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1. Introduction

Jump-diffusion security market models have been intensively studied in Finance
and Financial Economics, and in particular, in the context of CAPM1, option pric-
ing2, and portfolio choice3. In most of jump-diffusion security market models, the
jump magnitude is specified as a continuously distributed random variable at each
jump time. In this case, the dimensionality of martingale generator in the markets4,
which can be interpreted as “the number of sources of uncertainty,” is uncountably
infinite, and no finite set of traded securities can complete the markets. While
many equilibrium analyses have been conducted in security market economy with
finite dimensional martingale generator,5 in security market economy with infinite
dimensional martingale generator, no equilibrium analysis had been conducted until
recently. The author’s companion paper (Kusuda [35]) has shown that a general-
ized security market equilibrium in an “approximately complete security market”
(Björk et al. [9]) economy can be identified with an Arrow-Debreu equilibrium in
the corresponding Arrow-Debreu economy.

The purpose of this paper is to present (1) a sufficient condition for the existence
of the Arrow-Debreu equilibria in the case of stochastic differential utilities (SDUs,
hereafter), and (2) sufficient conditions for the existence, uniqueness, and local
uniqueness of ASM equilibria in the case of time additive utilities (TAUs, hereafter),
in the corresponding Arrow-Debreu economy. In subsequent papers, Consumption-
based CAPMs with jump risk and a broad class of jump-diffusion option pricing
models are presented in the class of GE models with infinite dimensional martingale
generator (Kusuda [32]), and further interest rate derivative pricing models are
proposed in the class of jump-diffusion option pricing models (Kusuda [30] [34]).

A summary of this paper is as follows. A continuous-time security market econ-
omy with an infinite dimensional martingale generator, which consists of a jump
process given by a marked point process (see Appendix A) and a Wiener process, is
considered. Markets are assumed to be approximately complete (Björk et al. [9] [10])
in which every zero-coupon bond with any maturity time is traded, and any con-
tingent claim is approximately replicated with any given precision by an admissible
self-financing portfolio of the bonds. Since it is shown that a generalized security
market equilibrium called approximate security market (ASM, hereafter) equilib-
rium in approximately complete markets can be identified with an Arrow-Debreu
equilibrium (Kusuda [35]), this paper presents sufficient conditions for the existence
of Arrow-Debreu equilibria in the case of SDUs, and for the existence, uniqueness,
and finiteness (or local uniqueness) of Arrow-Debreu equilibria in the case of TAUs.

1Ahn and Thompson [2], Back [4], Kusuda [32], Madan [37], etc.
2Bakshi, Cao, and Chen [5], Bates [6] [7] [8], Björk et al. [9] [10], Duffie, Pan, and Singleton [20],

Fujiwara and Miyahara [24], Merton [40], Naik and Lee [41], etc.
3Adachi [1], Daglish [12], Liu, Longstaff, and Pan [36], etc.
4Consider the case in which the information filtration in security markets is generated by a

d-dimensional Wiener process and a d′-dimensional Poisson process. In this case, a martingale
generator consists of the Wiener process and its compensated Poisson process, and its dimen-
sionality is d + d′. In this paper, the finite dimensional Poisson process is replaced with “infinite
dimensional Poisson process.”

5In security market economy in which the filtration is generated by a finite dimensional Wiener
process, Duffie [16], Duffie and Zame [22], and Huang [25] show sufficient conditions for the
existence of equilibria, and Karatzas, Lakner, Lehoczky, and Shreve [27], and Karatzas, Lehoczky,
and Shreve [28] present sufficient conditions for the existence and uniqueness of equilibria. Dana
and Pontier [15], and Duffie [16] show sufficient conditions for the existence of equilibria in security
market economy in which the filtration is more general than the one generated by finite dimensional
Wiener process. However, the martingale generator in their markets is still assumed to be finite
dimensional.
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For the case of SDUs, a sufficient condition for the existence of Arrow-Debreu equi-
libria in the case of normalized SDUs (see Definition 7 in Section 5) is presented
(Duffie, Geoffard, and Skiadas [19]). It is also shown that any SDU is normal-
ized under diffusion information (Duffie and Epstein [18]). However, it does not
hold that any SDU is normalized under jump-diffusion information. Therefore, this
paper presents a necessary and sufficient condition for an SDU to be normalized
under jump-diffusion information. The result of Duffie, Geoffard, and Skiadas [19]
is then applied to the class of normalizable SDUs for jump-diffusion information.
The class of normalizable SDUs for jump-diffusion information includes the stan-
dard TAU, the Uzawa utility (Uzawa [43]), and the Kreps-Porteus utility (Kreps
and Porteus [29]). For the case of TAUs, sufficient conditions for the existence,
uniqueness, and local uniqueness of Arrow-Debreu equilibria for a static economy
(Dana [13] [14]). Her results, in which the Negishi approach (Negishi [42]) is ex-
ploited, are summarized in the following: (1) An Arrow-Debreu equilibrium can be
identified with a representative agent equilibrium; (2) There exists a representa-
tive agent equilibrium under a regularity condition; (3) If every agent’s relative risk
aversion coefficient is less than or equal to one, then the representative agent equilib-
rium is unique; (4) If every agent’s risk tolerance satisfies an integrability condition
and every agent’s endowment process is bounded away from zero, then the set of
equilibria is generically finite. This paper extends these results to continuous-time
economy.

The remainder of this paper is organized as follows. Section 2 provides a spec-
ification of security market economy with jump-diffusion information. Section 3
reviews the notions of approximately complete markets and ASM equilibrium, and
the result on the equivalence of ASM and Arrow-Debreu equilibria. Section 4
presents a sufficient condition for the existence of Arrow-Debreu equilibria in the
case of SDUs. Section 5 shows sufficient conditions for the existence, uniqueness,
and local uniqueness of Arrow-Debreu equilibria in the case of TAUs.

2. Security Market Economy with Jump-Diffusion Information

In this section, a specification of security market economy with jump-diffusion
information is provided.

A continuous-time frictionless security market economy with time span [0, T †]
(abbreviated by T, hereafter) for a fixed horizon time T † > 0 is considered. The
agents’ common subjective probability and information structure is modeled by a
complete filtered probability space (Ω,F ,FW,ν , P ) where F

W,ν = (Ft)t∈T is the
natural filtration generated by a d-dimensional Wiener process W and a marked
point process ν(dt× dz) (see Appendix A) on a Lusin space (Z,Z) (in usual appli-
cations, Z = R

d′
, or N

d′
, or a finite set) with the P -intensity kernel λt(dz).6 If the

mark space Z is infinite, then the dimensionality of martingale generator is infinite
because a martingale generator in this economy is (W, (ν(dt×{z})− λt({z}))z∈Z).
The author’s main concern is to consider the case in which Z is infinite, although
Z is unspecified.

There is a single perishable consumption commodity. The commodity space is
a Banach space L∞ = L∞(Ω × T,P , µ) where P is the predictable σ-algebra on
Ω × T, µ is the product measure of P and Lebesgue measure on T. There are I
agents. Each agent i ∈ {1, 2, · · · , I} (abbreviated by I, hereafter) is represented by
(U i, c̄i), where U i is a strictly increasing and continuous utility on the positive cone

6This information structure is based on Björk, Kabanov, and Runggaldier [10]. More general
information structures are considered in Björk, Di Masi, Kabanov, and Runggaldier [9] and in
Jarrow and Madan [26].
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L∞
+ of the consumption process and c̄i ∈ L∞

+ is an endowment process, which is
assumed to be nonzero. The economy mentioned above is described by a collection

E = ((Ω,F ,FW,ν , P ), (U i, c̄i)i∈I).

