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1. Introduction

There is a strong evidence1 that the dynamics of most financial processes such
as equity prices, interest rates, and exchange rates are better described by jump-
diffusion processes than pure diffusion processes which are assumed in the standard
models such as the Black-Scholes model (Black and Scholes [12]) of stock price.
Many studies2 have also shown that the presence of jumps could have significant
impact on asset pricing3 and portfolio choice4. Against the background of such
studies, jump-diffusion security market models have been intensively studied in
Finance and Financial Economics, and in particular, in the context of CAPM5,
option pricing6, and portfolio choice7. In most of jump-diffusion security market
models, the jump magnitude is specified as a random variable with a continuous
distribution at each jump time. In this case, the dimensionality of martingale
generator8 in the markets, which can be interpreted as “the number of sources
of uncertainty,” is uncountably infinite, and no finite set of traded securities can
complete the markets. While many equilibrium analyses have been conducted in
security market economy with finite dimensional martingale generator,9 in security
market economy with infinite dimensional martingale generator, no equilibrium
analysis has been conducted to date as far as the author knows.

The purpose of this paper and its companion paper (Kusuda [37]) is to de-
velop a general equilibrium (GE, hereafter) analysis in a class of GE models of
security market economy with infinite dimensional martingale generator, in which
Consumption-based CAPMs (Capital Asset Pricing Models) with jump risk and
jump-diffusion option pricing models can be constructed. In this paper, the notion
of a generalized security market equilibrium called approximate security market
(ASM, hereafter) equilibrium is introduced, and then it is proven that an ASM equi-
librium can be identified with an Arrow-Debreu equilibrium. In the corresponding
Arrow-Debreu economy, the companion paper (Kusuda [37]) presents (1) a suffi-
cient condition for the existence of Arrow-Debreu equilibria in the case of stochastic
differential utilities, which are continuous-time version of Epstein-Zin utilities (Ep-
stein and Zin [22]), and (2) sufficient conditions for the existence, uniqueness, and
local uniqueness (or determinacy) of Arrow-Debreu equilibria in the case of time
additive utilities. In subsequent papers, Consumption-based CAPMs with jump
risk and a broad class of jump-diffusion option pricing models are presented in the

1Akgiray and Booth [3], Andersen, Benzoni, and Lund [4], Bakshi, Cao, and Chen [6],
Bates [7] [8] [9], Das [16], Eraker, Johannes, and Polson [23], Jorion [29], Pan [45], etc.

2Bakshi, Cao, and Chen [6], Bates [9], Duffie, Pan, and Singleton [19], Pan [45], Rietz [48], etc.
3Rietz [48] has claimed that jump risk premia could be high enough to explain high equity

premia pointed out by Mehra and Prescott [42]. Pan [45] has shown that jump risk premia is high
enough to explain volatility “smirks” implied by market quoted prices of options.

4Adachi [1], Daglish [14], Liu, Longstaff, and Pan [38], etc.
5Ahn and Thompson [2], Back [5], Kusuda [34], Madan [39], etc.
6Bakshi, Cao, and Chen [6], Bates [7] [8] [9], Björk et al. [10] [11], Duffie, Pan, and Single-

ton [19], Fujiwara and Miyahara [24], Merton [43], Naik and Lee [44], etc.
7Adachi [1], Daglish [14], Liu, Longstaff, and Pan [38], etc.
8For example, if the filtration in security markets, which can be interpreted as the “informa-

tion,” is generated by a d-dimensional Wiener process, then a martingale generator is the Wiener
process and its dimensionality is d.

9In security market economy in which the filtration is generated by a finite dimensional Wiener
process, Duffie [17], Duffie and Zame [20], and Huang [26] show sufficient conditions for the
existence of equilibria, and Karatzas, Lakner, Lehoczky, and Shreve [30], and Karatzas, Lehoczky,
and Shreve [31] present sufficient conditions for the existence and uniqueness of equilibria. Dana
and Pontier [15], and Duffie [17] show sufficient conditions for the existence of equilibria in security
market economy in which the filtration is more general than the one generated by finite dimensional
Wiener process. However, the martingale generator in their markets is still assumed to be finite
dimensional.
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class of GE models with infinite dimensional martingale generator (Kusuda [34]),
and further interest rate derivative pricing models are proposed in the class of
jump-diffusion option pricing models (Kusuda [32] [36]).

A summary of this paper is as follows. A continuous-time security market econ-
omy with an infinite dimensional martingale generator, which consists of a jump
process given by a marked point process (see Appendix A) and a Wiener process,
is considered. The markets are then incomplete as long as the number of traded
securities is finite. It is very difficult to show the existence of GE in incomplete
markets. Therefore, it is assumed that every zero-coupon bond with any maturity
time is traded, in other words, a continuum of bonds are traded. In such markets,
it is shown that under some regularity condition, the markets are approximately
complete (Björk, Di Masi, Kabanov, and Runggaldier [10], Björk, Kabanov, and
Runggaldier [11]). In usual complete markets, any contingent claim is replicated
by an admissible self-financing portfolio. In approximately complete markets, any
contingent claim is approximately replicated with any given precision by an admis-
sible self-financing portfolio of bonds. The notion of a generalized security market
equilibrium called ASM (Approximate Security Market) equilibrium is then intro-
duced. In ASM equilibrium, each agent is allowed to choose any consumption plan
that can be approximately financed with prescribed precision by a budgetary ad-
missible portfolio. Next, a method of implementing Arrow-Debreu equilibria in
security market economy is presented. In the existing method (Dana and Pon-
tier [15], Duffie [17], Duffie and Zame [20], and Huang [26]) of implementation, it is
assumed that the nominal price of every zero-coupon bond is always one. On the
contrary, in this paper, the family of nominal bond prices is not specified in this
way. Rather, a class of families of nominal bond prices is introduced at which the
markets are arbitrage-free and approximately complete. In this method, any family
of nominal bond prices in this class can be chosen. It is shown that this method of
implementation can be interpreted as a generalization of the existing one. Finally,
it is proven that for every family of nominal bond prices in the class, an ASM
equilibrium can be identified with an Arrow-Debreu equilibrium. Main mathemat-
ical techniques used in this paper are jump-diffusion information versions of Ito’s
Formula, Girsanov’s Theorem, and Martingale Representation Theorem.

