dLK
t = ϕ(LK

t ) bKt ·
{

(vBt − vK+1
t ) dt+ dWt

}
, (2.4)

or equivalently
dLK

t = ϕ(LK
t ) bKt · dWK+1

t (2.5)

where

WK+1
t = Wt +

∫ t

0

(vBs − vK+1
s ) ds, (2.6)

and WK+1
t is a Wiener process under PK+1.

Proof. Note that the following follows from (2.3)

bKt =
1 + δLK

t

δϕ(LK
t )

(vK
t − vK+1

t ). (2.7)

Applying Ito’s formula to the definition of LK yields

dLK
t =

1 + δLK
t

δ

[{
rK
t − rK+1

t − vK+1
t · (vK

t − vK+1
t )

}
dt+ (vK

t − vK+1
t ) · dWt

]
=

1 + δLK
t

δ

[
(vBt − vK+1

t ) · (vK
t − vK+1

t ) dt+ (vK
t − vK+1

t ) · dWt

]
(2.8)

for every t ∈ [0, TK). Substituting rK
t = rB

t +vBt ·vK
t and (2.7) into (2.8) yields (2.4),

and substituting (2.6) into (2.4) yields (2.5). It follows from Girsanov’s Theorem
that WK+1

t is a Wiener process under PK+1. �

Brace, Gatarek, and Musiela [7] and Miltersen, Sandmann, and Sondermann [22]
specify the function ϕ in the extended LM models by

ϕ(L) = L.

Then the model is called the LIBOR market model.
However, it is often observed that the implied volatilities depend on the strike

rates of caps. This suggests that the LM model cannot appropriately capture
the dynamics of forward LIBOR rates. To explain the observation, Andersen and
Andreasen [1] and Zühlsdorff [31] have proposed constant elasticity of volatility
(CEV) models and affine volatility (AV) models, respectively. The CEV models
are specified by

ϕ(L) = Lα

for α ∈ R+. The AV models are specified by

ϕ(L) = L+ β

for β ∈ R. The CEV and AV models are called the extended LM models. It is
shown that in each extended LM model, a pricing formula (resp. an approximate
pricing formula) for each caplet (resp. swaption) can be derived.3

Hereafter, the notations CEV(α0) and AV(β0) are used as the CEV model with
α = α0 and as the AV model with β = β0, respectively. Note that CEV(1) = AV(0)
= LM and CEV(0) = AV(∞). The CEV(0) (= AV(∞)) model is called the LIBOR
Gaussian model, and is written as the LG model.

3For the pricing formulas, see Andersen and Andreasen [1] and Zühlsdorff [31].
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3. Approximate Extended LM Models

The extended LM models needs to be estimated and tested to examine whether
or not the models can accurately price interest rate derivatives. However, it is
difficult to estimate and test the extended LM models themselves since the dynamics
of forward LIBOR rates are analytically intractable under the probability measure
P . In this section, estimable approximate extended LM models and specification
methods of the extended LM models are presented.

3.1. Approximate Extended LM Models. Since the likelihood function of for-
ward LIBOR rates are unavailable in analytic form, the SDE (2.4) is discretized by
the Euler-Maruyama discretization scheme4. Let N∗ ∈ N and ∆ = δ

N∗ . Then the
Euler-Maruyama discretization of the SDE on the T k-forward LIBOR rate is

Lk
t+∆ − Lk

t ≈ ϕ(Lk
t )

{
bkt · (vBt − vk+1

t )∆ + bkt · (Wt+∆ −Wt)
}
. (3.1)

Suppose that the estimation period is [0, TI†M ] where I†,M ∈ N. The estimation
period [T0, TI†M ] is divided into the following I† subperiods [T0, TM ), [TM , T2M ), · · · ,
[T(I†−1)M , TI†M ). The estimation subperiod [T(i−1)M , TiM ) is called the i-th esti-
mation subperiod for every i ∈ {1, 2, · · · , I†}, and the period [Tm−1, Tm) is called
the m-th unit period for every m ∈ {1, 2, · · · , I†M}. Note that every estimation
subperiod consists of M unit periods.

Suppose that during any unit period [Tm−1, Tm), K future LIBOR rates with
maturities Tm, Tm+1, · · · , Tm+K−1 are traded. Write tn = n∆. It is assumed that
the volatility of Tm-forward LIBOR rate is a parameterized function of the time to
maturity during each estimation subperiod, i.e.

bmtn
=

I†∑
i=1

1{tn∈[T(i−1)M ,TiM )}b̃mi,n (3.2)

where b̃mi,n is a function of the time (Tm−tn) to maturity for every i ∈ {1, 2, · · · , I†}.
The market price vB of risk is assumed to be constant during each estimation
subperiod, i.e.

vBtn
=

I†∑
i=1

1{tn∈[T(i−1)M ,TiM )}vi (3.3)

where vi ∈ R
d for every i ∈ {1, 2, · · · , I†}. Under the above assumptions, the model

can be estimated subperiod by subperiod. Let i ∈ {1, 2, · · · , I†} and consider the
estimation for i-th estimation subperiod (T(i−1)M , TiM ]. For convenience, the suffix
i is omitted, hereafter.

