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Abstract This paper proposes a graph-based algorithm for computing Afriat’s Critical

Efficiency Index (ACEI), which measures the minimum relaxation required to rationalize a

dataset under the Generalized Axiom of Revealed Preference (GARP). The method itera-

tively removes critical arcs within strongly connected components (SCCs), ordered by their

revealed efficiency ratios. The final threshold produced by this deletion process is equal to the

ACEI, providing a structure-aware alternative that avoids global enumeration of efficiency

thresholds and yields an interpretable decomposition of revealed-preference violations. Fur-

thermore, by accumulating the violation lengths of the removed arcs, the algorithm provides

a tractable approximation to Dean and Martin’s Minimum Cost Index (MCI), capturing

both the threshold level of inefficiency and the cumulative cost of necessary corrections.

Compared with existing threshold-based and global-optimization approaches, the proposed

algorithm integrates computation and interpretation, offering a practical tool for evaluating

and visualizing inconsistency in empirical consumption data.

Keywords: Revealed preference, Goodness-of-fit measures, Strongly connected components

1 Introduction

Afriat’s theorem [1] provides necessary and sufficient conditions under which observed con-

sumption behavior can be rationalized by a utility function. However, in the binary framework

assumed by this theorem, even a slight violation of the Generalized Axiom of Revealed Prefer-

ence (GARP) leads to the entire dataset being classified as irrational. To overcome such a strict

dichotomy, researchers have proposed various goodness-of-fit indices that quantitatively assess

the degree of deviation from rationality. Among them, Afriat’s Critical Efficiency Index (ACEI),

introduced by Afriat [2], measures the minimal uniform reduction in revealed expenditures re-

quired for the dataset to satisfy GARP. In addition, the Minimum Cost Index (MCI) proposed

by Dean and Martin [3] quantifies GARP violations from a cost-removal perspective: it mea-

sures the minimal total expenditure that must be removed to eliminate all revealed preference

violations.

In recent years, both the theoretical foundations and computational properties of such indices

have been extensively studied. Smeulders, Crama, and Spieksma [14] survey the computational
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development of ACEI, ranging from Varian’s early approximation methods to the first exact

polynomial-time algorithm. Dziewulski, Lanier, and Quah [4] further clarify that rationaliz-

ability conditions such as GARP are fundamentally characterized by the absence of cycles in

the revealed preference graph. Moreover, Lanier and Quah [8] propose a conceptual framework

based on three dimensions—continuity, accuracy, and concreteness—and demonstrate that no

index can satisfy all three simultaneously. Against this background, and building on the inter-

pretation of the CCEI as approximate cost-rationalizability [10], we set the stage for a structural,

graph-based approach to measuring near-rationality.

Alongside these developments, recent studies have drawn attention to the structural role of

strongly connected components (SCCs) in revealed preference graphs. Fujishige and Yang [7]

use SCC decomposition to simplify GARP testing in the context of discrete rationalizabil-

ity. Building on this, Shiozawa [12] proposes a unified framework that reformulates various

rationalizability conditions—including GARP, homothetic, and quasi-linear preferences—as in-

stances of the shortest path problem (SPP) and its generalization, the shortest path problem

with weight adjustment (SPPWA). He also introduces the Strongly Connected Component Index

(SCCI), a structurally motivated index based on internal violations within SCCs. More recently,

Naitoh [9] proposes indices based on the lengths of violating arcs within SCCs, contributing to

a more structural understanding of rationality violations. These structural insights motivate

our contribution: we develop an SCC-based, graph-theoretic algorithm that identifies ACEI

without threshold search, visualizes the structure of revealed preference violations, and yields

an efficiently computable approximation to MCI.

The remainder of this paper is structured as follows. Section 2 introduces the revealed

preference graph and reformulates GARP in graph-theoretic terms. Section 3 builds on the

concept of e-GARP to define Afriat’s Critical Efficiency Index (ACEI) as the minimal efficiency

level required to eliminate all cycles in the graph. Section 4 presents a graph-based algorithm

for computing ACEI and proves its correctness. Section 5 introduces a new index based on the

accumulated cost of violations, and compares it with the Minimum Cost Index (MCI) proposed

in previous studies.