The remainder of this paper is organized as follows. In Section 2, a specifica-
tion of a security market economy with jump-diffusion information is provided. In
Section 3, a review of arbitrage-free approximately complete security markets is
introduced following Björk et al. [10] [11]. In Section 4, the notion of ASM equilib-
rium is introduced, and the method of implementing Arrow-Debreu Equilibria in
our security markets is presented. In Section 5, it is proven that an ASM equilib-
rium can be identified with an Arrow-Debreu equilibrium. In Section 6, the proof
of the author’s main proposition is given.

2. Security Market Economy with Jump-Diffusion Information

In this section, a specification of security market economy with jump-diffusion
information is provided.

A continuous-time frictionless security market economy with time span [0, T †]
(abbreviated by T, hereafter) for a fixed horizon time T † > 0 is considered. The
agents’ common subjective probability and information structure is modeled by a
complete filtered probability space (Ω,F , F, P ) where F = (Ft)t∈T is the natural
filtration generated by a d-dimensional Wiener process W and a marked point pro-
cess ν(dt × dz) (see Appendix A) on a Lusin space (Z,Z) (in usual applications,
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Z = R
n, or N

n, or a finite set) with the P -intensity kernel λt(dz). 10 If the mark
space Z is infinite, then the dimensionality of martingale generator is infinite be-
cause a martingale generator in this economy is (W, (ν(dt × {z}) − λt({z}))z∈Z).
The author’s main concern is to consider the case in which Z is infinite, although
Z is unspecified.

There is a single perishable consumption commodity. The commodity space is
a Banach space L∞ = L∞(Ω × T,P , µ) where P is the predictable σ-algebra on
Ω × T, µ is the product measure of the probability measure P and the Lebesgue
measure on T. There are I agents. Each agent i ∈ {1, 2, · · · , I} (abbreviated
by I, hereafter) is represented by (U i, c̄i), where U i is a strictly increasing and
continuous utility on the positive cone L∞

+ of the consumption process and c̄i ∈ L∞
+

is an endowment process, which is assumed to be nonzero. The economy mentioned
above is described by a collection

E = ((Ω,F , F, P ), (U i, c̄i)i∈I).

There are markets for the consumption commodity and securities at every date
t ∈ T. The traded securities are nominal-risk-free security (NOT the risk-free se-
curity) called the money market account and a continuum of zero-coupon bonds
whose maturity times are (0, T †], each of which pays one unit of cash (NOT one unit
of the commodity) at its maturity time. Let p, B, and (BT )T∈(0,T †] denote the con-
sumption commodity price process, nominal money market account price process
and nominal bond price processes, respectively. The collection (B, (BT )T∈(0,T †]) of
security prices is abbreviated by B, and called the family of bond prices.

3. Approximately Complete Markets

In this section, the approximately complete markets given by Björk et al. [10] [11]
is reviewed, and a class of families of bond prices is introduced such that for every
family of bond prices in this class, an ASM equilibrium can be identified with an
Arrow-Debreu equilibrium.

Let n ∈ N. Let Ln denote the space of real-valued P-measurable process X sat-
isfying the integrability condition

∫ T †

0 |Xs|n ds < ∞ P -a.e. Also, let Ln(λt(dz)×dt)
denote the space of real-valued P ⊗Z-measurable process H satisfying the integra-
bility condition

∫ T †

0

∫
Z
|Hs(z)|n λs(dz) ds < ∞ P -a.e. Moreover, let Cn denote the

space of n-times continuously differentiable functions.
We say that a family B = (B, (BT )T∈(0,T †]) of bond prices is regular if and only

if the following conditions hold:

(1) For every T ∈ (0, T †], the dynamics of nominal bond price process BT

satisfies the following stochastic differential-difference equation

dBT
t

BT
t−

= rT
t dt + vT

t · dWt +
∫

Z

mT
t (z) { ν(dt × dz) − λt(dz) dt } ∀t ∈ [0, T )

with BT
T = 1 and BT

t = 0 for every t ∈ (T, T †] for some rT ∈ L1, vT ∈∏d
j=1 L2, and mT ∈ L1(λt(dz) × dt). Moreover, it follows that:
(i) For every (ω, t) ∈ Ω × T, r ·

t (ω), v ·
t (ω) ∈ C1(T), and for every

(ω, t, z) ∈ Ω × T × Z, m ·
t (ω, z) ∈ C1(T).

10This information structure is based on Björk, Kabanov, and Runggaldier [11]. More general
information structures are considered in Björk, Di Masi, Kabanov, and Runggaldier [10] and in
Jarrow and Madan [28].
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(ii) For every T ∈ (0, T †], BT is regular enough to allow for the differ-
entiation under the integral sign and the interchange of integration
order.11

(iii) For every t ∈ T, bond price curves B ·
t are bounded P -a.e.

(iv) The family of jump magnitude functions m ·
t ( · ) is uniformly bounded

µ-a.e.
(2) The dynamics of nominal money market account price process B satisfies

the following stochastic differential equation

dBt

Bt
= rB

t dt ∀t ∈ [0, T †)

with B0 = 1 where rB
t is given by rB

t = −∂ ln BT
t

∂T

∣∣∣∣
T=t

, and rB ≥ 0 µ-a.e.