It is computationally infeasible and unnecessary to compute the likelihood on all
the K traded future rates. Therefore, K ′(< K) future rates are selected among all
the K traded future rates for computing the likelihood in each unit period. Let the
index set of future rates denote K′ = {k1, k2, · · · , kK′} where kl ∈ {1, 2, · · · ,K} for
every l ∈ {1, 2, · · · ,K ′} and k1 < k2 < · · · < kK′ . Here note that the term vK+1

t

in the right-hand side of (3.1) includes all the future rates with maturities between
t and TK+1. Thus, some suitable interpolation is conducted for the future rates
that do not belong to K′. Let L̃m−k

tn
be such that L̃m−k

tn
= Lm−k

tn
if the future rate

4The Euler-Maruyama discretization scheme is the simplest one, but it is shown that under
Lipschitz and linear growth conditions on the drift and diffusion coefficients, the Euler-Maruyama
discretization scheme has the 0.5 order of strong convergence (see Theorem 10.2.2 in Kloeden and
Platen [19]).
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belongs to K′ and L̃m−k
tn

is some appropriate interpolation if the future rate does
not belong to K′. Let

ṽm
n =

⎧⎨
⎩−∑mtn

k=1

δϕ(L̃m−k
tn

)

1+δL̃m−k
tn

bm−k
s ∀tn ∈ [0, Tm − δ)

0 ∀tn ∈ [Tm − δ, Tm).
(3.4)

where mtn = �m− tn

δ � − 1.
Next, consider the method of setting the number d of common factors. Suppose

d = K ′. Then the parameters of the d-dimensional parameterized volatility function
would become too many to estimate. However, if d < K ′, then the likelihood on the
set K′ of future rates is not defined since the variance-covariance matrix becomes
singular. Therefore, K ′′ < K ′ future rates are selected among the set K′ of future
rates, and error terms are introduced into the discretized equations for the set K′′

of future rates. Then the number of common factors is set such that d = K ′ −K ′′

where K ′′ = #K′′. Let K′′ = {kl1 , kl2 , · · · , klK′′ } where klm ∈ {k1, k2, · · · , k′K} for
m ∈ {1, 2, · · · ,K ′′} and kl1 < kl2 < · · · < klK′′ .

Letmn denote tn ∈ [Tmn , Tmn+1), and write ym
n =

L̃m
tn

−L̃m
tn−1

ϕ(L̃m
tn−1

)
. Now the following

approximate extended LM models is obtained.

ymn+k1
n = ∆b̃mn+k1

n · (v − ṽmn+1+k1
n ) +

√
∆ b̃mn+k1

n−1 · wn + ε1n

ymn+k2
n = ∆b̃mn+k2

n · (v − ṽmn+1+k2
n ) +

√
∆ b̃mn+k2

n−1 · wn + ε2n

. . . . . . . . . . . .

ymn+kK′
n = ∆b̃mn+kK′

n · (v − ṽmn+1+kK′
n ) +

√
∆ b̃

mn+kK′
n−1 · wn + εK′n

(3.5)

where wn
IID∼ N(0d, Id), and

εkn

{
IID∼ N(0, ψmn) ∀k ∈ K′′

= 0 ∀k /∈ K′′,

and εkn and εk′n are also independent for every k, k′ ∈ K′′.
To accurately construct the approximate model (3.5), one needs to select the set

K′ of future rates among the set K of future rates, and the set K′′ of future rates
among the K′ set of future rates based on some appropriate statistical methods.
Here it should be noted that the approximate model (3.5) can be regarded as
an approximate factor analysis model because the terms b̃ and ṽ in (3.5) can be
approximated to constants during every estimation subperiod. This suggests that
various methods of factor analysis can be exploited to select K′ and K′′.

First, certain appropriate information criterion in the factor analysis with the
maximum likelihood (ML) method can be employed to decide the number K ′ of
future rates, and some appropriate variable selection method in the factor analysis
can be exploited to select the set K′ of future rates. Next, an appropriate infor-
mation criterion in the factor analysis with ML method can be used to decide the
number d = K ′ − K ′′ of common factors, and the set K′′ of future rates can be
selected based on the communality estimates in the factor analysis. Moreover, the
functional form on forward LIBOR rate volatilities can be specified based on the
factor loading matrix estimates of the factor analysis.

The procedure for specifying the approximate extended LM models is summa-
rized as follows.

(1) Conduct the factor analysis of the set K of future rates using the ML
method.
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(2) Decide the number K ′ of factors based on an appropriate information cri-
terion, and select the set K′ of future rates using some variable selection
method such as the method of Tanaka and Kodake [29] or that of Yanai [30].

(3) Conduct the factor analysis of the set K′ of future rates using the ML
method.

(4) Decide the number d = K ′ −K ′′ of common factors based on some infor-
mation criterion, and select K′′ referring to the communality estimates.

(5) Specify the functional form on forward LIBOR rate volatilities based on
the factor loading matrix estimates.

4. Specification based on Factor Analysis

In this section, the extended LM models are specified based on factor analysis.
The cases of the LM model, i.e. CEV(1)=AV(0), and the LG (LIBOR Gaussian)

model, i.e CEV(0)=AV(∞) were analyzed since the assumed range of α in CEV
models is 0 to 1 and that of β is 0 to ∞. The daily data of Eurodollar future
rates (mid rate) traded on the Chicago Mercantile Exchange were employed. The
estimation period is December 14, 1998 to December 18, 2000. The underlying
tenor of Eurodollar future rates is 90-day, i.e. 0.25 year, and the observations are
509. We therefore set δ = 0.25 and ∆ = 2/509.