2 Data, notation, and graph-theoretic preliminaries

We introduce some notation used throughout the paper. There are n different types of goods

in the market. The consumer has a budget b for consumption and a utility function U : Rn
+ →

R. We consider a market analyst observing a finite dataset D = {(pt,xt)}Tt=1, where pt =

(pt1, . . . , p
t
n) ∈ Rn

++ is a positive price vector, and xt = (xt1, . . . , x
t
n) ∈ Rn

+\{0} is the consumer’s

demand bundle observed at time t, given the available budget bt ∈ R+. The inner product

pt·xt =
n∑

i=1

ptix
t
i represents the total expenditure at time t, which we also refer to as the (revealed)

cost of bundle xt under prices pt. We assume pt · xt = bt. The dataset D is rationalized by a

utility function U in the sense that for all t ≤ T , xt maximizes U over {x |pt ·x ≤ pt ·xt}. The
basic question raised by Afriat is whether the dataset is rationalized by a locally non-satiated

utility function U .
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A dataset D satisfies WARP if and only if, for each pair of distinct bundles xi, xj , i, j ≤ T

with pi ·xi ≥ pi ·xj , it is not the case that pj ·xj ≥ pj ·xi. We also say that the consumer’s behav-

ior satisfies Generalized Axiom of Revealed Preference (GARP) if (pt1 ,xt1), (pt2 ,xt2), . . . , (ptm ,xtm)

satisfying ptk · xtk ≥ ptk · xtk+1 (k = 1, . . . ,m − 1) for all t1, . . . , tm ≤ T , we have ptm · xt1 ≥
ptm ·xtm . A utility function U is said to rationalize the observed dataset D if U(xt) ≥ U(x) for

all x such that pt · xt ≥ pt · x.

Theorem 2.1 (Afriat’s Theorem [1], [18]): The following four statements are equivalent:

(a) The dataset D can be rationalized by a locally non-satiated utility function U .

(b) The dataset D satisfies GARP.

(c) There is a positive solution ϕ, λ to the set of linear inequalities λj ≤ ϕi + λip
i · (xj −xi) for

all i, j.

(d) The dataset D can be rationalized by a continuous, concave, strictly monotone increasing

utility function U . 2

Let V and A be finite sets. A directed graph G = (V,A) consists of a set V of vertices and

a set A of arcs, whose elements are ordered pairs of distinct vertices. Throughout this paper,

all graphs are assumed to be directed unless otherwise stated. If a ∈ A, i, j ∈ V , and a = (i, j),

then we say that a joins i to j. We also call i the tail of a and j the head of a. A path in

G = (V,A) is a sequence P = (i1, . . . , iℓ) of distinct vertices ik (k = 1, . . . , ℓ) with ℓ ≥ 2, such

that (ik, ik+1) ∈ A (k = 1, . . . , ℓ − 1). The end vertices of this path are i1 and iℓ, and the path

is said to be an (i1, iℓ)-path. If P is an (i1, iℓ)-path in G = (V,A) and a ∈ A is an arc that joins

iℓ to i1, then C = (i1, . . . , iℓ, i1) is called a cycle.

A graph G′ = (W,B) is called a subgraph of G = (V,A) if W ⊆ V and B ⊆ A. For a vertex

subset W ⊆ V , the subgraph G[W ] of G whose vertex set is W and whose arc set consists of

the arcs of G joining vertices of W is called the subgraph of G induced by W . We denote by

G − a the graph obtained from G = (V,A) by deleting the arc a ∈ A. Furthermore, if B ⊆ A,

we denote by G − B the graph obtained by deleting the arcs in B. A (sub)graph H is said

to be strongly connected if for every two vertices i, j in the graph H there exists a path in H

from i to j. A maximal strongly connected subgraph of a graph G = (V,A) is called a strongly

connected component of the graph G. G is decomposed into its strongly connected components

Hk = (Vk, Ak) (k ∈ K) where {Vk | k ∈ K} is a partition of V . An algorithm by Tarjan ([16])

finds a partition in linear time, O(|V |+ |A|).
To evaluate revealed preferences, we consider the matrix of expenditure differences between

observed bundles.

Definition 2.2 (Data Matrix): Given a dataset D = {(pt,xt)}Tt=1, the data matrix DT =

[dij ] ∈ RT×T is defined by

dij := pi · (xj − xi).

Here, dij represents the revealed cost difference of bundle xj relative to xi, evaluated under price

vector pi.

This matrix forms the basis for a graph-theoretic representation of revealed preference rela-

tions.
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Definition 2.3 (Difference-based Revealed Preference Graph): Let DT = [dij ] be the

data matrix defined above. We define the difference-based revealed preference graph G≤0
D =

(VT , A
≤0) by:

• VT = {1, 2, . . . , T},

• A≤0 = {(i, j) ∈ VT × VT | i ̸= j, dij ≤ 0}.

Each directed arc (i, j) ∈ A≤0 is assigned the length dij.