Each agent is allowed to hold a portfolio consisting of the money market account
and all of bonds at one time. For that purpose, the portfolio component of bonds
is defined by a signed finite Borel measure on [t, T †] for every event ω ∈ Ω and time
t ∈ T.

Definition 1. A portfolio (also called “trading strategy”) is a stochastic process
ϑ = (ϑ0, ϑ1(·)) that satisfies:

(1) The component ϑ0 is a real-valued P-measurable process.
(2) The component ϑ1 is such that:

(i) For every (ω, t) ∈ Ω × T, the set function ϑ1
t (ω, · ) is a signed finite

Borel measure on [t, T †].
(ii) For every Borel set A, the process ϑ1(A) is P-measurable.

Let the family B of bond prices be regular. A portfolio ϑ is said to be feasible
at B if and only if the following integrability conditions are satisfied:

Btr
B
t ϑ0

t ∈ L1,

∫ T †

t

|BT
t rT

t | |ϑ1
t (dT )| ∈ L1,

∫ T †

t

|BT
t vT

t | |ϑ1
t (dT )| ∈ L2,

∫ T †

t

|BT
t mT

t (z)| |ϑ1
t (dT )| ∈ L1(λt(dz) × dt).

Let Θ(B) denote the class of feasible portfolios at B. The value process V B(ϑ) of
a feasible portfolio ϑ ∈ Θ(B) at B is given by

V B
t (ϑ) = Bt ϑ0

t +
∫ T †

t

BT
t ϑ1

t (dT ) ∀t ∈ T.

A feasible portfolio ϑ ∈ Θ(B) is said to be self-financing at B if and only if the
following equation holds:

V B
t (ϑ) = V B

0 (ϑ) +
∫ t

0

ϑ0
s dBs +

∫ t

0

∫ T †

s

ϑ1
s(dT ) dBT

s ∀t ∈ T.

Also, a self-financing portfolio ϑ ∈ Θ(B) is said to be an arbitrage portfolio at B if
and only if either of the following condition holds:

• V B
0 (ϑ) ≤ 0, and V B

T †(ϑ) > 0, i.e. V B
T †(ϑ) ≥ 0 P -a.e. and P ({V B

T †(ϑ) >
0}) > 0.

• V B
0 (ϑ) < 0, and V B

T †(ϑ) ≥ 0 P -a.e.

11For the marked point process integrals, we can apply the ordinary Fubini Theorem, and for
the interchange of integration with respect to dW and dt, we can apply the Stochastic Fubini
Theorem (see Protter [46]).
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For a real-valued P-measurable process X , the discounted process of X at B is
denoted by X̃. Thus, X̃ = X

B . The collection (B̃, (B̃T )T∈T) of security prices is
abbreviated by B̃.

To eliminate unrealistic portfolios such as those based on a doubling strategy (see
Chapter 6 in Duffie [18]), the class of feasible portfolios is restricted to the class of
admissible portfolios, which is equivalent to the class of credit-constrained portfolios
introduced by Dybvig and Huang [21].

Definition 2. Let B be regular. A feasible portfolio ϑ ∈ Θ(B) at B is admissible
at B if and only if the discounted value process Ṽ B(ϑ) is bounded below P -a.e.

Let Θ(B̃) denote the class of admissible portfolios at B. Definitions of arbitrage-
free markets and the risk-neutral measure (also called “spot martingale measure”).

Definition 3. Let B be regular.
(1) Markets are arbitrage-free at B if and only if there exists no admissible

arbitrage portfolio at B.
(2) A probability measure P̃B on (Ω,F) is a risk-neutral measure at B if and

only if P̃B is equivalent to P and the discounted family B̃ of bond prices
is a martingale under P̃B.

It is well known that the existence of risk-neutral measures implies that markets
are arbitrage-free.

Lemma 1. Let B be regular. If there exists a risk-neutral measure at B, then
markets are arbitrage-free at B.

Proof. See the proofs of Theorem 6.F and Corollary 6.F in Duffie [18]. �

Suppose that the family of bond prices B is regular. The following lemma then
shows a necessary and sufficient condition on B for the existence of risk-neutral
measures.

Lemma 2. Let B be regular. Then it follows that:
(1) There exists a risk-neutral measure P̃B at B if and only if there exists a

martingale process ΛB such that

dΛB
t

ΛB
t−

= −vB
t · dWt −

∫
Z

mB
t (z) { ν(dt × dz) − λt(dz) dt } ∀t ∈ [0, T †)

with ΛB
0 = 1 where (vB, mB) ∈ (∏d

j=1 L2
) × L1(λt(dz) × dt) satisfies the

following equation

rT
t = rB

t + vB
t · vT

t +
∫

Z

mB
t (z)mT

t (z)λt(dz) ∀t ∈ [0, T †). (3.1)

(2) If there exists a martingale process ΛB satisfying the above conditions, then
it follows that:

(i) The probability measure P̃B given by the Radon-Nikodym derivative

dP̃B = ΛB
T † dP (3.2)

is a risk-neutral measure at B.
(ii) The process W̃B given by

W̃B
t = Wt +

∫ t

0

vB
s ds ∀t ∈ T (3.3)

is a P̃B-Wiener process.
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(iii) The marked point process ν(dt × dz) has the P̃B-intensity kernel
λ̃B

t (dz) such that

λ̃B
t (dz) = (1 − mB

t (z))λt(dz) ∀(t, z) ∈ T × Z. (3.4)

Proof. These results follow from Ito’s Formula (see Appendix B) and Girsanov’s
Theorem (see Appendix C). �

Let B denote the class of families of regular bond prices satisfying conditions in
Lemma 2. The process ΛB is called the density process of P̃B relative to P . The
processes vB

t and mB
t (z)λt(dz) are called the market price of (nominal) diffusive

risk and the market price of (nominal) jump risk, respectively.
Suppose that the mark space Z is finite, and let B ∈ B. Then it should be

noted that solutions (vB, mB) ∈ (∏d
j=1 L2

)×L1(λt(dz)× dt) of the equation (3.1)
are not necessarily unique, which implies that risk-neutral measures at B are not
necessarily unique. If risk-neutral measures at B are not unique, then markets are
incomplete, which makes it difficult to show the existence of GE. Therefore, some
regularity condition on B is imposed such that the solutions of (3.1) are unique at
B. In the case of security markets with pure diffusion information, the uniqueness of
risk-neutral measures is equivalent to the completeness of markets. Unfortunately,
this is no longer true for security markets with jump-diffusion information; that
is, in the case of security markets with jump-diffusion information, the uniqueness
of risk-neutral measures does not imply the completeness of markets. Therefore,
Björk et al. [10] [11] introduced the notion of approximately complete defined in the
following.

Definition 4. Let B ∈ B.

(1) For every T ∈ (0, T †], a contingent T -claim is a FT -measurable random
variable XT such that X̃T = XT

Bt
∈ L∞

+ (Ω,FT ) where L∞(Ω,FT ) is the
space of almost surely bounded FT -measurable random variables.

(2) A contingent T -claim XT is replicable at B if and only if there exists an
admissible self-financing portfolio ϑ ∈ Θ(B̃) such that the discounted value
process is bounded, and satisfies V B

T (ϑ) = XT .
(3) Markets are complete at B if and only if every T -contingent claim XT is

replicable for every T ∈ (0, T †].
(4) Markets are approximately complete at B if and only if for any T ∈ (0, T †]

and any T -contingent claim XT , there exists a sequence of replicable claims
(XTn)n∈N converging to XT in L2(Ω,FT , P̃B) where P̃B is a risk-neutral
measure at B.

Let B ∈ B. Björk, Di Masi, Kabanov, and Runggaldier [10] prove that risk-
neutral measures are unique at B if and only if markets are approximately complete
at B. They also show that if Z is finite, then risk-neutral measures at B are unique
if and only if markets are complete at B.

Proposition 1. Let B ∈ B.

(1) Each of the following conditions is necessary and sufficient for B to have
a unique risk-neutral measure.

(i) Markets are approximately complete at B.
(ii) For every (ω, t) ∈ Ω × T, the equation

Õ∗
t (ω)ϑ1

t (ω) =
(

vt(ω)
mt(ω, · )

)
(3.5)
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can be solved on a dense subset of R
d×L2(Z,Z, λ̃B

t (dz)) where Õ∗
t (ω) :

M(T) → R
d × L2(Z,Z, λ̃B

t (ω, dz)) is defined by

Õ∗
t (ω) : ϑ1

t (ω) �→
( ∫ T †

t B̃T
t−(ω) vT

t (ω)ϑ1
t (ω, dT )∫ T †

t B̃T
t−(ω)mT

t (ω, · )ϑ1
t (ω, dT )

)

where M(T) denotes the space of measures on T with finite total
variation, which is equivalent to the dual space of C0(T).

(2) Suppose that the mark set Z is finite. Then each of the following conditions
is necessary and sufficient for B to have a unique risk-neutral measure.

(i) Markets are complete at B.
(ii) For every (ω, t) ∈ Ω × T, the equation (3.5) can be solved on R

d ×
L2(Z,Z, λ̃B

t (ω, dz)).

Proof. See the proof of Proposition 6.10 in Björk, Di Masi, Kabanov, and Rung-
galdier [10]. �

We introduce a class of families of bond prices such that for every family of bond
prices in this class, an ASM equilibrium can be identified with an Arrow-Debreu
equilibrium.

Definition 5. A family of bond prices B ∈ B is implementable if and only if the
following two conditions hold:

(1) Risk-neutral measures at B are unique.
(2) The discounted density process Λ̃B of P̃B relative to P is bounded above

and bounded away from zero µ-a.e.

Let B̄ denote the class of families of implementable bond prices.

4. ASM Equilibrium and Arrow-Debreu Equilibrium

In this section, the notion of ASM (Approximate Security Market) equilibrium
is introduced, and then the method of implementing Arrow-Debreu equilibria in
security market economy is presented.

4.1. ASM (Approximate Security Market) Equilibrium. Before introduc-
ing the notion of ASM equilibrium, the following security market equilibrium first
introduced by Radner [47] is considered.

Definition 6. A collection ((ĉi)i∈I, p,B) ∈ ∏i∈I L
∞
+ ×L∞

+ ×B̄ constitutes a security
market equilibrium for E if and only if the following conditions hold:

(1) For every i ∈ I , ĉi solves the problem

max
ci∈Ci(p,B)

U i(ci)

where

Ci(p,B) =
{
ci ∈ L∞

+ : ∃ϑi ∈ Θ(B̃) s.t.

V B
t (ϑi) =

∫ t

0

ϑi0
s dBs +

∫ t

0

∫ T †

s

ϑi1
s (dT ) dBT

s +
∫ t

0

ps(c̄i
s − ci

s) ds ∀t ∈ T,

V B
T †(ϑi) = 0

}
.

(2) The commodity market is cleared as
∑

i∈I ĉi =
∑

i∈I c̄i.
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Remark 1. Note that if ((ĉi)i∈I, p,B) constitutes a security market equilibrium for
E, then the security market clearing condition is satisfied in the sense that there
exists a (ϑ̂i)i∈I ∈

∏
i∈I Θ(B̃) with

∑
i∈I ϑ̂i = 0 such that ϑ̂i supports ĉi, i.e.

