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Abstract This paper proposes a graph-based algorithm for computing Afriat’s Critical
Efficiency Index (ACEI), which measures the minimum relaxation required to rationalize a
dataset under the Generalized Axiom of Revealed Preference (GARP). The method itera-
tively removes critical arcs within strongly connected components (SCCs), ordered by their
revealed efficiency ratios. The final threshold produced by this deletion process is equal to the
ACEI, providing a structure-aware alternative that avoids global enumeration of efficiency
thresholds and yields an interpretable decomposition of revealed-preference violations. Fur-
thermore, by accumulating the violation lengths of the removed arcs, the algorithm provides
a tractable approximation to Dean and Martin’s Minimum Cost Index (MCI), capturing
both the threshold level of inefficiency and the cumulative cost of necessary corrections.
Compared with existing threshold-based and global-optimization approaches, the proposed
algorithm integrates computation and interpretation, offering a practical tool for evaluating
and visualizing inconsistency in empirical consumption data.
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1 Introduction

Afriat’s theorem [1] provides necessary and sufficient conditions under which observed con-
sumption behavior can be rationalized by a utility function. However, in the binary framework
assumed by this theorem, even a slight violation of the Generalized Axiom of Revealed Prefer-
ence (GARP) leads to the entire dataset being classified as irrational. To overcome such a strict
dichotomy, researchers have proposed various goodness-of-fit indices that quantitatively assess
the degree of deviation from rationality. Among them, Afriat’s Critical Efficiency Index (ACEI),
introduced by Afriat [2], measures the minimal uniform reduction in revealed expenditures re-
quired for the dataset to satisfy GARP. In addition, the Minimum Cost Index (MCI) proposed
by Dean and Martin [3] quantifies GARP violations from a cost-removal perspective: it mea-
sures the minimal total expenditure that must be removed to eliminate all revealed preference
violations.

In recent years, both the theoretical foundations and computational properties of such indices
have been extensively studied. Smeulders, Crama, and Spieksma [14] survey the computational
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development of ACEI, ranging from Varian’s early approximation methods to the first exact
polynomial-time algorithm. Dziewulski, Lanier, and Quah [4] further clarify that rationaliz-
ability conditions such as GARP are fundamentally characterized by the absence of cycles in
the revealed preference graph. Moreover, Lanier and Quah [8] propose a conceptual framework
based on three dimensions—continuity, accuracy, and concreteness—and demonstrate that no
index can satisfy all three simultaneously. Against this background, and building on the inter-
pretation of the CCEI as approximate cost-rationalizability [10], we set the stage for a structural,
graph-based approach to measuring near-rationality.

Alongside these developments, recent studies have drawn attention to the structural role of
strongly connected components (SCCs) in revealed preference graphs. Fujishige and Yang [7]
use SCC decomposition to simplify GARP testing in the context of discrete rationalizabil-
ity. Building on this, Shiozawa [12] proposes a unified framework that reformulates various
rationalizability conditions—including GARP, homothetic, and quasi-linear preferences—as in-
stances of the shortest path problem (SPP) and its generalization, the shortest path problem
with weight adjustment (SPPWA). He also introduces the Strongly Connected Component Index
(SCCI), a structurally motivated index based on internal violations within SCCs. More recently,
Naitoh [9] proposes indices based on the lengths of violating arcs within SCCs, contributing to
a more structural understanding of rationality violations. These structural insights motivate
our contribution: we develop an SCC-based, graph-theoretic algorithm that identifies ACEI
without threshold search, visualizes the structure of revealed preference violations, and yields
an efficiently computable approximation to MCI.

The remainder of this paper is structured as follows. Section 2 introduces the revealed
preference graph and reformulates GARP in graph-theoretic terms. Section 3 builds on the
concept of e-GARP to define Afriat’s Critical Efficiency Index (ACEI) as the minimal efficiency
level required to eliminate all cycles in the graph. Section 4 presents a graph-based algorithm
for computing ACEI and proves its correctness. Section 5 introduces a new index based on the
accumulated cost of violations, and compares it with the Minimum Cost Index (MCI) proposed
in previous studies.