We say that bundle xi is revealed to be preferred to xj in the difference-based sense if (i, j) ∈
A≤0. A cycle in a directed graph is called a negative-length cycle if the total length, defined as

the sum of the arc lengths along the cycle, is strictly negative.

Example 2.4: Let t = 1, . . . , 6. Suppose that the dataset D =
{
(pt,xt)

}6

t=1
is given by

{((3, 5, 5), (26, 25, 29)), ((4, 5, 4), (21, 34, 24)), ((4, 4, 5), (31, 28, 22)), ((4, 5, 5), (29, 25, 24)),
((3, 5, 6), (26, 27, 24)), ((4, 5, 6), (30, 27, 24))}

and that the consumer has a budget of b1 = 348, b2 = 350, b3 = 346, b4 = 361, b5 = 357,

b6 = 399,

3 5 5

4 5 4

4 4 5

4 5 5

3 5 6

4 5 6


 26 21 31 29 26 30

25 34 28 25 27 27

29 24 22 24 24 24

 =



348 353 343 332 333 345

345 350 352 337 335 351

349 340 346 336 332 348

374 374 374 361 359 375

377 377 365 356 357 369

403 398 396 385 383 399


.

Hence corresponding data matrix DT is

DT =



0 5 −5 −16 −15 −3
−5 0 2 −13 −15 1

3 −6 0 −10 −14 2

13 13 13 0 −2 14

20 20 8 −1 0 12

4 −1 −3 −14 −16 0


.

Based on the above data matrix DT , we construct the subgraph G≤0
D , which consists of all arcs

with non-positive lengths. The resulting graph is illustrated below.
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G≤0
D contains two strongly connected components. 2

Proposition 2.5 ([7]): The following three statements are equivalent:

(a) The data matrix DT satisfies GARP.

(b) Every cycle C in the graph G≤0
D satisfies pi · (xj − xi) = 0 for all (i, j) ∈ C.

(c) Every strongly connected component Hk = (Vk, Ak) of the graph G≤0
D satisfies pi ·(xj−xi) = 0

for all (i, j) ∈ Ak. 2

GARP is equivalent to what Afriat called cyclical consistency (Proposition 2.2 (b)). The cyclic

consistency plays a fundamental role in the various literature on revealed preference (Dziewulski,

Lanier, and Quah [4]). Algorithms for fast verification of GARP have been developed; see, e.g.,

Nobibon, Smeulders, and Spieksma [15].

While the difference-based graph structure derived from DT is central to the verification of

GARP, it may not be the most suitable representation for evaluating the degree of inconsistency

in a scale-invariant manner. To address this, we consider a ratio-based representation of the

same dataset.

Definition 2.6 (Ratio-based Cost Matrix): Given a dataset D = {(pt,xt)}Tt=1, we define

the ratio-based cost matrix RT = [rij ] of size T × T by

rij :=
pi · xj

pi · xi
, for 1 ≤ i, j ≤ T.

Note that rii = 1 for all i. 2

Each entry rij in the matrix represents the relative cost of choosing bundle xj instead of xi,

both evaluated under the price vector pi. This matrix provides the foundation for constructing

the graph RG≤e
D , whose acyclicity is related to e-GARP, as will be shown in Proposition 3.4.

This interpretation enables us to define a directed graph that captures efficiency-based re-

vealed preference relations.

Graph-based representations of revealed preference relations, particularly those based on cost

ratios, have been discussed in several studies such as [14], and further developed in [8]. Following

a similar idea, we define arc weights using relative expenditure ratios aiming to evaluate revealed

preferences in a scale-invariant manner. This leads to the following graph structure:
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Definition 2.7 (Ratio-based Revealed Preference Graph): Let RT = [rij ] be the ratio-

based cost matrix defined in Definition 2.6. For a given efficiency level e ∈ [0, 1], we define the

directed graph RG≤e
D = (VT , A

≤e) by:

• VT = {1, 2, . . . , T}

• A≤e = {(i, j) ∈ VT × VT | i ̸= j, rij ≤ e}

We say that bundle xi is revealed to be preferred to xj at efficiency level e if there is a directed

arc from i to j in RG≤e
D . 2

This graph captures efficiency-adjusted revealed preference relations: An arc (i, j) indicates that

bundle xi is revealed to be preferred to xj , up to an efficiency level e. The following example

illustrates how the ratio-based cost matrix RT and the corresponding revealed preference graph

RG≤e
D are constructed in practice. To facilitate comparison, we use the same dataset as in

Example 2.4.