V B
t (ϑ̂i) =

∫ t

0

ϑ̂i0
s dBs +

∫ t

0

∫ T †

s

ϑ̂i1
s (dT ) dBT

s +
∫ t

0

ps(c̄i
s − ĉi

s) ds ∀t ∈ T,

V B
T †(ϑ̂i) = 0

for every i ∈ I. This immediately follows from the commodity market clearing
condition and the linearity of value process. Hence, the security market clearing
condition has been removed out of the definition of security market equilibrium.

Let (p,B) ∈ L∞
+ × B̄. As shown in Proposition 1, the markets are then approxi-

mately complete in which a contingent claim may not be exactly replicated. Thus,
an agent’s maximization problem may not be well defined since the optimal con-
sumption plan may not be exactly financed by any portfolio in the budget constraint
set Ci(p,B). We now introduce the notion of ASM equilibrium in which each agent
is allowed to choose any consumption plan that is approximately financed with any
prescribed precision by a budgetary admissible portfolio.

Definition 7. A collection ((ĉi)i∈I, p,B) ∈ ∏
i∈I L

∞
+ × L∞

+ × B̄ constitutes an
ASM (Approximate Security Market) equilibrium for E if and only if the following
conditions hold:

(1) For every i ∈ I, ĉi solves the problem

max
ci∈C̄i(p,B)

U i(ci)

where

C̄i(p,B) =
{
ci ∈ L∞

+ : ∃(ϑi
n)n∈N ∈

∏
n∈N

Θ(B̃) s.t.

V B
t (ϑi

n) =
∫ t

0

ϑi0
ns dBs +

∫ t

0

∫ T †

s

ϑi1
ns(dT ) dBT

s +
∫ t

0

ps(c̄i
s − ci

s) ds ∀(n, t) ∈ N × T,

lim
n→∞V B

T †(ϑi
n) = 0

}
.

(2) The commodity market is cleared as
∑

i∈I ĉi =
∑

i∈I c̄i.

4.2. Implementation of Arrow-Debreu Equilibria. A collection ((ĉi)i∈I, π) ∈∏
i∈I L

∞
+ ×L∞

+ is said to constitute an Arrow-Debreu equilibrium for E if and only
if the following conditions hold:

(1) For every i ∈ I, ĉi solves the problem

max
ci∈Ci(π)

U i(ci)

where Ci(π) = {ci ∈ L∞
+ :

∫ T †

0 ci
s ds =

∫ T †

0 c̄i
s ds}.

(2) The commodity market is cleared as
∑

i∈I ĉi =
∑

i∈I c̄i.

To implement Arrow-Debreu equilibria in security market economy, Dana and
Pontier [15], Duffie [17], Duffie and Zame [20], and Huang [26] assume that Dynamic
Spanning Condition (see Section 10.D in Duffie [18]) is satisfied, which ensures the
market completeness, and that every nominal security price process S(D) with a
nominal cumulative dividend process D satisfies

St(D) = E [DT † − Dt|Ft] ∀t ∈ T. (4.1)

Then they set the commodity price p = π for every Arrow-Debreu equilibrium
((ĉi)i∈I, π). It is easy to see that the equation (4.1) implies that every nominal
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zero-coupon bond price is always one, or equivalently that the nominal-risk-free
rate is always zero. This assumption is too restricted and unrealistic.

On the contrary, in the author’s method of implementation, any implementable
family B ∈ B̄ of bond prices can be assumed. The implementation procedure is as
follows. Choose an appropriate implementable family B ∈ B̄ of bond prices. For
every Arrow-Debreu equilibrium ((ĉi)i∈I, π), set the commodity price p = (Λ̃B)−1π

where Λ̃B is the discounted density process of P̃B relative to P . Then it will be
shown in the next section that ((ĉi)i∈I, p,B) is an ASM equilibrium for E.

Assume that BT
t = 1 for every T ∈ (0, T †] and t ∈ [0, T ]. This assumption

implies the equation (4.1) and p = π since Λ̃B = 1. Then the author’s method
of implementation is reduced to that of Dana and Pontier [15], Duffie [17], Duffie
and Zame [20], and Huang [26], although in this case, another set of securities are
required to make markets approximately complete since the bond markets are not
approximately complete. In this sense, the author’s method of implementation is a
generalization of their one.

Remark 2. Such exogenously given family of bond prices in the author’s method is
interpreted as the agents’ common subjective probability for the yield of nominal
interest rates. The central bank controls the yield of nominal interest rates in order
to control the commodity price. One explanation for justifying the agents’ common
subjective probability for the yield of nominal interest rates may be that it is formed
by such policy of the central bank.

5. Equivalence of ASM and Arrow-Debreu Equilibria

In this Section, it is proven that for every implementable family of bond prices, an
ASM equilibrium can be identified with an Arrow-Debreu equilibrium. In concrete,
it is proven that for every implementable family of bond prices B ∈ B̄, an ASM
equilibrium ((ĉi)i∈I, p,B) for E is identified with an Arrow-Debreu equilibrium
((ĉi)i∈I, π) for E under the relation Λ̃Bp = π. It is also shown that if the mark
space is finite, then for every implementable family of bond prices, ASM equilibrium
is reduced to be security market equilibrium.

We derive our main result, Proposition 2, using Proposition 1 and Martin-
gale Representation Theorem. This proposition shows that: (1) For every im-
plementable family of bond prices, a budget constraint set in ASM equilibrium can
be identified with a budget constraint set in Arrow-Debreu equilibrium. (2) If the
mark space is finite, then for every implementable family of bond prices and com-
modity price, the budget constraint set in ASM equilibrium is equivalent to the
budget constraint set in security market equilibrium.

Proposition 2. Let B ∈ B̄ and i ∈ I. It follows that:
(1) (i) Let ci ∈ Ci(π) where π ∈ L∞

++. Define p = (Λ̃B)−1π. Then p ∈ L∞
++,

and ci ∈ C̄i(p,B).
(ii) Conversely, let ci ∈ C̄i(p,B) where p ∈ L2

++. Define π = Λ̃Bp. Then
π ∈ L∞

++, and ci ∈ Ci(π).
(2) Suppose that the mark space Z is finite. Then for every p ∈ L∞

++, Ci(p,B) =
C̄i(p,B).