There are markets for the consumption commodity and securities at every date
t ∈ T. The traded securities are nominal-risk-free security (NOT the risk-free se-
curity) called the money market account and a continuum of zero-coupon bonds
whose maturity times are (0, T †], each of which pays one unit of cash (NOT one unit
of the commodity) at its maturity time. Let p, B, and (BT )T∈(0,T †] denote the con-
sumption commodity price process, nominal money market account price process
and nominal bond price processes, respectively. The collection (B, (BT )T∈(0,T †]) of
security prices is abbreviated by B, and called the family of bond prices.

Following Björk, Kabanov, and Runggaldier [10], each agent is allowed to hold a
portfolio consisting of the money market account and all of bonds at one time. To
do so, we define the portfolio component of bonds by a signed finite Borel measure
on [t, T †] for every event ω ∈ Ω and time t ∈ T.

Definition 1. A portfolio is a stochastic process ϑ = (ϑ0, ϑ1(·)) that satisfies:
(1) The component ϑ0 is a real-valued P-measurable process.
(2) The component ϑ1 is such that:

(i) For every (ω, t) ∈ Ω × T, the set function ϑ1
t (ω, · ) is a signed finite

Borel measure on [t, T †].
(ii) For every Borel set A, the process ϑ1(A) is P-measurable.

3. Approximate Security Market Equilibrium

In this section, a review of approximately complete markets and ASM (Approx-
imate Security Market) equilibrium, and the result on the equivalence of ASM and
Arrow-Debreu equilibria is conducted following the companion paper (Kusuda [35]).

First, a class of families of bond prices is introduced such that the markets are
arbitrage-free and approximately complete (for definitions, see Kusuda [35]), and
that for every family of bond prices in this class, an ASM equilibrium can be
identified with an Arrow-Debreu equilibrium.

Definition 2. A family of bond prices B is implementable if and only if the fol-
lowing three conditions hold (for definitions of regular, risk-neutral measure, and
density process, see Kusuda [35]):

(1) B is regular.
(2) There exists a unique risk-neutral measure P̃B.
(3) The discounted density process ΛB

B of P̃B relative to P is bounded above
and bounded away from zero µ-a.e.

Let B̄ denote the class of families of implementable bond prices. Next, we intro-
duce a class of admissible portfolios.

Definition 3. Let B in B̄. A feasible portfolio at B (for definition, see Kusuda [35])
is admissible at B if and only if the discounted value process V B(ϑ)

B is bounded below
P -a.s. where

V B
t (ϑ) = Bt ϑ

0
t +

∫ T †

t

BT
t ϑ

1
t (dT ) ∀t ∈ T.

Let Θ(B̃) denote the class of admissible portfolios at B. Now the notion of ASM
equilibrium is introduced in which each agent is allowed to choose any consump-
tion plan that can be approximately financed with any prescribed precision by a
budgetary admissible portfolio.
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Definition 4. A collection ((ĉi)i∈I, p,B) ∈ ∏
i∈I L

∞
+ × L∞

+ × B̄ constitutes an
ASM (Approximate Security Market) equilibrium for E if and only if the following
conditions hold:

(1) For every i ∈ I, ĉi solves the problem

max
ci∈C̄i(p,B)

U i(ci)

where

C̄i(p,B) =
{
ci ∈ L∞

+ : ∃(ϑi
n)n∈N ∈

∏
n∈N

Θ(B̃) s.t.

V B
t (ϑi

n) =
∫ t

0

ϑi0
ns dBs +

∫ t

0

∫ T †

s

ϑi1
ns(dT ) dBT

s +
∫ t

0

ps(c̄is − cis) ds ∀(n, t) ∈ N × T,

lim
n→∞V B

T †(ϑi
n) = 0

}
.

(2) The commodity market is cleared as
∑

i∈I ĉ
i =

∑
i∈I c̄

i.

We say that a collection ((ĉi)i∈I, π) ∈ ∏
i∈I L

∞
+ × L∞

+ constitutes an Arrow-
Debreu equilibrium for E if and only if the following conditions hold:

(1) For every i ∈ I, ĉi solves the problem

max
ci∈Ci(π)

U i(ci)

where Ci(π) = {ci ∈ L∞
+ :

∫ T †

0
cis ds =

∫ T †

0
c̄is ds}.

(2) The commodity market is cleared as
∑

i∈I ĉ
i =

∑
i∈I c̄

i.

It can be proven that for every implementable family of bond prices B ∈ B̄, an
ASM equilibrium ((ĉi)i∈I, p,B) for E is identified with an Arrow-Debreu equilib-
rium ((ĉi)i∈I, π) for E under the relation Λ̃Bp = π. It can also be shown that if the
mark space is finite, then for every implementable family of bond prices, an ASM
equilibrium is reduced to be a security market equilibrium.

Theorem 1. Let B ∈ B̄. It follows that:
(1) (i) Let ((ĉi)i∈I, π) be an Arrow-Debreu equilibrium for E. Define p =

(Λ̃B)−1π. Then ((ĉi)i∈I, p,B) is an ASM equilibrium for E.
(ii) Conversely, let ((ĉi)i∈I, p,B) be an ASM equilibrium for E. Define

π = Λ̃Bp. Then ((ĉi)i∈I, π) is an Arrow-Debreu equilibrium for E.
(2) Suppose that the mark space Z is finite. Then ((ĉi)i∈I, p,B) is an ASM equi-

librium for E if and only if ((ĉi)i∈I, p,B) is a security market equilibrium
for E.

Proof. See Kusuda [35] �

Now the task is reduced to present sufficient conditions for the existence of
Arrow-Debreu equilibria in the case of SDUs, and for the existence, uniqueness,
and local uniqueness of Arrow-Debreu equilibria in the case of TAUs.

4. Existence of Equilibria in Case of SDUs

In this section, a sufficient condition for the existence of Arrow-Debreu equilibria
in the case of SDUs (Stochastic Differential Utilities) is presented. Duffie and
Epstein [18] show that any SDU is normalized under pure diffusion information,
and Duffie, Geoffard, and Skiadas [19] present sufficient conditions for the existence
of Arrow-Debreu equilibria in the case of normalized SDUs. However, it does not
hold that any SDU is normalized under jump-diffusion information. Therefore, this
paper presents a necessary and sufficient condition for an SDU to be normalized
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under jump-diffusion information. The result of Duffie, Geoffard, and Skiadas [19] is
then applied to the class of normalizable SDUs for jump-diffusion information. The
class of normalizable SDUs for jump-diffusion information is a subclass of SDUs for
diffusion information, but still includes the standard TAU (Time Additive Utility),
the Uzawa utility (Uzawa [43]), the Kreps-Porteus utility (Kreps and Porteus [29]),
etc.

The notion of SDU was first introduced by Kreps and Porteus [29], developed
by Epstein and Zin [23] in discrete-time setting, and extended to continuous-time
setting by Duffie and Epstein [18]. An SDU has an expected recursive utility rep-
resentation and is an extension of the standard TAU. It is well known that in the
standard TAU, both of risk aversion and intertemporal substitution depend on the
curvature of the von Neumann-Morgenstern utility function, for instance, the rela-
tive risk aversion is reciprocal of the elasticity of intertemporal substitution in the
CRRA utility. These two properties of utility can be independently given in SDUs.
In this section, it is assumed that agents’ common subjective probability and infor-
mation structure is modeled by a complete filtered probability space (Ω,F ,F, P ),
where F = (Ft)t∈T is a filtration satisfying usual conditions.