2 Data, notation, and graph-theoretic preliminaries

We introduce some notation used throughout the paper. There are n different types of goods
in the market. The consumer has a budget b for consumption and a utility function U : R} —
R. We consider a market analyst observing a finite dataset D = {(p’,x")}L;, where p' =
(p4,...,ph) € R, is a positive price vector, and &' = (2, ..., 2}) € R7\{0} is the consumer’s
demand bundle observed at time ¢, given the available budget b; € Ry. The inner product

n
ptxt = Z pfxf represents the total expenditure at time ¢, which we also refer to as the (revealed)
=1

cost of bundle ! under prices p'. We assume p’ - ' = b;. The dataset D is rationalized by a
utility function U in the sense that for all + < T, &' maximizes U over {z |p' -z < p'- x'}. The
basic question raised by Afriat is whether the dataset is rationalized by a locally non-satiated
utility function U.



A dataset D satisfies WARP if and only if, for each pair of distinct bundles =*, 27, i,7 < T
with p’-a’ > p'-a, it is not the case that p/ -2/ > p’-x’. We also say that the consumer’s behav-
ior satisfies Generalized Axiom of Revealed Preference (GARP) if (p't, z!1), (p'2, z'2), ..., (p'™, x'm)
satisfying p' - z'* > plr . gle+1 (kK =1,...,m —1) for all t1,...,t,, < T , we have pim . !t >
pim - xlm. A utility function U is said to rationalize the observed dataset D if U(x!) > U(z) for
all & such that p' - a! > p’ - x.

Theorem 2.1 (Afriat’s Theorem [1], [18]): The following four statements are equivalent:

(a) The dataset D can be rationalized by a locally non-satiated utility function U.

(b) The dataset D satisfies GARP.

(c) There is a positive solution ¢, X to the set of linear inequalities \j < ¢; + \ip* - (z? — ') for
all i,7.

(d) The dataset D can be rationalized by a continuous, concave, strictly monotone increasing
utility function U. O

Let V and A be finite sets. A directed graph G = (V, A) consists of a set V of vertices and
a set A of arcs, whose elements are ordered pairs of distinct vertices. Throughout this paper,
all graphs are assumed to be directed unless otherwise stated. If a € A, 4,5 € V, and a = (4, 7),
then we say that a joins i to j. We also call i the tail of a and j the head of a. A path in
G = (V, A) is a sequence P = (iy,...,1) of distinct vertices iy (k =1,...,¢) with ¢ > 2, such
that (ig,ixs1) € A (k=1,...,£ —1). The end vertices of this path are i; and iy, and the path
is said to be an (i1,%¢)-path. If P is an (i1,i¢)-path in G = (V, A) and a € A is an arc that joins
i¢ to i1, then C' = (iy,...,4p,11) is called a cycle.

A graph G’ = (W, B) is called a subgraph of G = (V, A) ift W C V and B C A. For a vertex
subset W C V, the subgraph G[W] of G whose vertex set is W and whose arc set consists of
the arcs of G joining vertices of W is called the subgraph of G induced by W. We denote by
G — a the graph obtained from G = (V, A) by deleting the arc a € A. Furthermore, if B C A,
we denote by G — B the graph obtained by deleting the arcs in B. A (sub)graph H is said
to be strongly connected if for every two vertices ¢, j in the graph H there exists a path in H
from 7 to j. A maximal strongly connected subgraph of a graph G = (V, A) is called a strongly
connected component of the graph G. G is decomposed into its strongly connected components
Hy = (Vi, Ax) (k € K) where {Vi |k € K} is a partition of V. An algorithm by Tarjan ([16])
finds a partition in linear time, O(|V| + |A]).