Considering that many empirical analyses show that volatilities of interest rates
often change, the subperiod was set as three months, i.e. M = 1. The estimation
period were divided into the following subperiods.

1st subperiod: 12/14/1998− 03/15/1999
2nd subperiod: 03/15/1999− 06/14/1999
3rd subperiod: 06/14/1999− 09/13/1999
4th subperiod: 09/13/1999− 12/13/1999
5th subperiod: 12/13/1999− 03/13/2000
6th subperiod: 03/13/2000− 06/19/2000
7th subperiod: 06/19/2000− 09/18/2000
8th subperiod: 09/18/2000− 12/18/2000

4.1. Selection of Set of Future Rates. Using the ML method, factor analyses
of the set of 39 future rates with the following maturity dates were conducted: 3-
month (3M hereafter), 6M, 9M, 1 year (1Y hereafter), 1Y3M, · · · , 9Y6M, 9Y9M. To
determine the number K ′ of factors, the Schwartz-Bayesian information criterion
(SBC) of Schwartz [25] was used. The results showed that the model with 10 factors
was the best in both cases of the LM model and the LG model, and therefore the
number of factors were set as K ′ = 10.

Due to time restrictions, the Tanaka-Kodake or Yanai methods were not imple-
mented. A set of 10 future rates were chosen with the following times to maturity
of 6M, 1Y, 1Y6M, 2Y, 3Y, 4Y, 5Y, 6Y6M, 8Y, 9Y9M because the estimated factor
loading matrix for all the 39 future rates and that for the 10 future rates were close
to each other.

4.2. Selection of Number of Common Factors. The factor analysis of the
selected set of 10 future rates with one common factor to six common factors were
conducted using the ML method,5 and the six models were compared using the
SBC. The results are as shown in Tables 4.1 and 4.2. The figures with asterisks
shown in these tables present Heywood cases (refer to Lawley and Maxwell [20]).

5The squared multiple correlation was used as initial estimates of communality.
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Table 4.1. The SBC of LG model.

d Subperiod Whole
1st 2nd 3rd 4th 5th 6th 7th 8th Period

1 ∗608.5 732.9 899.0 ∗786.0 ∗1170.3 ∗1139.0 923.5 ∗1160.4 ∗6837.1
2 ∗206.8 270.0 ∗434.9 ∗306.6 ∗502.3 ∗477.5 245.7 182.7 ∗2190.6
3 ∗−11.4 ∗29.7 ∗72.1 −24.5 ∗71.1 ∗41.3 ∗21.9 ∗−34.9 ∗−134.2
4 ∗−34.9 ∗−9.2 ∗2.0 ∗−32.0 ∗−24.3 ∗−20.1 ∗−18.8 ∗−34.6 ∗−354.9
5 ∗−18.8 ∗−11.2 ∗−6.7 ∗−15.0 ∗−13.1 ∗−18.3 ∗−12.7 ∗−16.5 ∗−195.4
6 — ∗3.0 ∗4.0 — — — ∗0.8 ∗0.3 —

Table 4.2. The SBC of LM model.

d Subperiod Whole
1st 2nd 3rd 4th 5th 6th 7th 8th Period

1 ∗616.5 725.7 892.1 ∗791.0 ∗1165.8 ∗1145.1 924.0 ∗1158.5 ∗6836.3
2 ∗212.5 256.8 ∗438.4 ∗313.2 ∗443.9 ∗481.3 242.0 185.1 ∗2140.6
3 ∗−8.2 26.2 ∗73.5 −24.7 ∗107.7 ∗40.9 ∗21.2 ∗−36.1 ∗−101.2
4 ∗−34.8 ∗−11.5 ∗2.4 ∗−32.3 ∗−25.1 ∗−18.6 ∗−19.9 ∗−36.4 ∗−359.3
5 ∗−18.4 ∗−11.3 ∗−6.2 ∗−15.1 ∗−13.8 ∗−18.7 ∗−13.0 ∗−15.0 ∗−194.6
6 — ∗2.9 ∗4.5 — — — ∗0.7 ∗0.2 —

In Heywood case, the computed ML estimates (MLEs) are not real MLEs, but can
be regarded as quasi-MLEs. Also, dashes shown in these tables indicate that the
corresponding numbers of factors were not retained. One can see that the four
factor model is the best for both the LG and LM models. In the four factor model,
the estimates of factor loading matrices were fairly stable both cases of the LG
and LM models, but the fourth factor’s contribution to the variances of explained
variables were too low to appropriately specify the volatility function on the fourth
factor. Here attention was paid to the following two properties of an orthogonal
rotation:

• Any matrix obtain by any orthogonal rotation is also an estimated factor
loading matrix.

• An orthogonal rotation called the Orthomax rotation can equalize the fac-
tors’ contributions to the variances of explained variables.

To explain the above properties, consider the following factor analysis model:

yn = µ+Awn + εn

where yn is a K-dimensional process, ε is a K-dimensional constant vector, A is a
K × d constant matrix,

wn
IID∼ N(0, Id), εn

IID∼ N(0, Ψ).

and wn and εn are independent. Let O denote an d× d orthogonal matrix. Write
w′

n = O′wn and A′ = AO. It follows from O′O = OO′ = Id that

yn = µ+A′w′
n + εn,

where w′
n

IID∼ N(0, Id) and w′
n and εn are independent. This implies that any

matrix obtained by any orthogonal rotation is also an estimated factor loading
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matrix. Next, let A′ = (a′ij). An orthogonal rotation O(η) defined by

argmaxO(η)

d∑
i=1

K∑
j=1

a′4ij −
η

K

d∑
i=1

( K∑
j=1

a′ij

)2

is called an Orthomax rotation. It is known that differences among factors’ contribu-
tions become smaller as the parameter η becomes larger. Thus, Orthomax rotation
O(η) with sufficiently large parameter η can make the fourth factor’s contribution
sufficiently large.