4.1. Normalizable SDUs under Jump-Diffusion Information. First, the no-
tion of SDU for diffusion information given by Duffie and Epstein [18] is reviewed
(for definitions of aggregator, certainty equivalent, and its local gradient representa-
tion, see Duffie and Epstein [18]).

Definition 5. Let F = F
W where F

W is the natural filtration generated by d-
dimensional Wiener process W . Then a utility Ū : L∞

+ → R is an SDU for diffusion
information if and only if U is characterized by an aggregator (f̄ , q̄) such that
Ū(c) = Ȳ0 for every c ∈ L∞

+ where Ȳ is a unique solution in L∞ of the stochastic
differential equation:

dȲt = µȲ
t dt+ σȲ

t · dWt ∀t ∈ T

with ȲT † = 0 where µȲ ∈ L1, σȲ ∈ ∏d
j=1 L2, and satisfy

µȲ
t = −f̄(cs, Ȳs) − 1

2
q̄11(Ȳs, Ȳs) ‖σȲ

s ‖2

where q̄ : R
2 → R is the local gradient representation (LGR, hereafter) of certainty

equivalent, and satisfies q̄ ∈ C2,0 and q̄1(x, x) = 1 for every x ∈ R.

The notion of SDU for jump-diffusion information is introduced, which is a
natural extension of the notion of SDU for diffusion information.

Definition 6. Let F = F
W,ν . Then a utility Ū : L∞ → R is an SDU for jump-

diffusion information if and only if Ū is characterized by an aggregator (f̄ , q̄) such
that Ū(c) = Ȳ0 for every c ∈ L∞

+ where Ȳ is a unique solution in L∞ of the SDDE:

dȲt = µȲ
t dt+ σȲ

t · dWt + Ȳt−
∫

Z

mȲ
t (z) { ν(dt× dz) − λt(dz) dt } ∀t ∈ T (4.1)

with ȲT † = 0 where µȲ ∈ L1, σȲ ∈ ∏d
j=1 L2, mȲ ∈ L1(λt(dz) × dt), and satisfy

µȲ
t = −f̄(cs, Ȳs) − 1

2
q̄11(Ȳs, Ȳs) ‖σȲ

s ‖2

−
∫

Z

{
q̄((1 +mȲ

s (z))Ȳs, Ȳs) − q̄(Ȳs, Ȳs) − Ȳsm
Ȳ
s (z)

}
λs(dz) (4.2)

where q̄ is the LGR of certainty equivalent Q̄, and satisfies q̄ ∈ C2,0 and q̄1(x, x) = 1
for every x ∈ R.
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Remark 1. Equation (4.2) is derived from definitions of the aggregator (f̄ , q̄):

f̄(ct, Ȳt) = − lim
∆↓0

1
∆
Et

[
q̄(Ȳt, Ȳt−∆) − q̄(Ȳt−∆, Ȳt−∆)

]
= − lim

∆↓0
1
∆
Et

[∫ t

t−∆

{
q̄1(Ȳs, Ȳs)µȲ

s +
1
2
q̄11(Ȳs, Ȳs) ‖σȲ

s ‖2

+
∫

Z

{
q̄((1 +mȲ

s (z))Ȳs, Ȳs) − q̄(Ȳs, Ȳs) − q̄1(Ȳs, Ȳs)Ȳsm
Ȳ
s (z)

}
λs(dz)

}
ds

]

= − µȲ
t − 1

2
q̄11(Ȳt, Ȳt) ‖σȲ

t ‖2

−
∫

Z

{
q̄((1 +mȲ

t (z))Ȳt, Ȳt) − q̄(Ȳt, Ȳt) − Ȳtm
Ȳ
t (z)

}
λt(dz).

Here the property q̄1(Ȳs, Ȳs) = 1 was used.

Remark 2. An SDU Ū for diffusion information has the following recursive expected
utility representation:

Ȳt = −Et

[∫ T †

t

µȲ
s ds

]
= Et

[∫ T †

t

{
f̄(cs, Ȳs) +

1
2
q̄11(Ȳs, Ȳs) ‖σȲ

s ‖2 ds

+
∫

Z

{
q̄((1 +mȲ

t (z))Ȳt, Ȳt) − q̄(Ȳt, Ȳt) − Ȳtm
Ȳ
t (z)

}
λt(dz)

}] ∀t ∈ T.

(4.3)

The recursive expected utility representation (4.3) of Ū is analytically intractable.
Exploiting the notion of ordinally equivalent utility7 Duffie and Epstein [18], intro-
duce the notion of a normalizable SDU.

Definition 7. A utility Ū : L∞
+ → R is a normalizable SDU if and only if there

exists an ordinally equivalent utility U that is characterized by an aggregator (f, q)
such that U(c) = Y0 for every c ∈ L∞

+ where Y is a unique solution in L∞ of the
recursive equation:

Yt = Et

[∫ T †

t

f(cs, Ys) ds
]

∀t ∈ T. (4.4)

The functions (f, q) (or the function f) and the process Y are called the nor-
malized aggregator and the continuation utility process, respectively. The class of
normalizable SDUs depends on the filtration F, so let it be denoted by USD(F).
It is shown by Duffie and Epstein [18] that any SDU for diffusion information is
normalized. However, it is not true that any SDU for jump-diffusion information is
normalized. The following proposition presents a necessary and sufficient condition
for an SDU for jump-diffusion information to be normalized.

Proposition 1. Let F = F
W,ν . Let Ū be an SDU for jump-diffusion information

characterized by an aggregator (f̄ , q̄). Then Ū ∈ USD(FW,ν) if and only if Ū satisfies

q̄1(x, y) = exp
[∫ x

y

ψ(x1) dx1

]
∀(x, y) ∈ R

2 (4.5)

for some continuous function ψ : R → R.

Let UW,ν
SD denote the class of SDUs for jump-diffusion information satisfying

the condition (4.5), and call it the class of normalizable SDUs for jump-diffusion
information.

7We say that a utility U : L∞
+ → R is an ordinally equivalent utility to a utility Ū : L∞

+ → R

if and only if there exists a strictly increasing and continuous function ϕ : R → R with ϕ(0) = 0
such that U = ϕ ◦ Ū .
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Remark 3. The class of normalizable SDUs for jump-diffusion information is a
subclass of SDUs for jump-diffusion information, but still includes the class of
SDUs, each of which is characterized by an expected utility certainty equivalent (for
definition, see Duffie and Epstein [18]). This class of SDUs includes the Kreps-
Porteus utility and the Uzawa utility as well as the standard TAU.