Example 2.8: The ratio-based cost matrix RT corresponding to Example 2.4 is given by:

RT =



1.000 1.014 0.986 0.954 0.957 0.991

0.986 1.000 1.006 0.963 0.957 1.003

1.009 0.983 1.000 0.971 0.960 1.006

1.036 1.036 1.036 1.000 0.994 1.039

1.056 1.056 1.022 0.997 1.000 1.034

1.010 0.997 0.992 0.965 0.960 1.000


.

Based on the above ratio-based cost matrix RT , we construct the subgraph RG≤1
D , consisting of

all directed arcs (i, j) such that rij ≤ 1. The resulting graph is shown below.
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Each entry rij =
pi·xj

pi·xi
represents the relative expenditure ratio of bundle xj with respect to xi,

evaluated under the price vector pi. All entries are rounded to three decimal places. 2

Each arc represents a revealed preference at efficiency level e. If a negative-length cycle exists

in RG≤e
D then e-GARP is violated. The maximum value of e for which RG≤e

D contains no such
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cycle corresponds to Afriat’s Critical Efficiency Index (ACEI). The scalar index considered in this

paper, ACEI, originates from Afriat’s extension of his earlier work [2]. While the foundational

conditions for rationalizability were established in his 1967 paper [1], the concept of a scalar

efficiency index was introduced in his 1973 formulation. This index was later studied under the

name“ Afriat’s efficiency index”by Varian [17] and Smeulders et al. [13]. For clarity, we will

use the term ACEI throughout this paper.

3 Afriat’s Critical Efficiency Index and e-GARP

For a given dataset, the revealed preference tests yield a binary outcome: rationalizable or not.

However, we are often interested in the degree of violation of rationality. A variety of goodness-

of-fit measures for rationality have been proposed. In this section, we focus on Afriat’s Critical

Efficiency Index (ACEI) and its related concept, Generalized Axiom of Revealed Preference at

efficiency level e (e-GARP). Other measures, such as MCI, will be introduced in a later section.

Afriat [2] introduced a partial efficiency index by relaxing the strict requirement of revealed

preference. For a given efficiency level e with 0 ≤ e ≤ 1, we say that bundle xt is directly

revealed preferred to x if ept · xt ≥ pt · x. This idea naturally extends to sequences of such

relations, leading to a relaxed version of GARP, called e-GARP, which allows for a uniform

degree of inefficiency across all comparisons. We formally define this condition below.

Definition 3.1 (e-GARP): Let e ∈ [0, 1] be a given efficiency level. A finite dataset D =

{(pt,xt)}Tt=1 is said to satisfy the Generalized Axiom of Revealed Preference at efficiency level

e (e-GARP) if for any finite sequence of observations

(pt1 ,xt1), (pt2 ,xt2), . . . , (ptm ,xtm)

satisfying

eptk · xtk ≥ ptk · xtk+1 (k = 1, . . . ,m− 1),

we have

ptm · xt1 ≥ eptm · xtm .

This condition requires that no strictly inefficient cycle exists when evaluating expenditures at

a uniform efficiency level e. If e = 1, then the condition coincides with the standard GARP,

and if e = 0, then the condition is trivially satisfied. Hence there is some critical level e∗ where

the data just satisfy e-GARP. We now define the largest such efficiency level at which e-GARP

holds, known as Afriat’s Critical Efficiency Index (ACEI).

Definition 3.2: (Afriat’s Critical Efficiency Index)

For a dataset D = {(pt,xt)}Tt=1, Afriat’s Critical Efficiency Index (ACEI) is defined as follows:

ACEI(D) = sup
0≤e≤1

{
e
∣∣∣D satisfies e−GARP

}
.
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To illustrate the implications of e-GARP and ACEI, we visualize the revealed preference

graph using ratio-based weights defined as

rij :=
pi · xj

pi · xi
,

Example 3.3: Consider the dataset used in Example 2.4 and Example 2.8.
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The graph RG≤1
D contains two strongly connected components (V1 = {1, 2, 3, 6}, V2 = {4, 5}),

which implies that it includes at least two directed cycles. This shows that the ACEI is strictly

less than 1.

If e = 345
350 , then RG≤e

D contains the arc (2,1) and the cycle (1, 3, 2, 1).
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If e < 345
350 , then RG≤e

D is acyclic. Hence ACEI(D) =
345

350
≈ 0.986 2

We now explore the relationship between e-GARP and the structural properties of the ratio-

based revealed preference graph RG≤e
D . The following proposition shows that e-GARP imposes

equality on the efficiency ratios along any directed cycle in the graph.