Orthomax rotations O(η) with various ηs were applied to the factor loading ma-
trix estimates. In the result, a tendency was found that the shape of the estimated
volatility function becomes unstable over subperiods as η increases. Therefore, the
initial value of η was set sufficiently small and then gradually increased until the
fourth factor’s contribution became sufficiently high. The result showed that the
shape of the volatility function become unstable over subperiods when the fourth
factor’s contribution becomes high enough. Hence, the number of common factors
was reduced from four to three. Since the third factor’s contribution seemed too
low to appropriately specify the volatility functions on the third factor, Orthomax
rotations were applied in the similar way. The results showed that by the Orthomax
rotation O(1.125), the third factor’s contribution were high enough and the shapes
of the estimated volatility functions were fairly stable as shown in Tables 4.3-4.7.
Therefore, the number of factors was decided to be three.

Table 4.3. The 1st factor loading estimates for the LG model.

Time to Subperiod
maturity 1st 2nd 3rd 4th 5th 6th 7th 8th
0Y6M .00165 .00185 .00188 .00192 .00149 .00158 .00194 .00115
1Y0M .00328 .00372 .00452 .00351 .00200 .00328 .00299 .00195
1Y6M .00370 .00415 .00618 .00391 .00266 .00393 .00333 .00228
2Y0M .00416 .00458 .00726 .00441 .00340 .00475 .00368 .00289
3Y0M .00520 .00556 .00865 .00534 .00453 .00636 .00452 .00423
4Y0M .00609 .00651 .00983 .00597 .00560 .00752 .00533 .00544
5Y0M .00673 .00714 .01041 .00644 .00669 .00817 .00596 .00642
6Y6M .00767 .00774 .01083 .00680 .00821 .00940 .00657 .00740
8Y0M .00822 .00782 .01111 .00694 .00965 .01031 .00709 .00783
9Y9M .00861 .00813 .01148 .00700 .01131 .01128 .00756 .00821

4.3. Specification of Volatility Function. First, Tables 4.3 and 4.4 show that
the first factor loading estimates are positive at τ = 0, increase as τ increases, and
seem to converge as τ tends to infinity. Thus, the volatility function for the first
factor was specified as

b1(t, τ) = b11t − b12te
−λ1tτ (4.1)

where b1t, b2t, λ1t ≥ 0, and b1t ≥ b2t.
Second, Tables 4.5 and 4.6 show that the second factor loading estimates once

increase and then turn to decrease at around τ = 1 as τ increases, and seem to
converge as τ tends to infinity. Hence, the volatility function for the second factor
was specified as

b2(t, τ) = b21t(τ − τ2t)e−λ2t(τ−τ2t) + b22t (4.2)
where b21t, λ2t ≥ 0.

Third, Tables 4.7 and 4.8 show that the third factor loading estimates once
increase and then turn to decrease at around τ = 4 as τ increases, and seem to
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Table 4.4. The 1st factor loading estimates for the LM model.

Time to Subperiod
maturity 1st 2nd 3rd 4th 5th 6th 7th 8th
0Y6M .0327 .0366 .0322 .0324 .0228 .0223 .0277 .0180
1Y0M .0607 .0694 .0743 .0563 .0287 .0444 .0427 .0325
1Y6M .0696 .0737 .0950 .0608 .0375 .0527 .0472 .0377
2Y0M .0757 .0788 .1100 .0668 .0467 .0638 .0525 .0469
3Y0M .0933 .0926 .1275 .0791 .0615 .0856 .0645 .0666
4Y0M .1074 .1060 .1418 .0865 .0749 .1004 .0753 .0833
5Y0M .1155 .1137 .1466 .0908 .0880 .1079 .0830 .0959
6Y6M .1278 .1192 .1465 .0925 .1063 .1221 .0887 .1069
8Y0M .1294 .1164 .1466 .0915 .1213 .1317 .0942 .1096
9Y9M .1910 .1155 .1463 .0886 .1394 .1404 .0979 .1114

Table 4.5. The 2nd factor loading estimates for the LG model.

Time to Subperiod
maturity 1st 2nd 3rd 4th 5th 6th 7th 8th
0Y6M .00545 .00534 .00687 .00476 .00521 .00749 .00450 .00473
1Y0M .00782 .00735 .00947 .00723 .00824 .01012 .00658 .00647
1Y6M .00763 .00720 .00982 .00672 .00866 .00949 .00649 .00619
2Y0M .00681 .00649 .00891 .00578 .00851 .00812 .00567 .00525
3Y0M .00526 .00549 .00723 .00465 .00737 .00640 .00469 .00444
4Y0M .00434 .00471 .00592 .00397 .00611 .00508 .00416 .00373
5Y0M .00391 .00426 .00529 .00360 .00505 .00445 .00372 .00277
6Y6M .00363 .00401 .00511 .00359 .00392 .00379 .00325 .00226
8Y0M .00333 .00382 .00505 .00361 .00296 .00330 .00327 .00230
9Y9M .00298 .00379 .00501 .00355 .00177 .00282 .00289 .00172

Table 4.6. The 2nd factor loading estimates for the LM model.