To evaluate revealed preferences, we consider the matrix of expenditure differences between
observed bundles.

Definition 2.2 (Data Matrix): Given a dataset D = {(p',z')}_,, the data matriv Dy =
[dij] € RT*T is defined by

dij :=p" - (2 —x").
Here, d;; represents the revealed cost difference of bundle x) relative to x*, evaluated under price
vector pi.

This matrix forms the basis for a graph-theoretic representation of revealed preference rela-
tions.



Definition 2.3 (Difference-based Revealed Preference Graph): Let Dy = [d;;] be the

data matriz defined above. We define the difference-based revealed preference graph GI%O =
(Vip, AS) by:

o Vp={1,2,...,T},
o ASV = {(i,j) € Vp x Vp | i # j, d;; < 0}.
Each directed arc (i,7) € A=Y is assigned the length d;;.
We say that bundle =’ is revealed to be preferred to 27 in the difference-based sense if (i, j) €

A=Y A cycle in a directed graph is called a negative-length cycle if the total length, defined as
the sum of the arc lengths along the cycle, is strictly negative.

Example 2.4: Lett=1,...,6. Suppose that the dataset D = {(pt, :ct)}le is given by

{((3,5,5),(26,25,29)), ((4,5,4), (21, 34,24)), ((4,4,5), (31, 28,22)), ((4,5,5), (29, 25, 24)),
((3,5,6),(26,27,24)),((4,5,6), (30,27,24)) }

and that the consumer has a budget of by = 348, by = 350, by = 346, by = 361, b; = 357,
bg = 399,

348 353 343 332 333 345
345 350 352 337 335 351
349 340 346 336 332 348
374 374 374 361 359 375
377 377 365 356 357 369
403 398 396 385 383 399

26 21 31 29 26 30
25 34 28 25 27 27 | =
29 24 22 24 24 24

B0l R A W
Ut Ot Ot = Ot Ot
o = NS S TS

Hence corresponding data matrix Dy is

0 5 -5 —-16 —-15 -3
-5 0 2 -13 =15 1
3 -6 0 -10 -14 2
13 13 13 0 -2 14
20 20 8 -1 0 12
4 -1 -3 —-14 -16 O

Dr =

Based on the above data matriz Dy, we construct the subgraph GSO, which consists of all arcs
with non-positive lengths. The resulting graph is illustrated below.



G%O contains two strongly connected components. O

Proposition 2.5 ([7]): The following three statements are equivalent:

(a) The data matriz Dy satisfies GARP.

(b) Every cycle C in the graph GI%O satisfies p' - (&7 — x) = 0 for all (i,5) € C.

(¢c) Every strongly connected component Hy, = (Vi, Ax) of the graph G%O satisfies p- (2! —x') = 0
for all (i,7) € Ap. O

GARP is equivalent to what Afriat called cyclical consistency (Proposition 2.2 (b)). The cyclic
consistency plays a fundamental role in the various literature on revealed preference (Dziewulski,
Lanier, and Quah [4]). Algorithms for fast verification of GARP have been developed; see, e.g.,
Nobibon, Smeulders, and Spieksma [15].

While the difference-based graph structure derived from Dy is central to the verification of
GARP, it may not be the most suitable representation for evaluating the degree of inconsistency
in a scale-invariant manner. To address this, we consider a ratio-based representation of the
same dataset.

Definition 2.6 (Ratio-based Cost Matrix): Given a dataset D = {(p’,z*)}L, we define
the ratio-based cost matrix Ry = [r;;| of size T x T by
]
Tij = %, for1 <45 <T.
bz

Note that ri; = 1 for all i. O

Each entry r;; in the matrix represents the relative cost of choosing bundle 2’ instead of x?,
both evaluated under the price vector p’. This matrix provides the foundation for constructing
the graph RG%’E, whose acyclicity is related to e-GARP, as will be shown in Proposition 3.4.

This interpretation enables us to define a directed graph that captures efficiency-based re-
vealed preference relations.