Proof. See Section 6. �
Using Proposition 2, we finally obtain Theorem 1, which shows that: (1) For

every implementable family of bond prices, an ASM equilibrium can be identified
with an Arrow-Debreu equilibrium. (2) If the mark space is finite, then for every
implementable family of bond prices, ASM equilibrium is reduced to be security
market equilibrium.



10

Theorem 1. Let B ∈ B̄. It follows that:
(1) (i) Let ((ĉi)i∈I, π) be an Arrow-Debreu equilibrium for E. Define p =

(Λ̃B)−1π. Then ((ĉi)i∈I, p,B) is an ASM equilibrium for E.
(ii) Conversely, let ((ĉi)i∈I, p,B) be an ASM equilibrium for E. Define

π = Λ̃Bp. Then ((ĉi)i∈I, π) is an Arrow-Debreu equilibrium for E.
(2) Suppose that the mark space Z is finite. Then ((ĉi)i∈I, p,B) is an ASM equi-

librium for E if and only if ((ĉi)i∈I, p,B) is a security market equilibrium
for E.

Proof. Let B ∈ B̄. (2) directly follows from Proposition 2(ii), therefore (1) is
proven. Note that Λ̃B, (Λ̃B)−1 ∈ L∞

++ for B ∈ B̄.
Proof of (1)(i). Let ((ĉi)i∈I, π) be an Arrow-Debreu equilibrium for E. First,

π ∈ L∞
++ because agents’ utilities are strictly increasing. Define p = (Λ̃B)−1π. Then

p ∈ L∞
++ since (Λ̃B)−1 ∈ L∞

++. Next, by definition of Arrow-Debreu equilibrium,
(ĉi)i∈I satisfies the commodity market clearing condition in ASM equilibrium. Let
i ∈ I. It follows from Proposition 2(1)(i) that ĉi ∈ C̄i(p,B). Suppose that ĉi is
not a utility maximizer in C̄i(p,B). Then Proposition 2(1)(ii) implies that ĉi is
not a utility maximizer in Ci(π), which contradicts that ((ĉi)i∈I, π) is an Arrow-
Debreu equilibrium for E. Thus, ĉi is a utility maximizer in C̄i(p,B), and hence
((ĉi)i∈I, p,B) is an ASM equilibrium for E.

Proof of (1)(ii). Let ((ĉi)i∈I, p,B) be an ASM for E. First, p ∈ L∞
++ because

agents’ utility functions are strictly increasing. Define π = Λ̃Bp. Then π ∈ L∞
++

since Λ̃B ∈ L∞
++. Let i ∈ I. It suffices to show that ĉi is a utility maximizer

in Ci(π). It follows from Proposition 2(1)(ii) that ĉi ∈ Ci(π). Suppose that ĉi is
not a utility maximizer in Ci(π). Then Proposition 2(1)(i) implies that ĉi is not a
utility maximizer in C̄i(p,B). This is a contradiction, and therefore ĉi is a utility
maximizer in Ci(π). �

6. Proof of Proposition 2

Let B ∈ B̄ and i ∈ I. Note that Λ̃B, (Λ̃B)−1 ∈ L∞
++ for B ∈ B̄. First, it follows

from Bayes’ rule and integration by parts that

ẼB

[∫ T †

0

p̃s(c̄i
s − ci

s) ds

]
=

1
ΛB

0

E

[
ΛB

T †

∫ T †

0

p̃s(c̄i
s − ci

s) ds

]

= E

[∫ T †

0

ΛB
s p̃s(c̄i

s − ci
s) ds +

∫ T †

0

∫ s

0

p̃s′(c̄i
s′ − ci

s′) ds′ dΛB
s +

∫ T †

0

d

[
ΛB

s ,

∫ s

0

p̃s′(c̄i
s′ − ci

s′) ds′
] ]

= E

[∫ T †

0

πs(c̄i
s − ci

s) ds

]
.

(6.1)

Define C̃i(p,B) for every p ∈ L∞
++ by

C̃i(p,B) =
{
ci ∈ L∞

+ | ∃(ϑi
n)n∈N ∈

∏
n∈N

Θ(B̃) s.t.

Ṽ B
t (ϑi

n) =
∫ t

0

∫ T †

s

ϑi1
ns(dT ) dB̃T

s +
∫ t

0

p̃s(c̄i
s − ci

s) ds ∀(n, t) ∈ N × T

lim
n→∞ Ṽ B

T †(ϑi
n) = 0

}
.

Step 1 – C̄i(p,B) = C̃i(p,B) where p ∈ L∞
++: See Appendix D.

Step 2 – Proof of (1)(ii): See Appendix D.
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Step 3 – Proof of (1)(i): Let ci ∈ Ci(π) where π ∈ L∞
++. Then the budget

constraint equation holds:

E

[∫ T †

0

πs(c̄i
s − ci

s) ds

]
= 0. (6.2)

Define p = (Λ̃B)−1π. Then p ∈ L∞
++ because (Λ̃B)−1 ∈ L∞

++. It follows from (6.1)
and (6.2) that

ẼB

[∫ T †

0

p̃s(c̄i
s − ci

s) ds

]
= 0. (6.3)