Time to Subperiod
maturity 1st 2nd 3rd 4th 5th 6th 7th 8th
0Y6M .1117 .1036 .1175 .0811 .0802 .1073 .0639 .0739
1Y0M .1453 .1359 .1549 .1159 .1175 .1399 .0950 .1043
1Y6M .1459 .1273 .1508 .1041 .1208 .1296 .0929 .0991
2Y0M .1248 .1117 .1349 .0874 .1165 .1109 .0817 .0828
3Y0M .0942 .0919 .1064 .0686 .1006 .0874 .0671 .0685
4Y0M .0757 .0771 .0851 .0573 .0827 .0687 .0586 .0567
5Y0M .0665 .0684 .0747 .0506 .0675 .0591 .0514 .0418
6Y6M .0598 .0619 .0695 .0487 .0514 .0489 .0435 .0334
8Y0M .0516 .0567 .0670 .0473 .0375 .0416 .0431 .0330
9Y9M .0442 .0538 .0646 .0447 .0217 .0344 .0371 .0245

converge as τ tends to infinity. Therefore, the volatility function for the second
factor was specified as

b3(t, τ) = b31t(τ − τ3t)e−λ3t(τ−τ3t) + b32t (4.3)

where b31t, λ3t ≥ 0.
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Table 4.7. The 3rd factor loading estimates for the LG model.

Time to Subperiod
maturity 1st 2nd 3rd 4th 5th 6th 7th 8th
0Y6M .00095 .00145 .00130 .00124 .00067 .00097 .00105 .00033
1Y0M .00150 .00264 .00315 .00282 .00113 .00172 .00198 .00018
1Y6M .00174 .00320 .00409 .00360 .00117 .00219 .00237 .00040
2Y0M .00211 .00385 .00513 .00412 .00163 .00273 .00258 .00074
3Y0M .00288 .00456 .00608 .00416 .00239 .00381 .00311 .00124
4Y0M .00315 .00470 .00610 .00393 .00308 .00432 .00356 .00157
5Y0M .00313 .00455 .00532 .00355 .00330 .00416 .00338 .00145
6Y6M .00204 .00361 .00434 .00292 .00246 .00282 .00267 .00088
8Y0M .00138 .00289 .00346 .00249 .00124 .00177 .00201 .00037
9Y9M .00108 .00233 .00261 .00238 .00000 .00066 .00151 −.00032

Table 4.8. The 3rd factor loading estimates for the LM model.

Time to Subperiod
maturity 1st 2nd 3rd 4th 5th 6th 7th 8th
0Y6M .0192 .0281 .0226 .0212 .0105 .0144 .0145 .0053
1Y0M .0256 .0486 .0521 .0450 .0165 .0240 .0276 .0029
1Y6M .0302 .0554 .0629 .0558 .0170 .0306 .0328 .0066
2Y0M .0361 .0648 .0774 .0628 .0230 .0382 .0359 .0119
3Y0M .0493 .0745 .0902 .0620 .0331 .0532 .0434 .0195
4Y0M .0537 .0753 .0890 .0572 .0421 .0599 .0492 .0237
5Y0M .0521 .0712 .0760 .0503 .0444 .0571 .0460 .0216
6Y6M .0322 .0547 .0597 .0398 .0326 .0379 .0350 .0126
8Y0M .0199 .0426 .0463 .0329 .0163 .0237 .0258 .0053
9Y9M .0141 .0330 .0337 .0302 .0006 .0089 .0186 −.0041

Remark 1. There are many studies6 on principal component analysis applied to
interest rate term structures. They have shown that components are usually found
to have particular shapes. The first component is roughly flat, the second compo-
nent is downward sloping, and the third component is hump-shaped. These results
have been interpreted as follows. The first component is causes a parallel shift in
the term structure, the second component causes the term structure to fit, and the
third component causes the term structure to flex. However, our results based on
factor analysis are quite different from those based on principal component analysis.

5. Estimation, Model Selection, and Diagnosis

In this section, the approximate extended LM models specified in the last section
are tested using the data of Eurodollar future rates. First, they are estimated with
the ML method, and then several models are selected based on the likelihood ratio
(LR) test and the SBC. Finally, the selected models are tested.

The same data of Eurodollar future rates employed in the factor analysis were
used. The object models of estimation were CEV(α) models with α = 0.0, 0.1, · · · , 1.0
and AV(β) models with β = ∞, 0.9, 0.8, · · · , 0.0. To test the maintained hypoth-
esis that α (resp. β) is constant in the CEV (resp. AV) models, period-wise CEV
(resp. period-wise AV ) models was introduced in which α (resp. β) is constant
in each estimation subperiod and could change over subperiods. The period-wise

6Knez, Litterman, and Scheinkman [15], Litterman and Scheinkman [21], Steeley [28], etc.
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CEV (resp. period-wise AV) model chosen by the ML method is called the best
period-wise CEV (resp. best period-wise AV ) model, and it is denoted by BPC
(resp. BPA).

A set of initial parameters’ estimates was chosen such that it fits the set of
estimates obtained by the factor analysis. Also, a quasi-Newton method called the
Broyden-Fletcher-Goldfarb-Shanno method (see Bertsekas [4]) was exploited as a
method of computation to find the maximum of the log-likelihood function.