Proposition 3.4: Let e ∈ [0, 1]. If a dataset D = {(pt,xt)}Tt=1 satisfies e-GARP, then every

directed cycle C in the graph RG≤e
D consists only of arcs (i, j) ∈ C for which:

pi · xj = epi · xi.
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Proof: Assume that D satisfies e-GARP. Let C be a directed cycle:

i1 → i2 → · · · → iℓ → i1.

Since each arc (ik, ik+1) ∈ C (with iℓ+1 := i1) belongs to RG≤e
D , we have:

pik · xik+1 ≤ epik · xik for all k = 1, . . . , ℓ.

Meanwhile, applying the definition of e-GARP to the time series i1 → i2 → · · · → iℓ, we obtain:

piℓ · xi1 ≥ epiℓ · xiℓ .

Combining these inequalities and e ∈ [0, 1] gives:

piℓ · xi1 ≤ epiℓ · xiℓ ≤ piℓ · xi1 ,

hence equality must hold throughout:

piℓ · xi1 = epiℓ · xiℓ .

By cyclically shifting the cycle and applying the same reasoning, we conclude that for every arc

(i, j) ∈ C,

pi · xj = epi · xi.

2

Proposition 3.4 establishes only the forward direction. As noted in Lanier and Quah [8], while

e-GARP always implies e-acyclicity, the converse implication does not hold in general. Nonethe-

less, the Afriat’s Critical Efficiency Index (ACEI) can be characterized using the acyclicity

condition, as shown below.

Definition 3.5 (Ratio-based Revealed Preference Graph 2): Let RT = [rij ] be the ratio-

based cost matrix defined in Definition 2.6. For a given efficiency level e ∈ [0, 1], we define the

directed graph RG<e
D = (VT , A

<e) by:

• VT = {1, 2, . . . , T}

• A<e = {(i, j) ∈ VT × VT | i ̸= j, rij < e}

We say that bundle xi is revealed to be preferred to xj at efficiency level e if there is a directed

arc from i to j in RG<e
D . 2

We say that D is e-acyclic if the directed graph RG<e
D = (VT , A

<e) contains no cycles, where

A<e := {(i, j) ∈ VT × VT | i ̸= j, pi · xj < epi · xi}.
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Proposition 3.6 ([8]): Let D = {(pt,xt)}Tt=1 be a dataset and let RT = [rij ] be the ratio-based

cost matrix defined in Definition 2.6. We denote by

R := {rij ∈ [0, 1] | i ̸= j}

the set of all off-diagonal entries of RT , corresponding to pairwise cost ratios. Then

ACEI(D) = max
{
e ∈ R | RG<e

D is acyclic
}
= min

{
e ∈ R | RG≤e

D contains a directed cycle
}
.

Equivalently,

ACEI(D) = min
C

max
(i,j)∈C

rij ,

where the minimum is taken over all directed cycles C in RG≤1
D .

This result follows the structural perspective of Proposition 12 of Lanier and Quah [8], which

characterizes the critical efficiency as the largest e for which the strict graph RG<e
D is acyclic.

In a finite dataset, the emergence of cycles occurs only at finitely many ratio values e ∈ R,

so the formulation based on the supremum of all acyclic thresholds and the one based on the

minimum value at which a cycle first appears are equivalent. The bottleneck characterization

minC max(i,j)∈C rij therefore provides a constructive way to compute or bound the ACEI.

4 Critical components

In this section, we propose the concept of critical components— arcs within strongly connected

components that are iteratively removed to render the graph acyclic, with the aim of keeping

the total violation length as small as possible. The formal connection to Dean and Martin’s

Minimum Cost Index (MCI) is discussed in Section 5. We begin by illustrating the procedure

through examples.

We denote by ASCC(G) the set of arcs in the strongly connected components of a directed

graph G. We first decompose the graph RG≤1
D into its strongly connected components. If all

arcs (i, j) ∈ ASCC(RG≤1
D ) satisfy

pi · xj

pi · xi
= 1 (equivalently, pi · (xj − xi) = 0), then GARP is

satisfied. Otherwise, there exists at least one arc with
pi · xj

pi · xi
< 1, indicating a violation.

Definition 4.1 (Critical Component): Let G = (V,A) be a directed graph representing a

ratio-based revealed preference structure. An arc (i, j) ∈ A is called a critical component if it

satisfies the following conditions:

1. The arc (i, j) is a member of the strongly connected components, i.e., (i, j) ∈ ASCC(G).

2. Among all such arcs, it has the maximum relative cost ratio:

pi · xj

pi · xi
.
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3. If multiple arcs attain the maximum ratio, the tie is resolved by:

• Selecting the arc with the largest value of pi · (xj − xi);

• If still tied, the arc with the smallest tail index i;

• If still tied, the arc with the smallest head index j.