Proof. Suppose that a utility Ū : L∞
+ → R is characterized by an unnormalized

aggregator (f̄ , q̄) such that Ū(c) = Ȳ0 for every c ∈ L∞
+ where Ȳ is a unique

square-integrable process satisfying the SDDE (4.1).
Step 1 – Ū is normalized if and only if there exists a continuous function ψ :

R → R satisfying (4.5): Let ϕ : R → R be a strictly increasing and C2-function
with ϕ(0) = 0 and let Yt = ϕ(Ȳt) for every t ∈ T and f(x, ϕ(y)) = ϕ′(y)f̄(x, y).
Applying Ito’s Formula to Yt = ϕ(Ȳ ) yields

dYt = µY
t dt+ϕ

′(Ȳt)σȲ
t ·dWt+

∫
Z

{
ϕ((1+mȲ

t−(z))Ȳt−)−ϕ(Ȳt−)
} { ν(dt×dz)−λt(dz) dt }

(4.6)
for every t ∈ T where

µY
t = ϕ′(Ȳt)

{
µȲ

t − Ȳt

∫
Z

mȲ
t (z)λt(dz)

}
+

1
2
ϕ′′(Ȳt) ‖σȲ

t ‖2

+
∫

Z

{
ϕ((1 +mȲ

t (z))Ȳt) − ϕ(Ȳt)
}
λt(dz). (4.7)

Substituting (4.2) and ϕ′(Ȳt)f̄(ct, Ȳt) = f(ct, Yt) into (4.7) yields

µY
t = − ϕ′(Ȳt)f̄(ct, Ȳt) − 1

2
ϕ′(Ȳt) q̄11(Ȳt, Ȳt) ‖σȲ

t ‖2

−ϕ′(Ȳt)
∫

Z

{
q̄((1 +mȲ

t (z))Ȳt, Ȳt) − q̄(Ȳt, Ȳt) − Ȳtm
Ȳ
t (z)

}
λt(dz)

+
1
2
ϕ′′(Ȳt) ‖σȲ

t ‖2 +
∫

Z

{
ϕ((1 +mȲ

t (z))Ȳt) − ϕ(Ȳt) − ϕ′(Ȳt)Ȳtm
Ȳ
t (z)

}
λt(dz)

= − f(ct, Yt) − 1
2
{
ϕ′(Ȳt) q̄11(Ȳt, Ȳt) − ϕ′′(Ȳt)

} ‖σȲ
t ‖2

−
∫

Z

[
ϕ′(Ȳt)

{
q̄((1 +mȲ

t (z))Ȳt, Ȳt) − q̄(Ȳt, Ȳt)
}− {ϕ((1 +mȲ

t (z))Ȳt) − ϕ(Ȳt)
}]
λt(dz).

(4.8)

Thus, Ū is normalized if and only if the set of conditions hold:

ϕ′′(y) = q̄11(y, y)ϕ′(y), (4.9)

ϕ(x) − ϕ(y) = ϕ′(y){q̄(x, y) − q̄(y, y)} (4.10)

for every (x, y) ∈ R
2. However, twice partially differentiating both sides of (4.10)

with respect to x and substituting x = y yields (4.9). Hence, Ū is normalized if
and only if the condition (4.10) holds. Considering q̄1(y, y) = 1 for every y ∈ R,
the condition (4.10) is equivalent to

ϕ′(x) = ϕ′(y)q̄1(x, y) ∀(x, y) ∈ R
2. (4.11)

Taking log of both sides of (4.11) and partially differentiating with respect to x, we
have

ϕ′′(x)
ϕ′(x)

=
q̄11(x, y)
q̄1(x, y)

∀(x, y) ∈ R
2. (4.12)

Conversely, (4.11) follows from (4.12) and q̄1(y, y) = 1. Thus, the condition (4.12)
is equivalent to the condition (4.11). It is straightforward to see that the con-
dition (4.12) holds if and only if there exists a continuous function ψ : R → R
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satisfying the condition (4.5). Then a function ϕ satisfying (4.12) is given by

ϕ(x) =
∫ x

0

exp
[∫ x2

0

ψ(x1) dx1

]
dx2 ∀x ∈ R. (4.13)

Step 2 – USD(FW,ν) ⊃ UW,ν
SD : Let Ū ∈ UW,ν

SD be characterized by an unnormalized
aggregator (f̄ , q̄). It then immediately follows from Step1 that Ū ∈ USD(FW,ν).

Step 3 – USD(FW,ν) ⊂ UW,ν
SD : Let Ū ∈ USD(FW,ν) be characterized by an ag-

gregator (f̄ , q̄). Assume w.l.o.g. that (f̄ , q̄) is an unnormalized aggregator. Then
it follows from Step 1 that there exists a continuous function ψ : R → R satisfy-
ing (4.5), and therefore Ū ∈ UW,ν

SD . �

For the existence and uniqueness of the solution Y ∈ L∞ of the recursive equa-
tion (4.4) for every c ∈ L∞

+ in Definition 7, a sufficient conditions is shown by Duffie
and Epstein [18].

Proposition 2. Let f : R+×R → R be a Borel measurable function. Suppose that
f satisfies the following conditions:

(1) A growth condition in consumption: There exist constants k0 and k1 such
that for every x ∈ R+, it follows that |f(x, 0)| ≤ k0 + k1‖c‖.

(2) A uniform Lipschitz condition in utility: There exists a constant k such
that for every x ∈ R+ and every (y1, y2) ∈ R

2, it follows that |f(x, y1) −
f(x, y2)| ≤ k‖y1 − y2‖.

Then, for every c ∈ L∞
+ , there exists a unique solution Y in L∞ of the recursive

equation (4.4).

Proof. See Appendix A in Duffie and Epstein [18]. �

4.2. Existence of Equilibria. It is postulated that every agent’s utility is a nor-
malizable SDU for jump-diffusion information.

Assumption 1. For every i ∈ I, U i ∈ UW,ν
SD is characterized by a normalized

aggregator (f i,mi) where f i satisfies the growth condition in consumption and the
uniform Lipschitz condition in utility.

The following assumption is introduced to ensure the existence of equilibria.

Assumption 2. (1) For every i ∈ I, it follows that:
(i) For every y ∈ R, f i( · , y) is strictly increasing.
(ii) The aggregator f i is continuously differentiable on the interior of its

domain.
(iii) The aggregator f i is concave.
(iv) For every x > 0, supy∈R f

i
c(x, y) <∞.

(v) The aggregator f i satisfies limx↓0 infy∈R f
i
c(x, y) = ∞.

(2) The aggregate endowment is bounded away from zero µ-a.e.

Remark 4. Consider a standard TAU of the form

U(c) = E

[∫ T †

0

e−ρsu(cs) ds
]
.

Then it follows from Ito’s Formula that U can be interpreted as an SDU of the form

Yt = Et

[∫ T †

t

(
u(cs) − ρYs

)
ds

]
∀t ∈ T.

It is straightforward to see that the condition 2(1)(v) is equivalent to the Inada
condition in the case of TAU.
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Under Assumptions 1 and 2, Duffie, Geoffard, and Skiadas [19] prove the exis-
tence of Arrow-Debreu equilibria exploiting the Negishi approach (Negishi [42]) and
the results given by Duffie and Epstein [18], Duffie and Zame [22], and Mas-Collel
and Zame [39].

Proposition 3. Under Assumptions 1 and 2, there exists an Arrow-Debreu equi-
librium ((ĉi)i∈I, π) for E. The equilibrium state price π satisfies

πt = α̂i exp
(∫ t

0

f i
y(ĉis, Y

i
s ) ds

)
f i

c(ĉ
i
t, Y

i
t ) µ-a.e.

for some α̂ ∈ ∆I
++. Moreover, the allocation (ĉi)i∈I is Pareto optimal.

Proof. See Duffie, Geoffard, and Skiadas [19]. �

The following theorem is finally obtained by combining Proposition 3 with The-
orem 1.