Graph-based representations of revealed preference relations, particularly those based on cost
ratios, have been discussed in several studies such as [14], and further developed in [8]. Following
a similar idea, we define arc weights using relative expenditure ratios aiming to evaluate revealed
preferences in a scale-invariant manner. This leads to the following graph structure:



Definition 2.7 (Ratio-based Revealed Preference Graph): Let Ry = [r;;] be the ratio-
based cost matriz defined in Definition 2.6. For a given efficiency level e € [0, 1], we define the
directed graph RGge = (V, A=9) by:

o Vp={1,2,...,T}
o AS¢={(i,j) e Vp x V| i # j, mi; < e}

We say that bundle x' is revealed to be preferred to a7 at efficiency level e if there is a directed

arc from i to j in RG%G. O

This graph captures efficiency-adjusted revealed preference relations: An arc (4, 7) indicates that
bundle z’ is revealed to be preferred to =/, up to an efficiency level e. The following example
illustrates how the ratio-based cost matrix Rp and the corresponding revealed preference graph
RG,%e are constructed in practice. To facilitate comparison, we use the same dataset as in
Example 2.4.

Example 2.8: The ratio-based cost matrix Ry corresponding to Fxample 2.4 is given by:

1.000 1.014 0.986 0.954 0.957 0.991
0.986 1.000 1.006 0.963 0.957 1.003
1.009 0.983 1.000 0.971 0.960 1.006
1.036 1.036 1.036 1.000 0.994 1.039
1.056 1.056 1.022 0.997 1.000 1.034
1.010 0.997 0.992 0.965 0.960 1.000

Ry =

Based on the above ratio-based cost matrix Ry, we construct the subgraph RGSI, consisting of
all directed arcs (i,7) such that r;; < 1. The resulting graph is shown below.

Each entry r;; = % represents the relative expenditure ratio of bundle x; with respect to x;,
evaluated under the price vector p;. All entries are rounded to three decimal places. a

Each arc represents a revealed preference at efficiency level e. If a negative-length cycle exists
in RG%e then e-GARP is violated. The maximum value of e for which RG%Q contains no such



cycle corresponds to Afriat’s Critical Efficiency Index (ACEI). The scalar index considered in this
paper, ACEI, originates from Afriat’s extension of his earlier work [2]. While the foundational
conditions for rationalizability were established in his 1967 paper [1], the concept of a scalar
efficiency index was introduced in his 1973 formulation. This index was later studied under the
name “ Afriat’s efficiency index ” by Varian [17] and Smeulders et al. [13]. For clarity, we will
use the term ACEI throughout this paper.

3 Afriat’s Critical Efficiency Index and e-GARP

For a given dataset, the revealed preference tests yield a binary outcome: rationalizable or not.
However, we are often interested in the degree of violation of rationality. A variety of goodness-
of-fit measures for rationality have been proposed. In this section, we focus on Afriat’s Critical
Efficiency Index (ACEI) and its related concept, Generalized Axiom of Revealed Preference at
efficiency level e (e-GARP). Other measures, such as MCI, will be introduced in a later section.

Afriat [2] introduced a partial efficiency index by relaxing the strict requirement of revealed
preference. For a given efficiency level e with 0 < e < 1, we say that bundle =’ is directly
revealed preferred to x if ep’ - ' > p' - x. This idea naturally extends to sequences of such
relations, leading to a relaxed version of GARP, called e-GARP, which allows for a uniform
degree of inefficiency across all comparisons. We formally define this condition below.

Definition 3.1 (e-GARP): Let e € [0,1] be a given efficiency level. A finite dataset D =
{(pt, ")}, is said to satisfy the Generalized Aziom of Revealed Preference at efficiency level
e (e-GARP) if for any finite sequence of observations

(p",z"), (p", x"),..., (p', z'")

satisfying
ep’ - x' > plh gl (B =1,...,m—1),

we have
ptm . a;.tl Z ept'm . wtm.