The selected arc is referred to as a critical component and is denoted an = (in, jn) at the n-th

iteration. 2

The following example demonstrates how a critical component is selected according to the

above definition.

Example 4.2: Consider the dataset used in Example 2.8,
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The strongly connected components of RG≤1
D contain the following arcs:

ASCC(RG≤1
D ) = {(1, 3), (1, 6), (2, 1), (3, 2), (4, 5), (5, 4), (6, 2), (6, 3)}.

Among these arcs, the highest ratio is achieved by (6, 2):

p6 · x2

p6 · x6
=

398

399
≈ 0.9975.
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Therefore, (6, 2) is selected as the first critical component, i.e., a1 = (6, 2). 2

Next, decompose RG≤1
D − a1 into strongly connected components. If RG≤1

D − a1 satisfies

GARP, then a1 = (i1, j1) is the unique critical component of RG≤1
D , and the algorithm termi-

nates. Otherwise, choose one arc a2 = (i2, j2) ∈ ASCC(RG≤1
D − a1) based on the same rules as

when we chose a1. Repeat these steps until RG≤1
D −

⋃n
h=1{ah} satisfies GARP. Then critical

components of RG≤1
D are {a1, . . . , an}.

Hereafter, we assume the nontrivial case that RG≤1
D contains at least one arc with rij <

1 inside a strongly connected component; equivalently, the data matrix DT has at least one

negative entry dij < 0 with (i, j) ∈ ASCC(G
≤0
D ). Otherwise, Step 1 applies and the algorithm

terminates with emax = 1.

Algorithm: Critical Component Selection Let G := RG≤1
D be the initial ratio-based

revealed preference graph.

1. Decompose G into its strongly connected components. If all arcs (i, j) ∈ ASCC(G) satisfy
pi · xj

pi · xi
= 1, set emax := 1 and terminate.

2. Initialize: n := 1; L := 0 (total accumulated violation length); emax := 1

3. Repeat the following steps (a)–(h):

(a) Select an arc an = (in, jn) ∈ ASCC(G) with the largest ratio

wn :=
pin · xjn

pin · xin

(possibly wn = emax; initially emax = 1) and apply the tie-breaking rules.

(b) Update the current threshold: emax := wn.

(c) Define the violation length:

ℓn := pin · (xjn − xin).

(d) Update graph: G := G− an.

(e) Accumulate the cost: L := L+ |ℓn|

(f) Recompute strongly connected components.

(g) Termination test: If every SCC of G contains only arcs with ratio rij = emax (vacu-

ously true if ASCC(G) = ∅), terminate. Equivalently (finite setting), terminate when

RG<emax
D is acyclic.

(h) Otherwise, set n← n+ 1.

Proposition 4.3: (e-GARP and Strongly Connected Components)

Let D = {(pt, xt)}Tt=1 be a finite dataset, and let RG≤e
D = (VT , A

≤e) denote the e-weighted
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ratio-based revealed preference graph defined by the arc set

A≤e := {(i, j) ∈ VT × VT | rij :=
pi · xj

pi · xi
≤ e}.

(i) If the dataset D satisfies e-GARP, then every strongly connected component of RG≤e
D contains

only arcs (i, j) with rij = e.

(ii) Conversely, if every strongly connected component of RG≤e
D contains only arcs with rij = e,

then the strict-threshold graph RG<e
D is acyclic.

Proof: (i) follows from Proposition 3.4 (equality on any directed cycle). (ii) If RG<e
D had a

directed cycle, the arcs on that cycle (all with rij < e) would form an SCC of RG≤e
D containing

rij < e, contradicting the premise. 2

Remark. Note that if a strongly connected component consists of a single node, then the

condition is vacuously satisfied, since there are no arcs in the component.

Acyclicity of RG<e
D does not imply that D satisfies e-GARP in full generality (Lanier &

Quah, 2024, Prop. 12). We therefore compute ACEI(D) via the acyclicity characterization in

Proposition 3.5. The critical component selection algorithm removes arcs in descending order

of their revealed efficiency ratio rij , until the resulting graph satisfies e-GARP. Let emax denote

the final threshold value at which the algorithm terminates. The following theorem guarantees

that this value corresponds exactly to Afriat’s Critical Efficiency Index.

Theorem 4.4: Let emax be the final efficiency level recorded by the algorithm. Then emax =

ACEI(D).