Theorem 2. Let F = F
W,ν . Under Assumptions 1 and 2, for every B ∈ B̄, there

exists an ASM equilibrium ((ĉi)i∈I, p,B) for E. In particular, if the mark set Z is
finite, then ((ĉi)i∈I, p,B) is a security market equilibrium for E. The equilibrium
commodity price p satisfies

pt = α̂i
Bt

ΛB
t

exp
(∫ t

0

f i
y(ĉis, Y

i
s ) ds

)
f i

c(ĉ
i
t, Y

i
t ) µ-a.e.

for some α̂ ∈ ∆I
++. Moreover, the allocation (ĉi)i∈I is Pareto optimal.

5. Existence, Uniqueness, and Finiteness
of Equilibria in Case of TAUs

In this section, sufficient conditions for the existence, uniqueness, and local
uniqueness (or determinacy) of Arrow-Debreu equilibria in the case of TAUs (Time
Additive Utilities) are shown. For the purpose, the results of Dana [13] [14] for
a static economy are extended to our continuous-time economy. Her proof, which
exploits the Negishi approach, are summarized in the following: (1) An Arrow-
Debreu equilibrium can be identified with a representative agent equilibrium: (2)
There exists a representative agent equilibrium under a regularity condition; (3)
If every agent’s relative risk aversion coefficient is less than or equal to one, then
the representative agent equilibrium is unique; (4) If every agent’s risk tolerance
coefficient satisfies an integrability condition and every agent’s endowment process
is bounded away from zero, then the set of equilibria is generically finite.

It is assumed that every agent’s utility is a TAU with the nice properties given
below.

Assumption 3. For every agent i ∈ I, the utility U i is a TAU of the form

U i(c) = E

[∫ T †

0

ui(t, cit) dt
]

where the von Neumann-Morgenstern (VNM, hereafter) utility function ui : T ×
R+ → R ∪ {−∞} is C1,2 on R+, and such that ui(t, · ) is strictly increasing and
strictly concave on R+ for every t ∈ T.
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5.1. Equivalence of Arrow-Debreu and Representative Agent Equilibria.
The aggregate utility is introduced to exploit the Negishi approach. Let α ∈ ∆I

+

where ∆I
+ = {α ∈ R

I
+ | ∑i∈I αi = 1}, and define the aggregate utility Uα : L∞

+ → R

by
Uα(c) = max

(c1,c2,··· ,cI)∈Q
i∈I L2

+

∑
i∈I

αiU
i(ci) s.t.

∑
i∈I

ci ≤ c.

We also define a demand function c∗ : T × R+ × R
I
+ → R

I
+ by

(c∗i (t, x, α))i∈I = argmax{ (x1,x2,··· ,xI)∈RI
+ :

P
i∈I xi≤x }

∑
i∈I

αiu
i(t, xi).

The following lemma shows that the aggregate utility Uα has the expected utility
representation, and the properties of the VNM aggregate utility function and the
demand function.

Lemma 1. Under Assumption 3, the aggregate utility Uα is a TAU of the form

Uα(c) = E

[∫ T †

0

u(t, ct, α) dt
]

where u(t, x, α) =
∑
i∈I

αiu
i(t, c∗i (t, x, α)). (5.1)

Moreover, u and (c∗i )i∈I satisfy the following conditions.
(1) (i) The function u is a real-valued C1,1,0-function on T×R+ ×R

I
+ such

that u(t, · , α) is strictly increasing and strictly concave on R+ for
every (t, α) ∈ T × R

I
+.

(ii) Let i ∈ I. For every (t, x, α) ∈ T×R+×R
I
+ satisfying c∗i (t, x, α) > 0,

the first partial derivative of u with respect to x denoted by uc(t, x, α)
satisfies

uc(t, x, α) = αiu
i
c(t, c

∗
i (t, x, α)). (5.2)

(2) Let i ∈ I.
(i) The function c∗i is continuous on T × R+ × R

I
+.

(ii) For every (t, x) ∈ T × R++, the function c∗i (t, x, · ) is homogeneous
of degree zero.

(iii) For every (t, α) ∈ T × R
I
+, c∗i (t, 0, α) = 0.

(3) (i) The functions uc and c∗i for every i ∈ I are differentiable off the set
D of Lebesgue measure zero:

D = { (t, x, α) ∈ T×R++ ×R
I
++ : uc(t, x, α) = αiu

i
c(t, c

∗
i (t, 0, α)) for some i ∈ I }.

(ii) For every t ∈ T, the functions uc(t, · , · ) and c∗i (t, · , · ) for every
i ∈ I are Lipschitz continuous on compact subsets of R+ × R

I
+..

(iii) Let (t, x, α) ∈ Dc. Assume that c∗i (t, x, α) > 0 for every i ∈ I. Then
it follows that for every i, j ∈ I,

∂c∗i
∂αj

(t, x, α) =
uj

c(t, c∗j (t, x, α))

αiαjui
cc(t, c∗i (t, x, α))uj

cc(t, c∗j (t, x, α))η(t, x, α)
(5.3)

where

η(t, x, α) =
∑
i∈I

1
αiui

cc(t, c∗i (t, x, α))
.

Proof. Proofs of (1) and (2) are easy. For proofs of (3)(i)(ii), see the proof of
Proposition 2.3 in Dana [13]. (3)(iii) is obtained by differentiating the first order
condition

α1u
i
c(t, c

∗
i (t, x, α)) = α2u

2
c(t, c

∗
2(t, x, α)) = · · · = αIu

I
c(t, c

∗
I(t, x, α))

and the relation
∑

i∈I c
∗
i (t, x, α) = x with respect to αj . �
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The notion of a representative agent equilibrium α̂ ∈ ∆I
+ for E is introduced,

which is characterized by the Pareto optimal allocation (c∗i (t, c̄t, α̂)) without transfer
payments under the supporting state price uc(s, c̄s, α̂).

Definition 8. A utility weight α̂ ∈ ∆I
++ constitutes a representative agent equilib-

rium for E if and only if α̂ is a solution of the equation ξ(α̂) = 0 where ξ : R
I
++ → R

I

is the excess utility function defined by

ξi(α) =
1
αi
E

[∫ T †

0

uc(s, c̄s, α)(c∗i (s, c̄s, α) − c̄is) ds
]

∀i ∈ I.

One can show that a representative agent equilibrium for E can be identified
with an Arrow-Debreu equilibrium for E. To do so, the following lemma is used.

Lemma 2. Under Assumption 3, for any Pareto optimal allocation (ci)i∈I for E,
there exists a solution α̂ ∈ ∆I

++ of the equation:

c∗(t, c̄t(ω), α̂) = (cit(ω))i∈I µ-a.e.

Proof. See Huang [25]. �
Proposition 4. Under Assumption 3, it follows that:

(1) Let α̂ be a representative agent equilibrium for E. Define ((ĉi)i∈I, π) by
(ĉit(ω))i∈I = c∗(t, c̄t(ω), α̂) and πt = uc(t, c̄t(ω), α̂) for every (ω, t) ∈ Ω×T.
Then ((ĉi)i∈I, π) is an Arrow-Debreu equilibrium for E.

(2) Conversely, let ((ĉi)i∈I, π) be an Arrow-Debreu equilibrium for E. Define
α̂ ∈ ∆I

++ by a solution of the equation c∗(t, c̄t(ω), α̂) = ĉt(ω) µ-a.e. Then
α̂ is a representative agent equilibrium for E.