Since ẼB
t

[∫ T †

0
p̃s(ci

s − c̄i
s) ds

]
is a P̃B-martingale, by Martingale Representation

Theorem (see Chapter IV Section 4 in Jacod and Shiryaev [27]) and (6.3), there
exists a unique predictable representation (vi, mi) ∈ (∏d

j=1 L2
) × L1(λt(dz) × dt)

satisfying

ẼB

[∫ T †

0

‖vi
s‖2 ds

]
< ∞, ẼB

[∫ T †

0

∫
Z

|mi
s(z)|2 λ̃B

t (dz) ds

]
< ∞,

and for every t ∈ T,

ẼB
t

[∫ T †

0

p̃s(ci
s − c̄i

s) ds

]

= ẼB

[∫ T †

0

p̃s(ci
s − c̄i

s) ds

]
+
∫ t

0

vi
s · dW̃B

s +
∫ t

0

∫
Z

mi
s(z) {ν(ds × dz) − λ̃B

s (dz) ds }

=
∫ t

0

vi
s · dW̃B

s +
∫ t

0

∫
Z

mi
s(z) {ν(ds × dz) − λ̃B

s (dz) ds }.
(6.4)

Since B ∈ B̄, by Proposition 1(1) and the proof Proposition 6.9 in Björk, Di Masi,
Kabanov, and Runggaldier [10], there exists a pair of sequences (vi

n, mi
n)n∈N ∈∏

n∈N

((∏d
j=1 L2

)× L1(λt(dz) × dt)
)

such that:

(1) For every (ω, t) ∈ Ω×T, (vi
nt(ω), mi

nt(ω, · )) converges to (vi
t(ω), mi

t(ω, · ))
in R

d × L2(Z,Z, λ̃B
t (ω, dz)) as n → ∞.

(2) For every n ∈ N, there exists ϑi1
n ∈ M(T) satisfying

Õ∗
t (ω)ϑi1

nt(ω) =

( ∫ T †

t
B̃T

t−(ω) vT
t (ω)ϑi1

nt(ω, dT )∫ T †

t
B̃T

t−(ω)mT
t (ω, · )ϑi1

nt(ω, dT )

)
=
(

vi
nt(ω)

mi
nt(ω, · )

)

for every (ω, t) ∈ Ω × T, and

∫ t

0

∫ T †

s

ϑi1
ns(dT ) dB̃T

s ∈ L∞. (6.5)
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Thus, it follows from (6.4) that for every t ∈ T,∫ t

0

∫ T †

s

ϑi1
ns(dT ) dB̃T

s

=
∫ t

0

∫ T †

s

B̃T
s vT

s ϑi1
ns(dT ) · dW̃B

s +
∫ t

0

∫ T †

s

∫
Z

B̃T
s mT

s (z)ϑi1
ns(dT ) {ν(ds × dz) − λ̃B

s (dz) ds }

=
∫ t

0

vi
ns · dW̃B

s +
∫ t

0

∫
Z

mi
ns(z) {ν(ds × dz) − λ̃B

s (dz) ds }

→
∫ t

0

vi
s · dW̃B

s +
∫ t

0

∫
Z

mi
s(z) {ν(ds × dz) − λ̃B

s (dz) ds }
(6.6)

in L2(Ω,Ft, P̃
B) as n → ∞. Define (ϑi0

n )n∈N by

ϑi0
nt = −

∫ T †

t

B̃T
t ϑi1

nt(dT )+
∫ t

0

∫ T †

s

ϑi1
ns(dT ) dB̃T

s +
∫ t

0

p̃s(c̄i
s−ci

s) ds ∀(n, t) ∈ N×T.

Substituting this into Ṽ B
t (ϑi

n) = ϑi0
nt +

∫ T †

t B̃T
t ϑi1

nt(dT ) yields

Ṽ B
t (ϑi

n) =
∫ t

0

∫ T †

s

ϑi1
ns(dT ) dB̃T

s +
∫ t

0

p̃s(c̄i
s − ci

s) ds ∀(n, t) ∈ N × T. (6.7)

Note that p̃ = p
B ∈ L∞ because B ≥ 1 µ-a.e. It follows from (6.5) and p̃, c̄i, ci ∈ L∞

that Ṽ B(ϑi
n) ∈ L∞. Hence, (6.7) implies that ϑi

n ∈ Θ(B̃). Finally, it follows from
(6.4), (6.6), and (6.7) that

lim
n→∞Ṽ B

T †(ϑi
n) = lim

n→∞

{∫ T †

0

∫ T †

s

ϑi1
ns(dT ) dB̃T

s +
∫ T †

0

p̃s(c̄i
s − ci

s) ds

}

= lim
n→∞

{∫ T †

0

vi
ns · dW̃B

s +
∫ T †

0

∫
Z

mi
ns(z) {ν(ds × dz) − λ̃B

s (dz) ds }
}

+
∫ T †

0

p̃s(c̄i
s − ci

s) ds

=
∫ T †

0

vi
s · dW̃B

s +
∫ T †

0

∫
Z

mi
s(z) {ν(ds × dz) − λ̃B

s (dz) ds } +
∫ T †

0

p̃s(c̄i
s − ci

s) ds

= ẼB
T †

[∫ T †

0

p̃s(ci
s − c̄i

s) ds

]
+
∫ T †

0

p̃s(c̄i
s − ci

s) ds = 0.

(6.8)

Equations (6.7) and (6.8) show ci ∈ C̃i(p,B), and therefore ci ∈ C̄i(p,B).

Appendix A. Marked Point Process

A double sequence (sn, Zn)n∈N is considered, where sn is the occurrence time of
an nth jump and Zn is a random variable taking its values on a measurable space
(Z,Z) at time sn. Define a random counting measure ν(dt × dz) by

ν([0, t] × A) =
∑
n∈N

1{sn≤t, Zn∈A} ∀(t, A) ∈ [0, T †] ×Z.

This counting measure ν(dt × dz) is called the Z-marked point process.
Let λ be such that

(1) For every (ω, t) ∈ Ω × (0, T †], the set function λt(ω, · ) is a finite Borel
measure on Z.