Proof: The algorithm iteratively removes arcs in descending order of their ratio rij , retaining

only those with rij ≤ emax. By construction, after the final deletion, every strongly connected

component of the current graph G consists only of arcs with rij = emax (vacuously true if

ASCC(G) = ∅). By Proposition 4.3(ii), the strict-threshold graph RG<emax
D is acyclic.

Since the candidate ratios form a finite set, this means that RG≤e
D is acyclic for all e < emax,

and any cycle in RG≤emax

D (if present) must consist solely of arcs with rij = emax.

Hence emax is the largest threshold for which acyclicity holds in the sense of Proposition 3.5.

Therefore we conclude that

ACEI(D) = max{ e ∈ R : RG<e
D is acyclic } = emax.

2

To illustrate how the critical component selection algorithm works in practice and how the

value emax is derived step by step, we present the following example based on the same dataset

used earlier.

Example 4.5: Continuing from Example 4.2, we consider again the dataset used in Exam-

ple 2.8. The following table lists the arcs in the strongly connected components of RG≤1
D , along

13



with their efficiency ratios and violation lengths.

arc (i, j) (6, 2) (5, 4) (4, 5) (6, 3) (1, 6) (2, 1) (1, 3) · · · (1, 4)

pi · xj 398 356 359 396 345 345 343 · · · 332

pi · xi 399 357 361 399 348 350 348 · · · 348

ratio 0.9975 0.9972 0.9945 0.9925 0.9914 0.9857 0.9856 · · · 0.9540

length −1 −1 −2 −3 −3 −5 −5 · · · −16

According to the critical component selection algorithm, we iteratively remove the arc with the

largest ratio among the current set of arcs contained in strongly connected components. As

mentioned in Example 4.2, a1 = (6, 2). After removal,

ASCC(RG≤1
D )− {a1} = {(1, 3), (1, 6), (2, 1), (3, 2), (4, 5), (5, 4), (6, 3)}.

 

0.986 
1 

3 

2 

5 

4 

6 
0.986 

0.991 

0.983 

0.963 

0.954 0.957 

0.957 

0.971 

0.960 

0.960 
0.965 

0.994 

0.992 

0.997 

Among these arcs, the arc (5, 4) has the highest ratio:
p5 · x4

p5 · x5
= 356

357 ≈ 0.9972. Set a2 = (5, 4).

ASCC(RG≤1
D )− {a1, a2} = {(1, 3), (1, 6), (2, 1), (3, 2), (6, 3)}.

 

0.986 
1 

3 

2 

5 

4 

6 
0.986 

0.991 

0.983 

0.963 

0.954 0.957 

0.957 

0.971 

0.960 

0.960 
0.965 

0.994 

0.992 

Among these arcs, the arc (6, 3) has the highest ratio. Hence a3 = (6, 3).
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After removing (6,2) and (6,3), node 6 becomes disconnected from any cycle.

ASCC(RG≤1
D )− {a1, a2, a3} = {(1, 3), (2, 1), (3, 2)}.

 

0.986 
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6 
0.986 

0.991 

0.983 

0.963 

0.954 0.957 

0.957 

0.971 

0.960 

0.960 
0.965 

0.994 

As a result, the arc (1,6) is no longer part of any strongly connected component. Among these

arcs, the arc (2, 1) has the highest ratio. Hence a4 = (2, 1).
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4 

6 
0.986 

0.991 

0.983 

0.963 

0.954 0.957 

0.957 

0.971 

0.960 

0.960 
0.965 

0.994 

Since ASCC(RG≤1
D ) − {a1, a2, a3, a4} = ∅, the graph RG<emax

D is acyclic. Hence, by Proposi-

tion 3.6, emax = r21 = 345/350 ≈ 0.9857. The total violation length is L = 10, which will be

used in the next section. 2

5 Goodness-of-fit indices and approximation measures

Dean and Martin [3] proposed a goodness-of-fit measure based on Afriat’s cyclical consistency.
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Definition 5.1: (Dean and Martin’s minimum cost index)

For a dataset D = {(pt,xt) | t = 1, . . . , T} the minimum cost index (MCI) is defined as follows:

MCI(D) = min
A′⊆A≤0


SA′

T∑
t=1

pt · xt

∣∣∣∣∣∣∣∣∣∣∣
G′ = (VT , A

≤0 \A′) contains no directed cycle


where SA′ =

∑
(i,j)∈A′

pi · (xi − xj) and A≤0 is the arc set of G≤0
D .

That is, MCI measures the minimum total cost of removing arcs that violate GARP in order to

obtain an acyclic graph.

To illustrate the implications of MCI, we visualize the revealed preference graph using arc

lengths defined as pi · (xj − xi), instead of the ratio-based weights.