5.1. Estimation Results. The estimation results were obtained as shown in Ta-
bles 5.1 and 5.2. Among both of the classes of CEV and AV models, the maximum
log-likelihood estimate of the LG model is the greatest in the 1st, 2nd, 4th, 7th,
and 8th subperiods. In the results, the maximum log-likelihood estimate of the
LG model is the greatest in the whole periods among both classes of CEV and AV
models. Also, the maximum log-likelihood estimate of the BPC model is almost
the same as that of the BPA model.

Table 5.1. Maximum log-likelihood estimates for CEV models.

α Subperiod Whole
1st 2nd 3rd 4th 5th 6th 7th 8th Period

0.0 4662.7 4926.3 4804.2 5282.0 4823.4 5200.1 4983.6 5233.5 39915.8
0.1 4662.3 4926.2 4804.7 5281.0 4823.7 5200.1 4983.5 5232.7 39914.1
0.2 4661.9 4926.1 4805.0 5279.5 4823.8 5200.1 4983.4 5231.7 39911.5
0.3 4661.4 4925.8 4805.1 5277.8 4823.9 5200.0 4983.2 5230.7 39908.0
0.4 4660.8 4925.5 4805.2 5275.9 4824.0 5199.9 4983.1 5229.6 39903.9
0.5 4660.2 4925.1 4805.1 5273.6 4823.9 5199.8 4982.9 5228.4 39899.0
0.6 4659.5 4924.7 4804.9 5271.4 4823.9 5199.6 4982.7 5227.2 39893.8
0.7 4658.7 4924.2 4804.6 5268.9 4823.8 5199.5 4982.5 5225.9 39888.2
0.8 4657.9 4923.7 4804.4 5266.3 4823.5 5199.2 4982.3 5224.6 39881.9
0.9 4657.1 4923.1 4804.0 5263.7 4823.4 5199.0 4982.0 5223.2 39875.4
1.0 4656.2 4922.5 4803.5 5261.0 4823.1 5198.7 4981.8 5221.7 39868.5

BPC 4662.7 4926.3 4805.2 5282.0 4824.0 5200.1 4983.6 5233.5 39917.3

Table 5.2. Maximum log-likelihood estimates for AV models.

β Subperiod Whole
1st 2nd 3rd 4th 5th 6th 7th 8th Period

∞ 4662.7 4926.3 4804.2 5282.0 4823.4 5200.1 4983.6 5233.5 39915.8
0.9 4662.5 4926.3 4804.6 5281.2 4823.6 5200.1 4983.5 5232.9 39914.5
0.8 4662.4 4926.3 4804.6 5281.1 4823.6 5200.1 4983.5 5232.9 39914.5
0.7 4662.4 4926.3 4804.6 5281.0 4823.6 5200.1 4983.5 5232.8 39914.2
0.6 4662.3 4926.2 4804.7 5281.0 4823.6 5199.1 4983.5 5232.7 39913.9
0.5 4662.3 4926.2 4804.8 5280.5 4823.7 5199.1 4983.5 5232.5 39913.5
0.4 4662.2 4926.2 4804.8 5280.1 4823.7 5199.1 4983.4 5232.3 39912.8
0.3 4662.0 4926.2 4805.0 5279.5 4823.7 5199.1 4983.4 5231.9 39911.6
0.2 4661.7 4926.0 4805.1 5278.2 4823.8 5199.0 4983.3 5231.2 39909.3
0.1 4660.9 4925.6 4805.1 5275.0 4823.8 5198.8 4983.0 5229.6 39903.0
0.0 4656.2 4922.5 4803.5 5261.0 4823.1 5198.7 4981.8 5221.7 39868.5

BPA 4662.7 4926.3 4805.2 5282.0 4823.8 5200.1 4983.6 5233.5 39917.1
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5.2. Model Selection. The procedure for model selection is as follows:
Step 1: Rank each model based on the SBC. Proceed to Step 2(1) if the BPC

or BPA model is the best model, otherwise proceed to Step 2(2).
Step 2: (1) Conduct the following test using the LR test:

H0: CEV(0) (resp. AV(∞)) model.
H1: Period-wise CEV (resp. Period-wise AV) models.

Select only the BPC and BPA models if the LG model is rejected,
otherwise select the LG model and proceed to Step 2.2.

(2) Execute the following test for each CEV(α0) (resp. AV(β0)) model
using the LR test:

H0: CEV(α0) (resp. AV(β0)) model.
H1: CEV(α) (resp. AV(β)) model for α �= α0.

Select the CEV(α0) (resp. AV(β0)) model if it is not rejected, otherwise
reject it. Also, select both of the BPC and BPA models if their ranks
are higher than any other rejected model, otherwise reject them.

First, the Step 1 was executed, and the results shown in Table 5.3 were obtained.
Thus, the following ranking was obtained:

Table 5.3. Models ranking.

α SBC β SBC
0.0 −78784.6 ∞ −78784.6
0.1 −78781.2 0.9 −78782.3
0.2 −78775.9 0.8 −78781.9
0.3 −78768.9 0.7 −78781.4
0.4 −78760.7 0.6 −78780.8
0.5 −78751.0 0.5 −78779.9
0.6 −78740.6 0.4 −78778.5
0.7 −78729.3 0.3 −78776.2
0.8 −78716.7 0.2 −78771.5
0.9 −78703.8 0.1 −78758.5
1.0 −78689.9 0.0 −78689.9

LG � AV(0.9) � AV(0.8) � AV(0.7) � CEV(0.1)

� AV(0.6) � AV(0.5) � AV(0.4) � AV(0.3) � AV(0.2) � BPC ≈ BPA.