This condition requires that no strictly inefficient cycle exists when evaluating expenditures at
a uniform efficiency level e. If e = 1, then the condition coincides with the standard GARP,
and if e = 0, then the condition is trivially satisfied. Hence there is some critical level e* where
the data just satisfy e-GARP. We now define the largest such efficiency level at which e-GARP
holds, known as Afriat’s Critical Efficiency Index (ACEI).

Definition 3.2: (Afriat’s Critical Efficiency Index)
For a dataset D = {(p', x')}L_,, Afriat’s Critical Efficiency Indexr (ACEI) is defined as follows:

ACEI(D) = sup {e ‘ D satisfies e—GARP} .

0<e<1



To illustrate the implications of e-GARP and ACEI, we visualize the revealed preference
graph using ratio-based weights defined as

pZ .xJ

Example 3.3: Consider the dataset used in Example 2.4 and FExample 2.8.

The graph RG%1 contains two strongly connected components (Vi = {1,2,3,6}, Vo = {4,5}),
which implies that it includes at least two directed cycles. This shows that the ACEI is strictly
less than 1.

If e = %, then RGZ%6 contains the arc (2,1) and the cycle (1,3,2,1).

345
If e < %, then RG%f is acyclic. Hence ACEI(D) = 350 ~ 0.986 O

We now explore the relationship between e-GARP and the structural properties of the ratio-
based revealed preference graph RG%G. The following proposition shows that e-GARP imposes
equality on the efficiency ratios along any directed cycle in the graph.

Proposition 3.4: Let e € [0,1]. If a dataset D = {(p, ")}, satisfies e-GARP, then every
directed cycle C' in the graph RGZ%6 consists only of arcs (i,7) € C for which:



Proof: Assume that D satisfies e-GARP. Let C be a directed cycle:
1] =iy = - =0y — 0.
Since each arc (ig, ig+1) € C (with g1 := 1) belongs to RG%G, we have:
plt -l < epth g forallk=1,..., ¢
Meanwhile, applying the definition of e-GARP to the time series i1 — i3 — - -+ — iy, we obtain:
pit -zt > ept . gt
Combining these inequalities and e € [0, 1] gives:
piz Lt < epie Lplt < pie . mh’
hence equality must hold throughout:
P @ = epit . it
By cyclically shifting the cycle and applying the same reasoning, we conclude that for every arc
(,5) € C,
O

Proposition 3.4 establishes only the forward direction. As noted in Lanier and Quah [8], while
e-GARP always implies e-acyclicity, the converse implication does not hold in general. Nonethe-
less, the Afriat’s Critical Efficiency Index (ACEI) can be characterized using the acyclicity
condition, as shown below.

Definition 3.5 (Ratio-based Revealed Preference Graph 2): Let Ry = [r;;] be the ratio-
based cost matriz defined in Definition 2.6. For a given efficiency level e € [0,1], we define the
directed graph RG° = (Vp, A<¢) by:

o Vr=1{1,2,....T}
o A ={(1,j) e Vp x Vp | i #j, mij <e}

We say that bundle ' is revealed to be preferred to ' at efficiency level e if there is a directed
arc from i to j in RG} . 0

We say that D is e-acyclic if the directed graph RG}° = (V, A<¢) contains no cycles, where
A<¢:={(i,j) e Vpr x Vp |i#j, p'- 2 <ep'- x'}.



Proposition 3.6 ([8]): Let D = {(p',x')}L, be a dataset and let Ry = [r;j] be the ratio-based
cost matriz defined in Definition 2.6. We denote by

R:={ry €[0,1] [ i #j}
the set of all off-diagonal entries of Rr, corresponding to pairwise cost ratios. Then
ACEI(D) = max {e € R| RG}’ is acyclic} = min {e €ER| RG%S contains a directed cycle} .

Equivalently,
ACEI(D) = min max ryj,
C  (ij)eC

where the minimum is taken over all directed cycles C in RG%l.