Example 5.2: Consider the dataset used in Example 2.4. If we delete {(5, 4), (2, 1)}, then G≤0

does not contain a cycle, since every directed cycle in G≤0 uses at least one of these arcs.
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Hence MCI(D) =
1 + 5

348 + 350 + 346 + 361 + 357 + 399
=

6

2161
≈ 0.00278. 2

MCI can be considered to effectively use information on the length of arcs, that need to be

modified minimally to satisfy GARP. However, it is known that computing MCI is NP-hard

([11]). In this section, we introduce a goodness-of-fit measure for GARP that uses the violation

lengths of the arcs selected as critical components. Denote by L the sum of the absolute violation

lengths of these arcs. We focus on L as the numerator. This value L can be obtained using the

algorithm in the previous section. The index we propose uses the same denominator as MCI.

Definition 5.3: For a dataset D = {(pt,xt) | t = 1, . . . , T}, Index(D) is defined as follows:

Index(D) =
L∑

t∈T
pt · xt
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where L is the total violation length, defined as the sum of the absolute violation lengths of the

arcs selected as critical components.

Index(D) = 0 iff G≤0
D is acyclic (i.e., GARP holds). The index is scale-invariant in prices: scaling

all pt by α > 0 scales both L and the denominator by α.

Example 5.4: Consider the dataset used in Example 2.4. The arcs removed as critical compo-

nents are {(6, 2), (5, 4), (6, 3), (2, 1)}.
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Index(D) =
1 + 1 + 3 + 5

2161
=

10

2161
≈ 0.00463. 2

While MCI directly seeks a minimum-cost subset of arcs whose removal restores GARP, it is

known to be NP-hard to compute. On the other hand, Index(D) offers a tractable, approximation-

based alternative: it measures the total violation cost incurred by removing the most critical

arcs, as determined by their revealed efficiency ratios. This makes Index particularly useful in

settings where computational efficiency is a priority, even if optimality is not guaranteed.

6 Conclusion

This paper proposed a graph-based algorithm for computing Afriat’s Critical Efficiency In-

dex (ACEI), in which arcs with high revealed efficiency ratios are incrementally removed from

strongly connected components of the revealed preference graph. This method yields the critical

efficiency threshold directly and provides an interpretable decomposition of revealed preference

violations. The algorithm identifies a sequence of critical components—arcs within strongly con-

nected components containing at least one arc with a revealed preference violation—and records

the maximum expenditure ratio among these arcs. This maximum ratio reflects the most severe

local violation and precisely corresponds to the ACEI.

Unlike existing approaches such as Varian’s approximation method [17] and the exact algo-

rithm by Smeulders et al. [13], which evaluate rationalizability by globally enumerating efficiency

thresholds, our approach focuses on the internal structure of strongly connected components to

avoid such exhaustive enumeration. Moreover, whereas Polisson and Quah [10] establish a theo-

retical equivalence between e-GARP and cost-rationalizability, our method attempts to identify

the specific structural violations contributing to irrationality.
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In this respect, our approach bridges the gap between computational efficiency and structural

interpretability, and may serve as a practical tool for both evaluating and visualizing the degree

of inconsistency in empirical consumption data. Furthermore, by utilizing the violation lengths

of arcs selected as critical components, our method is expected to serve as a natural approxima-

tion to the Minimum Cost Index (MCI). While the MCI requires solving a global-optimization

problem, our approach instead uses the total violation length L accumulated during the crit-

ical component deletion process as a tractable surrogate. This algorithm not only identifies

the threshold level of inefficiency (ACEI) but also captures the cumulative cost of corrections

required to restore rationalizability.

Acknowledgments

The author is deeply grateful to Satoru Fujishige for introducing this research topic and for many

illuminating discussions on the graph-theoretic aspects of revealed preference, especially the role

of strongly connected components. Any remaining errors are solely the author’s responsibility.

References

[1] S. N. Afriat: The Construction of Utility Function from Expenditure Data. International

Economic Review 8(1) (1967) 67-77.

[2] S. N. Afriat: On a system of inequalities in demand analysis: An extension of the Classical

Method. International Economic Review 14 (2) (1973) 460-472.

[3] M. Dean and D. Martin: Measuring Rationality with the Minimum Cost of Revealed Pref-

erence Violations. Review of Economics and Statistics 98(3) (2016) 524-534.

[4] P Dziewulski, J. Lanier, and J. K. H. Quah: Revealed preference and revealed preference

cycles: A survey. Journal of Mathematical Economics 113 (2024) 1-10.
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