Next, the Step 2.2 was proceeded since neither the BPC or the BPA model was
the best model, and the following test was conducted for each CEV(α) (resp. AV(β))
model using the LR test:

H0: CEV(0) (resp. AV(∞)) model.
H1: CEV(α) (resp. AV(β)) model for α �= α0.

The LM model is rejected with a 0.1% significance level. The LM model is widely
used among practitioners for pricing interest rate derivatives, but this result urges
them to reconsider using the LM model. Also, CEV(α) models for α ≥ 0.2 and
AV(β) models for β ≤ 0.5 are rejected with a 5% significance level. Moreover, Since
BPC ≈ BPA < CEV(0.2) both of BPC and BPA models were rejected. In the end,
the following six models were selected:

LG � AV(0.9) � AV(0.8) � AV(0.7) � CEV(0.1) � AV(0.6).
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Here the parameters’ estimates of the LG model which was selected as the best
model are shown in Table 5.4. The unique factor estimates are sufficiently small
as estimated in the preliminary factor analysis. In every model, the unique factor
estimates were sufficiently small as estimated in the preliminary factor analysis,
which suggests that the approximate extended LM models are good approximations
of the extended LM models.

Table 5.4. Parameter estimates of the LG model.

Subperiod
1st 2nd 3rd 4th 5th 6th 7th 8th

v1 −0.56 −2.61 −2.03 2.17 −0.10 1.14 −2.60 3.72
v2 −2.08 −0.67 0.19 −1.11 −2.67 −0.38 3.79 4.45
v3 −1.99 −4.68 3.27 −1.41 −1.76 1.66 2.01 −2.45
b11 0.00946 0.00795 0.01173 0.00729 0.05171 0.02436 0.00803 0.00858
b12 0.00801 0.00703 0.01142 0.00610 0.05145 0.02366 0.00676 0.00545
b21 0.01646 0.01141 0.01756 0.01347 0.01180 0.02295 0.00814 0.01050
b22 0.00182 0.00344 0.00401 0.00323 0.00226 0.00023 0.00273 −.00107
b31 0.00444 0.00404 0.00629 0.00422 0.00624 0.00488 0.00414 0.00621
b32 −.00195 0.00113 0.00193 0.00139 −.00445 0.00087 0.00011 −.00241
τ2 −0.190 −0.206 −0.220 −0.278 −0.216 −0.024 −0.224 0.183
τ3 −1.190 −0.111 0.179 0.304 −1.483 −0.975 −0.486 −1.301
λ1 0.255 0.327 0.662 0.524 0.024 0.052 0.248 0.327
λ2 1.190 1.246 1.113 1.337 0.928 1.130 1.070 0.879
λ3 0.262 0.315 0.405 0.536 0.211 0.248 0.308 0.345
ψ1 0.00337 0.00213 0.00389 0.00252 0.00202 0.00319 0.00162 0.00182
ψ2 0.00336 0.00148 0.00178 0.00160 0.00249 0.00198 0.00116 0.00108
ψ3 0.00178 — — — 0.00129 — — —
ψ4 — 0.00097 0.00104 0.00081 — 0.00124 0.00071 0.00063
ψ5 0.00043 0.00074 0.00088 0.00049 0.00058 0.00072 0.00060 0.00053
ψ6 — — — — — — — —
ψ7 0.00072 0.00065 0.00085 0.00043 0.00067 0.00068 0.00052 0.00049
ψ8 0.00090 0.00071 0.00065 0.00029 0.00059 0.00058 0.00053 0.00060
ψ9 — — — — — — — —
ψ10 0.00120 0.00107 0.00075 0.00039 0.00064 0.00094 0.00077 0.00074

5.3. Test for Selected Models. Finally, the assumption was tested that the com-
mon factors wn in the approximate extended LM model are IID (Identically and
Independently Distributed) with N(0, I3) for the selected six models. Note that the
estimates of common factors wn are computed from the estimation results. Let xn

be such that x1 = w11,x2 = w12,x3 = w13,x4 = w21,x5 = w22, and so on. Then
xn is IID with N(0, 1). Let x̂n denote the estimates of xn.

The assumption of xn
IID∼ N(0, 1) is tested by the following procedure.

Step 1: Conduct the following normality test under the assumption that x̂
is IID:

H0: x̂n is normal.
H1: x̂n is non-normal.

If H0 is rejected, then reject the assumption of xn
IID∼ N(0, 1), otherwise

proceed to Step 2.
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Step 2: Execute the following IID test using BDS test (Brock et al. [8]):
H0: x̂n is IID.
H1: x̂n is not IID.

If H0 is rejected, then reject the assumption, otherwise proceed to Step
3.

Step 3: Conduct the following test:
H0: x̂n is IID N(0, 1).
H1: x̂n is IID N(µ, σ) where (µ, σ) �= (0, 1).