Proof. See Appendix D. �
Now our task is reduced to show sufficient conditions for the existence, unique-

ness, and local uniqueness of representative agent equilibria.

5.2. Existence of Representative Agent Equilibria. To prove the existence
of representative agent equilibria, the following assumption is imposed on the ag-
gregate endowment.

Assumption 4. The aggregate endowment is bounded away from zero, i.e. there
exists a positive constant δ such that c̄t(ω) ≥ δ µ-a.e.

Note that this assumption implies that uc(t, c̄t(ω), α) ∈ L∞
+ because

uc(t, c̄t(ω), α) ≤ max
(t,α)∈T×∆I

+

uc(t, δ, α) µ-a.e.,

and uc( · , δ, · ) is continuous on T × ∆I
+. Then the excess utility function has

the following desired properties for proving the existence of representative agent
equilibria.

Lemma 3. Under Assumptions 3 and 4, it follows that:
(1) The excess utility function ξ is homogeneous of degree zero, and satisfies

α · ξ(α) = 0 for every α ∈ R
I
+, and bounded above on R

I
+.

(2) The excess utility function ξ is continuous on R
I
++, and ξi(α) → −∞ when-

ever αi → 0 for some i ∈ I.

Proof. Note that there exists a positive constant δ̄ such that c̄t(ω) ≤ δ̄ µ-a.e. be-
cause c̄ ∈ L∞

+

Step 1 – (1): It is obvious that ξ is homogeneous of degree zero, and satisfies
α · ξ(α) = 0 for every α ∈ R

I
+. Therefore, it is proven that ξ is bounded above

on R
I
+. Let i ∈ I and α0 ∈ ∆I

+ be such that α0
i = 0. It is sufficient to show that
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ξi(α) is bounded above as α ∈ ∆I
+ tends to α0. First, it follows from the Lipschitz

continuity of c∗i (t, · , · ) and c∗i (t, c̄i(ω), α0) = 0 that there exists a K such that

c∗i (t, c̄t(ω), α) ≤ max
t∈T

c∗i (t, δ̄, α) ≤ K‖α− α0‖ µ-a.e.

Thus, it follows that

1
αi
uc (t, c̄t(ω), α){c∗i (t, c̄t(ω), α)−c̄it(ω)} ≤ ‖α− α0‖

αi
K max

(t,α′)∈T×∆I
+

{uc(t, δ, α′)} µ-a.e.

The right-hand side of the above equation converges toKmax(t,α′)∈T×∆I
+
{uc(t, δ, α′)}

as α tends to α0. Therefore, it follows from Lebesgue Dominated Convergence The-
orem that ξ(α) is bounded above as α tends to α0.

Step 2 – (2) Continuity on R
I
++: It is enough to present the continuity of ξ on a

compact subset S of R
I
++ bounded away from the boundary. Since ξ is homogeneous

of degree zero on α, it follows that for every i ∈ I,∣∣∣∣ 1
αi
uc (t, c̄t(ω), α){c∗i (t, c̄t(ω), α) − c̄it(ω)}

∣∣∣∣
=

∑
j∈I αj

αi

∣∣∣∣∣uc

(
t, c̄t(ω),

α∑
j∈I αj

){
c∗i

(
t, c̄t(ω),

α∑
j∈I αj

)
− c̄it(ω)

}∣∣∣∣∣
≤

√
I ‖α‖
αi

max
(t,α′)∈T×∆I

+

{uc(t, δ, α′)} δ̄ µ-a.e.

Thus, the continuity of ξ on S follows from Lebesgue Dominated Convergence
Theorem.

Step 3 – (2) Boundary condition: Let i ∈ I and α0 ∈ ∆I
+ be such that α0

i = 0.
It suffices to show that ξi(α) tends to −∞ as α ∈ ∆I

+ tends to α0. Note that there
exists A ∈ P such that µ(A) > 0 and c̄it(ω) > 0 for every (ω, t) ∈ A since every
agent’s endowment process is assumed to be nonzero. Then it follows that

ξi(α) ≤ 1
αi
E

[∫ T †

0

uc(s, c̄s(ω), α) c̄∗i (s, c̄s, α) ds

]
− 1
αi

∫
A

uc(s, c̄s(ω), α) c̄is(ω)µ(dω × ds)

≤ ‖α− α0‖
αi

KT † max
(t,α′)∈T×∆I

+

{uc(t, δ, α′)} − 1
αi

min
(t,α′)∈T×∆I

+

{uc(t, δ̄, α′)}
∫
A

c̄is(ω)µ(dω × ds),

which tends to −∞ as α tends to α0. �
5.3. Uniqueness of Representative Agent Equilibria. To prove uniqueness
of equilibria, the following two assumptions are imposed.

Assumption 5. (1) For every i ∈ I, the agent i’s relative risk aversion coef-
ficient satisfies

γi(t, x) def= −xu
i
cc(t, x)

ui
c(t, x)

≤ 1 ∀(t, x) ∈ T × R+.

(2) Either of the following two conditions is satisfied:
(i) Every agent’s endowment is positive µ-a.e., i.e. c̄i > 0 µ-a.e. for

every i ∈ I.
(ii) Every agent’s utility satisfies the Inada condition, i.e. limx↓0 ui

c(t, x) =
∞ for every i ∈ I.

Then it is shown that the excess utility function is strongly gross substitute.

Lemma 4. Under Assumptions 3-5, ξ is strongly gross substitute, i.e.:
(1) For every (i, j) such that i 
= j, ξi(α1, · · · , αj−1, · , αj+1, · · · , αI) is non-

increasing and for every i, ξi(α1, · · · , αi−1, · , αi+1, · · · , αI) is non-decreasing.
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(2) If c∗i (t, c̄t(ω), α) > 0 on some A ∈ P with µ(A) > 0, then for every j 
= i,
ξi(α1, · · · , αj−1, · , αj+1, · · · , αI) is strictly decreasing on a neighborhood of
α.

Proof. See the proof of Theorem 3.1 in Dana [13]. �
5.4. Local Uniqueness of Representative Agent Equilibria. Unfortunately,
there is no strong evidence which supports Assumption 5. Therefore, it is shown
that under more reasonable assumptions, the local uniqueness of equilibria, or
equivalently the finiteness of the set of equilibria, is a generic property of our
economies using the Negishi approach given by Dana [13] for static economies.

The space of economies is parameterized by keeping agents’ common subjective
probability and information structure (Ω,F ,FW,ν , P ), utilities (U i)i∈I, and the ag-
gregate endowment c̄ fixed, and varying the distribution of individual endowments.
The following assumptions are imposed on utilities and endowments.

Assumption 6. For every i ∈ I, the von Neumann-Morgenstern utility function
satisfies

− ui
c(t, x)

ui
cc(t, x)

≤ βi
1x+ βi

2 ∀(t, x) ∈ T × R+

for some βi ∈ R
2
+.

Assumption 7. There exists δ ∈ R
I
++ such that c̄it > δi µ-a.e. on T×Ω for every

i ∈ I.

The following space of economies is introduced in which each economy is char-
acterized by the distribution of individual endowments.