This result follows the structural perspective of Proposition 12 of Lanier and Quah [8], which
characterizes the critical efficiency as the largest e for which the strict graph RG3° is acyclic.
In a finite dataset, the emergence of cycles occurs only at finitely many ratio values e € R,
so the formulation based on the supremum of all acyclic thresholds and the one based on the
minimum value at which a cycle first appears are equivalent. The bottleneck characterization
ming max; j)ec 7ij therefore provides a constructive way to compute or bound the ACEL

4 Critical components

In this section, we propose the concept of critical components— arcs within strongly connected
components that are iteratively removed to render the graph acyclic, with the aim of keeping
the total violation length as small as possible. The formal connection to Dean and Martin’s
Minimum Cost Index (MCI) is discussed in Section 5. We begin by illustrating the procedure
through examples.

We denote by Asco(G) the set of arcs in the strongly connected components of a directed
graph G. We first decompose the graph RG%1 into its strongly connected components. If all

il : : A
P (equivalently, p* - (x/ — ') = 0), then GARP is

arcs (i,7) € ASCC(RGl%l) satisfy

pi,mz

)

satisfied. Otherwise, there exists at least one arc with < 1, indicating a violation.

Pl xi

Definition 4.1 (Critical Component): Let G = (V, A) be a directed graph representing a
ratio-based revealed preference structure. An arc (i,j) € A is called a critical component if it
satisfies the following conditions:

1. The arc (i,7) is a member of the strongly connected components, i.e., (i,j) € Ascc(QG).
2. Among all such arcs, it has the maximum relative cost ratio:

)

p
pioxi

o

10



3. If multiple arcs attain the mazimum ratio, the tie is resolved by:

e Selecting the arc with the largest value of p' - (27 — z?);
o [If still tied, the arc with the smallest tail index i;

o [f still tied, the arc with the smallest head indez j.

The selected arc is referred to as a critical component and is denoted a, = (in,jn) at the n-th

iteration. |

The following example demonstrates how a critical component is selected according to the

above definition.

Example 4.2: Consider the dataset used in Example 2.8,

The strongly connected components of RGZ%1 contain the following arcs:
ASCC(RGél) = {(17 3)7 (1> 6)a (27 1)7 (37 2)> (4a 5)a (57 4)7 (67 2)a (67 3)}

Among these arcs, the highest ratio is achieved by (6,2):

6. .2
p’-x® 398
P50 399 ~ 0.9975.

11



Therefore, (6,2) is selected as the first critical component, i.e., a; = (6,2). O

Next, decompose RG%1 — a1 into strongly connected components. If RG]%1 — a satisfies
GARP, then a; = (i1, 1) is the unique critical component of RG%, and the algorithm termi-
nates. Otherwise, choose one arc ay = (i2,j2) € ASCC(RG%1 — ap) based on the same rules as
when we chose a;. Repeat these steps until RG%1 — Un_1{an} satisfies GARP. Then critical
components of RGIS)1 are {ai,...,an}.

Hereafter, we assume the nontrivial case that RGIS)1 contains at least one arc with r;; <
1 inside a strongly connected component; equivalently, the data matrix Dr has at least one
negative entry d;; < 0 with (¢,7) € ASCC(G%D). Otherwise, Step 1 applies and the algorithm

terminates with e = 1.

Algorithm: Critical Component Selection Let G := RG%1 be the initial ratio-based
revealed preference graph.

1. Decompose G into its strongly connected components. If all arcs (7, j) € Ascc(G) satisty
i i
p —— =1, set emax := 1 and terminate.
pz .t

2. Initialize: n:=1; L:=0 (total accumulated violation length); epax := 1
3. Repeat the following steps (a)—(h):
(a) Select an arc a, = (in, jn) € Ascc(G) with the largest ratio

pin . w]’n
Wn == pin - gin
i n — ma)u' iti max — - .
(possibly w emax; initially e 1) and apply the tie-breaking rules
(b) Update the current threshold: epax := wy,.