(2) For every A ∈ Z, the process λ(A) is P-measurable and satisfies λ(A) ∈ L1.
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The marked point process ν(dt × dz) is said to have the P -intensity kernel λt(dz)
if and only if the following equation

E

[∫ T †

0

Ys ν(ds × A)
]

= E

[∫ T †

0

Ysλs(A) ds

]
∀A ∈ Z

holds for any nonnegative P-measurable process Y , then it is said that the marked
point process ν(dt × dz) has the P -intensity kernel λt(dz).

Let ν(dt × dz) be a Z-marked point process with the P -intensity kernel λt(dz).
Let H be a P ⊗ Z-measurable function. It follows that:

(1) If the following integrability condition

E

[∫ T †

0

∫
Z

|Hs(z)|λs(z) ds

]
< ∞

holds, then the process
∫ t

0

∫
Z

Hs(z){ ν(ds×dz)−λs(dz) ds } is a P -martingale.
(2) If H ∈ L1(λt(dz)×dt), then the process

∫ t

0

∫
Z

Hs(z){ ν(ds×dz)−λs(dz) ds }
is a local P -martingale.

Proof. See p. 235 in Brémaud [13]. �

Appendix B. Ito’s Formula

Let X = (X1, ..., Xd)′ be a d-dimensional semimartingale, and g be a real-valued
C2 function on R

d. Then g(X) is a semimartingale of the form

g(Xt) = g(X0)+
d∑

i=1

∫ t

0

∂

∂xi
g(Xs−) dX i

s +
1
2

d∑
i=1

d∑
j=1

∫ t

0

∂2

∂xi∂xj
g(Xs−) d〈X ic, Xjc〉

+
∑

0≤s≤t

{
g(Xs) − g(Xs−) +

d∑
i=1

∂

∂xi
g(Xs−)∆X i

s

}

where X ic is the continuous part of X ic and 〈X ic, Xjc〉 is the quadratic covariation
of X ic and Xjc.

Appendix C. Girsanov’s Theorem

(1) Let v ∈∏d
j=1 L2 and m ∈ L1(λt(dz) × dt). Define a process Λ by

dΛt

Λt−
= −vt · dWt −

∫
Z

mt(z) { ν(dt × dz) − λt(dz) dt} ∀t ∈ [0, T †)

with Λ0 = 1, and suppose E [ΛT † ] = 1. Then there exists a probability
measure P̃ on (Ω,F , F) given by the Radon-Nikodym derivative

dP̃ = ΛT † dP

such that:
(i) The measure P̃ is equivalent to P .
(ii) The process given by

W̃t = Wt +
∫ t

0

vs ds ∀t ∈ T

is a P̃ -Wiener process.
(iii) The marked point process ν(dt× dz) has the P̃ -intensity kernel such

that

λ̃t(dz) = (1 − mt(z))λt(dz) ∀(t, z) ∈ T × Z.

(2) Every probability measure equivalent to P has the structure above.



14

Appendix D. Proofs of Steps 1 and 2 in Proof of Proposition 2

Step 1 – C̄i(p,B) = C̃i(p,B) where p ∈ L∞
++: First, let ci ∈ C̄i(p,B). Then

it follows that limn→∞ Ṽ B
T †(ϑi

n) = (Bt)−1 limn→∞ V B
T †(ϑi

n) = 0. Also, applying
integration by parts yields for every (n, t) ∈ N × T,

Ṽ B
t (ϑi

n) = Ṽ B
0 (ϑi

n) +
∫ t

0

B−1
s dV B

s (ϑi
n) +

∫ t

0

V B
s (ϑi) dB−1

s +
∫ t

0

d[V B
s (ϑn), B−1

s ]

=
∫ t

0

B−1
s

{
ϑi0

ns dBs +
∫ T †

s

ϑi1
ns(dT ) dBT

s + ps(c̄i
s − ci

s) ds

}

+
∫ t

0

{
ϑi0

nsBs +
∫ T †

s

BT
s ϑi1

ns(dT )
}

dB−1
s

=
∫ t

0

ϑi0
ns

{
B−1

s dBs + Bs dB−1
s

}

+
∫ t

0

∫ T †

s

ϑi1
ns(dT )

{
B−1

s dBT
s + BT

s dB−1
s

}
+
∫ t

0

p̃s(c̄i
s − ci

s) ds

=
∫ t

0

ϑi0
ns dB̃s +

∫ t

0

∫ T †

s

ϑi1
ns(dT ) dB̃T

s +
∫ t

0

p̃s(c̄i
s − ci

s) ds

=
∫ t

0

∫ T †

s

ϑi1
ns(dT ) dB̃T

s +
∫ t

0

p̃s(c̄i
s − ci

s) ds

(D.1)

where [X1, X2] is the optional quadratic covariation of X1 and X2. Therefore,
ci ∈ C̃i(p,B). Next, let ci ∈ C̃i(p,B). Then in the same way, ci ∈ C̄i(p,B) is
obtained.

Step 2 – Proof of (1)(ii): Let ci ∈ C̄i(p,B) where (p,B) ∈ L∞
++ × B̄. First,

ci ∈ C̃i(p,B) follows from Step 1. Define π = Λ̃Bp. Then π ∈ L∞
++ since Λ̃B ∈ L∞

++.
Also it follows from ci ∈ C̃i(p,B) that

E

[∫ T †

0

p̃s(c̄i
s − ci

s) ds

]
= ẼB

[
lim

n→∞ Ṽ B
T †(ϑi

n) − lim
n→∞

∫ T †

0

∫ T †

s

ϑi1
ns(dT ) dB̃T

s

]
= 0.

(D.2)

Combining (D.2) with (6.1) yields E [
∫ T †

0 πs(c̄i
s − ci

s) ds] = 0, and therefore ci ∈
Ci(π).
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