Eδ =
{

E = ((Ω,F ,FW,ν , P ), (U i, c̄i)i∈I)
∣∣∣

(c̄i)i∈I ∈
∏
i∈I

L∞
+ ,

∑
i∈I

c̄i = c̄, and (c̄i)i∈I satisfies Assumption 7 for δ
}

A function ξ̂ : ∆I
+ × Eδ → R

I is defined by

ξ̂i(α,E) =
1
αi
E

[∫ T †

0

uc(s, c̄s, α)(c∗i (s, c̄s, α) − c̄is) ds
]

∀i ∈ I.

The continuity of ξ̂ follows from Dominated Convergence Theorem. The differen-
tiability of ξ̂ with respect to α and the continuity of the derivative can also be
shown.

Lemma 5. Under Assumptions 3, 4, 6, and 7, ξ̂ is differentiable with respect to α
on ∆I

++ and its derivative is continuous on ∆I
++ × Eδ.

Proof. See Appendix E �

Since
∑

i∈I ξ̂i(α,E) = 0 for every α ∈ ∆I
+, it follows that rankDαξ̂(α,E) ≤

I − 1. It is said that the economy E is regular if and only if ξ̂(α̂,E) = 0 implies
rankDαξ̂(α,E) = I − 1. Let Rδ denote the set of all regular economies in Rδ.
It is well known that that any regular economy can only have a finite number of
equilibria (see Proposition 17.D.1 in Mas-Collel, Whinston, and Green [38]). Thus,
to see that the number of equilibria is generically finite, it is enough to show that
the set of regular economies Rδ is open and dense in Eδ. In order to do so, a
correspondence {α̂}(E) : Eδ → ∆I

+ is defined by

{α̂}(E) = {α ∈ ∆I
+ : ξ̂(α,E) = 0 },

Then the following lemma is shown.
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Lemma 6. Under Assumptions 3, 4, 6, and 7, it follows that:
(1) The correspondence {α̂} is u.h.c., and for every E ∈ Eδ, {α̂}(E) is compact.
(2) If E is regular then {α̂}(E) is finite.

Proof. Proof of (1) immediately follows from the continuity of ξ̂. Let E be a regular
economy. Suppose {α̂}(E) is infinite. Then since {α̂}(E) is compact, it has an
accumulation point α̂ ∈ {α̂}(E). This implies that α̂ is not locally unique. This is
a contradiction. �

5.5. Existence, Uniqueness, and Local Uniqueness of Equilibria. Now the
existence, uniqueness, and local uniqueness of ASM equilibria can be proven.

Theorem 3. Under Assumptions 3 and 4, it follows that for every B ∈ B̄:
(1) There exists an ASM equilibrium ((ĉi)i∈I, p,B) for E. In particular, if the

mark set Z is finite, then ((ĉi)i∈I, p,B) is a security market equilibrium
for E. The equilibrium ((ĉi)i∈I, p,B) is characterized by the corresponding
representative agent equilibrium α̂ for E, i.e. ((ĉi)i∈I, p) satisfies

(ĉit(ω))i∈I = c∗(t, c̄t(ω), α̂),

pt(ω) =
Bt(ω)
ΛB

t (ω)
uc(t, c̄t(ω), α̂)

for almost every (ω, t) ∈ Ω × T. Moreover, the allocation (ĉi)i∈I is Pareto
optimal.

(2) If Assumption 5 is satisfied, then the ASM equilibrium is unique.
(3) If Assumptions 6 and 7 are satisfied, then the set of regular economies Rδ

is open and dense in Eδ.

Proof. Step 1 – Existence: It follows from Lemma 3 and Kakutani’s Fixed Point
Theorem that there exists an α̂ ∈ ∆I

+ such that ξ(α̂) = 0, i.e. there exists a rep-
resentative agent equilibrium α̂ for E (for the proof, see pp. 585-587 in Mas-Collel,
Whinston, and Green [38]). Define (ĉi)i∈I and p by (ĉit(ω))i∈I = c∗(t, c̄t(ω), α̂) and
pt(ω) = (Λ̃B

t (ω))−1uc(t, c̄t(ω), α̂) for every (ω, t) ∈ Ω × T, respectively. Then by
Proposition 4(1) and Theorem 1(1), ((ĉi)i∈I, p,B) is an ASM equilibrium for E,
and (ĉi)i∈I is a Pareto optimal allocation. Suppose that the mark set Z is finite.
It then follows from Theorem 1(2) that ((ĉi)i∈I, p,B) constitutes a security market
equilibrium for E.

Step 2 – Uniqueness : By Theorem 1 and Proposition 4, it is sufficient to show
that the representative agent equilibrium is unique. The proof of Dana [13] is used.
Assume that there exist two non-collinear solutions for ξ(α) = 0 and let them be
α̂ and α̌. Since E is homogeneous of degree zero by Lemma 3, let w.l.o.g. α̂ < α̌
with α̂i = α̌i for some i ∈ I. As α̌ is a solution for ξ(α) = 0, c∗i (t, c̄t(ω), α̌) 
= 0
for every j. Therefore, ξi is strictly increasing at α̌. Let α̂ < α < α̌. Then
0 = ξi(α̂) < ξi(α) < ξi(α̌) = 0, which is a contradiction.

Step 3 – Local Uniqueness : See Appendix F.
�

Appendix A. Marked Point Process

A double sequence (sn, Zn)n∈N is considered, where sn is the occurrence time of
an nth jump and Zn is a random variable taking its values on a measurable space
(Z,Z) at time sn. Define a random counting measure ν(dt × dz) by

ν([0, t] ×A) =
∑
n∈N

1{sn≤t, Zn∈A} ∀(t, A) ∈ [0, T †] ×Z.

This counting measure ν(dt× dz) is called the Z-marked point process.
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Let λ be such that
(1) For every (ω, t) ∈ Ω × (0, T †], the set function λt(ω, · ) is a finite Borel

measure on Z.
(2) For every A ∈ Z, the process λ(A) is P-measurable and satisfies λ(A) ∈ L1.

The marked point process ν(dt × dz) is said to have the P -intensity kernel λt(dz)
if and only if the following equation

E

[∫ T †

0

Ys ν(ds×A)
]

= E

[∫ T †

0

Ysλs(A) ds
]

∀A ∈ Z

holds for any nonnegative P-measurable process Y , then it is said that the marked
point process ν(dt× dz) has the P -intensity kernel λt(dz).

Let ν(dt × dz) be a Z-marked point process with the P -intensity kernel λt(dz).
Let H be a P ⊗ Z-measurable function. It follows that:

(1) If the following integrability condition

E

[∫ T †

0

∫
Z

|Hs(z)|λs(z) ds
]
<∞

holds, then the process
∫ t

0

∫
Z
Hs(z){ ν(ds×dz)−λs(dz) ds } is a P -martingale.

(2) IfH ∈ L1(λt(dz)×dt), then the process
∫ t

0

∫
Z
Hs(z){ ν(ds×dz)−λs(dz) ds }

is a local P -martingale.

Proof. See p. 235 in Brémaud [11]. �

Appendix B. Ito’s Formula

Let X = (X1, ..., Xd)′ be a d-dimensional semimartingale, and g be a real-valued
C2 function on R

d. Then g(X) is a semimartingale of the form

g(Xt) = g(X0)+
d∑

i=1

∫ t

0

∂

∂xi
g(Xs−) dX i

s +
1
2

d∑
i=1

d∑
j=1

∫ t

0

∂2

∂xi∂xj
g(Xs−) d〈X ic, Xjc〉

+
∑

0≤s≤t

{
g(Xs) − g(Xs−) +

d∑
i=1

∂

∂xi
g(Xs−)∆X i

s

}

where X ic is the continuous part of X ic and 〈X ic, Xjc〉 is the quadratic covariation
of X ic and Xjc.