If H0 is rejected, then reject the assumption, otherwise accept it.
There are many normality tests such as Geary’sG test (Geary [12]), the Anderson-

Darling test (Anderson and Darling [3]), Shapiro-Wilk test (Shapiro and Wilk [26]),
and D’Agostino’s D test (D’Agostino [9]). However, there does not any uniformly
powerful test against any estrangement from normality. There are two well known
measures on estrangements from normality, that is, the skewness m3 which shows
the skew of the distribution and the kurtosis m4 which shows the thickness of the
distribution’s tail. The skewness and the kurtosis are defined by

m3 =
E[(x − µ)3]

σ3
, m4 =

E[(x − µ)4]
σ4

.

For any normal distribution, m3 = 0 and m4 = 3. A Monte Carlo simulation
conducted in D’Agostino and Stephens [10] showed that the Shapiro-Wilk test is
most powerful for the test H0 : m3 = 0 against H1 : m3 �= 0, and that the
D’Agostino’s D test is most powerful for the test H0 : m3 = 0,m4 = 3 against
H1 : m3 = 0,m4 > 3. The kurtoses of common factor estimates in all of the
selected models were much greater than three. Therefore, the Shapiro-Wilk test
and the D’Agostino’s D test were employed. The results are as shown in Table 5.5.
Both of the test results present that the normality of common factors is rejected
for every model with a 0.01% significance level. Considering that the kurtoses of
common factor estimates in all of the selected models are much greater than three,
it is thought to be the main cause of these rejections that the distributions of
common factors have much fatter tails than normal distribution.

Table 5.5. The result of normality tests for the selected models.

Model Shapiro-Wilk test D’Agostino’s D test
W p-value D p-value

LG 0.98787 < 0.0001 0.274701 < 0.0001
AV(0.9) 0.98793 < 0.0001 0.274743 < 0.0001
AV(0.8) 0.98791 < 0.0001 0.274738 < 0.0001
AV(0.7) 0.98790 < 0.0001 0.274737 < 0.0001

CEV(0.1) 0.98794 < 0.0001 0.274743 < 0.0001
AV(0.6) 0.98790 < 0.0001 0.274737 < 0.0001

6. Conclusion

The results of this paper presented that the distribution of change in each future
LIBOR rate has fatter tails than normal distribution does. To make the distribution
of change in each future LIBOR rate have fatter tails while keeping the favorable
properties of the extended LM models, the following three extensions are thought to
be promising. The first one is to replace the deterministic volatility in an extended
LM model with a stochastic one. The second one is to introduce a jump process into
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an extended LM model. The third one is to conduct these two extensions together.
Recently, a stochastic volatility LIBOR market model (Andersen and Ratcliffe [2]),
jump-diffusion LIBOR market models (Glasserman and Kou [13], Kusuda [16]),
and a stochastic volatility jump-diffusion LIBOR market model (Kusuda [18]) have
been proposed.

Appendix A. Ito’s Formula and Girsanov’s Theorem

A.1. Ito’s Formula. Let X = (X1, ..., Xd)′ be a d-dimensional Ito process, and g
be a real-valued C2-function on R

d. Then g(X) is an Ito process in the form

g(Xt) = g(X0) +
d∑

i=1

∫ t

0

∂

∂xi
g(Xs−) dX i

s +
1
2

d∑
i=1

d∑
j=1

∫ t

0

∂2

∂xi∂xj
g(Xs−) d〈X i, Xj〉

where 〈X i, Xj〉 is the quadratic covariation of X i and Xj.

A.2. Girsanov’s Theorem.
(1) Assume that there exists a P-measurable process v satisfying the integra-

bility condition ∫ t

0

‖vs‖2 ds <∞
Define a probability measure P̃ on (Ω,F ,F) by dP̃ = ΛT † dP where the
stochastic process Λ is defined by the dynamics

dΛt

Λt−
= −vt · dWt ∀t ∈ [0, T †)

with Λ0 = 1. If E [Λt] = 1 for every t ∈ [0, T †], then it follows that:
(a) The measure P̃ is equivalent to P .
(b) The stochastic process given by W̃t = Wt+

∫ t

0
vs ds is a Wiener process

under P̃ .
(2) Every probability measure equivalent to P has the structure above.

Appendix B. Definitions of Arbitrage

A portfolio θ = (θ0, θ1, · · · , θK†
) is a (K† +1)-dimensional adapted process. The

value process Vt(θ) of a portfolio θ is defined by

Vt(θ) = Btθ
0 +

K†∑
k=1

Bk
t θ

k
t .

Then definitions of feasible portfolio and admissible portfolio are given below.
(1) A feasible portfolio at B is an adapted process θ such that∫ T †

0

|Bsr
B
s | |θ0s | ds <∞,

K†∑
k=1

∫ T †

0

|Bk
s r

k
s | |θk

s | ds <∞,

K†∑
k=1

∫ T †

0

(‖Bk
s v

k
s ‖ |θk

s |
)2
ds <∞.

(2) An admissible portfolio at B is a feasible portfolio θ at B such that its
discounted value process Vt(θ)

Bt
is bounded below.

Definitions of self-financing portfolio and arbitrage portfolio are given in the follow-
ing.

(1) A self-financing portfolio at B is an admissible portfolio at B such that the
value process satisfies

Vt(θ) = V0(θ) +
∫ t

0

θ0s dBs +
K†∑
k=1

∫ t

0

θk
sdB

k
s ∀t ∈ [0, T †].



17

(2) An arbitrage portfolio is an admissible self-financing portfolio θ such that
there exists T ∈ (0, T †] such that V0(θ) ≤ 0 and VT (θ) > 0, or V0(θ) < 0
and VT (θ) ≥ 0.
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