Appendix C. Girsanov’s Theorem

(1) Let v ∈∏d
j=1 L2 and H ∈ L1(λt(dz) × dt). Define a process Λ by

dΛt

Λt−
= −vt · dWt −

∫
Z

Ht(z) { ν(dt× dz) − λt(dz) dt} ∀t ∈ [0, T †)

with Λ0 = 1, and suppose E [ΛT † ] = 1. Then there exists a probability
measure P̃ on (Ω,F ,F) given by the Radon-Nikodym derivative

dP̃ = ΛT † dP

such that:
(i) The measure P̃ is equivalent to P .
(ii) The process given by

W̃t = Wt +
∫ t

0

vs ds ∀t ∈ T

is a P̃ -Wiener process.
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(iii) The marked point process ν(dt× dz) has the P̃ -intensity kernel such
that

λ̃t(dz) = (1 −Ht(z))λt(dz) ∀(t, z) ∈ T × Z.

(2) Every probability measure equivalent to P has the structure above.

Appendix D. Proof of Proposition 4

Proof of (1). Let α̂ be a representative agent equilibrium for E. Define ((ĉi)i∈I, π)
by (ĉit(ω))i∈I = c∗(t, c̄t(ω), α̂) and πt = uc(t, c̄t(ω), α̂) for every (ω, t) ∈ Ω×T. Then
ĉi ∈ L∞

+ for every i ∈ I and π ∈ L∞
+ . It also follows that

∑
i∈I ĉ

i = c̄ by definition
of c∗ and that ĉit satisfies the necessary and sufficient condition for every agent’s
optimality ui

c(t, ĉit) = 1
α̂i
πt for every i ∈ I.

Proof of (2). Let ((ĉi)i∈I, π) be an Arrow-Debreu equilibrium for E. Since (ui)i∈I

are strictly increasing by Assumption 3, the allocation (ĉi)i∈I is Pareto optimal by
First Welfare Theorem (see Mas-Collel and Zame [39]). Then by Lemma 2, there
exists α̂ ∈ ∆I

+ such that

c∗(t, c̄t(ω), α̂) = (ĉit(ω))i∈I µ-a.e. (D.1)

Combining (5.2) with (D.1) yields

uc(t, c̄t(ω), α̂) = α̂iu
i
c(t, ĉ

i
t(ω)) µ-a.e. (D.2)

for every i ∈ I. In the meantime, the optimality of consumption plans implies that
there exists a rescaled Lagrange multiplier α̂− ∈ {α ∈ R++ | ∑i∈I

1
α̂−

i

= 1} such
that for every i ∈ I and

ui
c(t, ĉ

i
t) = α̂−

i πt µ-a.e. (D.3)

Comparing (D.2) with (D.3) yields uc(t, c̄t(ω), α̂) = πt(ω), which implies ξ(α̂) = 0.

Appendix E. Proof of Lemma 5

The proof of Dana [13] is exploited. Let S be a compact subset of ∆I
+ bounded

away from the boundary. It suffices to prove the differentiability of ξ̂ with respect
to α on S. Define a function ζ : T × R+ × S → R

I by

ζi(t, c̄t, α) =
1
αi
uc(t, c̄t, α)(c∗i (t, c̄t, α) − c̄it).

Partially differentiating ζ with respect to αj yields

∂ζi
∂αj

(t, c̄t, α) =
∂c∗i
∂αj

(t, c̄t, α){ui
cc(t, c

∗
i )(c

∗
i (t, c̄t, α) − c̄it) + ui

c(t, c
∗
i )}. (E.1)

In the meantime, it follows from (5.3) that

∂c∗i
∂αj

(t, c̄t, α)ui
cc(t, c

∗
i ) ≤

1
αi
uj

c(t, c
∗
j ) =

1
αiαj

uc(t, c̄t, α). (E.2)

It follows from (E.1),(E.2), and Assumptions 6 and 7 that∣∣∣∣ ∂ζi∂αj
(t, c̄t, α)

∣∣∣∣ ≤ 1
αiαj

max
(α′)∈∆I

[uc(t, c̄t(ω), α′)]{(βi
1 + 2)c̄t + βi

2}. (E.3)

Thus, by Lebesgue Dominated Convergence Theorem, ξ̂ is differentiable with re-
spect to α on S, and its derivative is

∂ξ̂i
∂αj

(α,E) = E

[∫ T †

0

∂c∗i
∂αj

(s, c̄s, α)
{
ui

cc(s, c
∗
i (s, c̄s, α)(c∗i (s, c̄s, α)−c̄is)+ui

c(t, c
∗
i (s, c̄s, α)

}
ds

]
.
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Since c̄ is fixed,
∣∣∣ ∂Fi

∂αj

∣∣∣ are bounded independently of (α,E) on S. Therefore, ∂ξ̂i

∂αj
is

continuous on ∆I
++ × Eδ.

Appendix F. Proof of Theorem 3(3)

The proof of Dana [13] is extended. First, the openness of Rδ is shown. Let E0 ∈
Rδ. Then for any α0 ∈ δI such that ξ̂(α0,E0) = 0, and that rank Dαξ̂(α0,E0) =
I − 1. Since {α̂}(E) is compact and Dαξ̂ is continuous, there exists neighborhoods
V ⊂ Eδ of E0 and V ⊂ ∆I

+ of α0 such that Dαξ̂(α,E) = I − 1 for every (α,E) ∈
V × V . Since {α̂} is u.h.c., there exists V ′ ⊂ V such that {α̂}(V ′) ⊂ V . Thus, if
E ∈ V ′,, then the rank Dαξ̂(α0,E0) = I − 1 for every α ∈ {α̂}(E). Therefore,
V ′ ⊂ Rδ and Rδ is open in Eδ. Next, the denseness of Rδ is proven. Let E ∈
Eδ. Let ε > 0 such that c̄i − ε > δi µ-a.e. for every i ∈ {1, 2, · · · , I − 1}. Let
(Xε

i )i∈{1,2,··· ,I−1} such that max{‖Xi‖L2 , ‖Xi‖L∞} ≤ ε ∀i ∈ {1, 2, · · · , I − 1}.
Let A = {(ai)i∈{1,2,··· ,I−1} ∈ R

I−1 : 0 ≤ ai ≤ 1 ∀i ∈ {1, 2, · · · , I − 1}}. Define a
function h : ∆I ×A→ R

I by

hi(α, a) = E

[∫ T †

0

uc(s, c̄s, α)(c∗i (s, c̄s, α)− c̄is − aiX
ε
is) ds

]
∀i ∈ {1, 2, · · · , I − 1},

and

hI(α, a) = E

[∫ T †

0

uc(s, c̄s, α)(c∗I(s, c̄s, α) − c̄Is +
I−1∑
i=1

aiX
ε
is) ds

]
.

One can easily check that rank Dag(α, a) = I − 1. By Transversality Theorem,
there exists a ∈ A such that 0 is a regular value of h( · a) that is 0 is a regular value
of the economy in E , (c̄1 +a1X

ε
1 , c̄

2 +a2X
ε
2 , · · · , c̄I−1 +aI−1X

ε
I−1, c̄

I −∑I−1
i=1 aiX

ε
i ),

arbitrarily close to E, since ε can be chosen arbitrarily close to zero.
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