(c¢) Define the violation length:

Update graph: G := G — ap,.

)

(e) Accumulate the cost: L := L + |{,]

(f) Recompute strongly connected components.
)

Termination test: If every SCC of G contains only arcs with ratio 7;; = emax (vacu-
ously true if Agcco(G) = @), terminate. Fquivalently (finite setting), terminate when
RG> is acyclic.

(h) Otherwise, set n < n + 1.

Proposition 4.3: (e-GARP and Strongly Connected Components)
Let D = {(py,z1)}; be a finite dataset, and let RG%e = (Vp, A=®) denote the e-weighted

12



ratio-based revealed preference graph defined by the arc set

L. pd
p :c' <e}.

AS€ = {(Z,j) eV xVp | Tij = pi~£L'l <

i e dataset D satisfies e- , then every strongly connected component o 5 contains
i) If the dataset D sati GARP, th trongl ted t of RGE' contai
only arcs (i, ) with ri; = e.

ii) Conwversely, if every strongly connected component o 5 contains only arcs with r; = e,
i) C ly, i trongl ted t of RG3' contains onl ith 14
then the strict-threshold graph RG7’ is acyclic.

Proof: (i) follows from Proposition 3.4 (equality on any directed cycle). (i) If RG3° had a
directed cycle, the arcs on that cycle (all with r;; < e) would form an SCC of RGI%e containing
r;j < e, contradicting the premise. O

Remark. Note that if a strongly connected component consists of a single node, then the
condition is vacuously satisfied, since there are no arcs in the component.

Acyclicity of RG}° does not imply that D satisfies e-GARP in full generality (Lanier &
Quah, 2024, Prop. 12). We therefore compute ACEI(D) via the acyclicity characterization in
Proposition 3.5. The critical component selection algorithm removes arcs in descending order
of their revealed efficiency ratio 7;;, until the resulting graph satisfies e-GARP. Let epax denote
the final threshold value at which the algorithm terminates. The following theorem guarantees
that this value corresponds exactly to Afriat’s Critical Efficiency Index.

Theorem 4.4: Let ey be the final efficiency level recorded by the algorithm. Then epax =
ACEI(D).

Proof: The algorithm iteratively removes arcs in descending order of their ratio r;;, retaining
only those with r;; < emax. By construction, after the final deletion, every strongly connected
component of the current graph G consists only of arcs with r;; = emax (vacuously true if
Ascc(G) = 0). By Proposition 4.3(ii), the strict-threshold graph RG> is acyclic.

Since the candidate ratios form a finite set, this means that RG%‘” is acyclic for all e < epax,
and any cycle in RG%ema" (

Hence epax is the largest threshold for which acyclicity holds in the sense of Proposition 3.5.

if present) must consist solely of arcs with 7;; = emax.

Therefore we conclude that
ACFEI(D) = max{e € R: RG}’ is acyclic } = emax.
|

To illustrate how the critical component selection algorithm works in practice and how the
value en,x is derived step by step, we present the following example based on the same dataset
used earlier.

Example 4.5: Continuing from Example 4.2, we consider again the dataset used in Exam-
ple 2.8. The following table lists the arcs in the strongly connected components of RGSI, along

13



with their efficiency ratios and violation lengths.

arc(i,7) | (6,2)| (5,4)| (4,5)| (6,3)| (1,6)| (2,1)| (1,3) (1,4)
pt -l 398 356 359 396 345 345 343 332
p -l 399 357 361 399 348 350 348 348
ratio 0.9975 | 0.9972 | 0.9945 | 0.9925 | 0.9914 | 0.9857 | 0.9856 0.9540
length -1 -1 —2 -3 -3 -5 -5 —16

According to the critical component selection algorithm, we iteratively remove the arc with the

largest ratio among the current set of arcs contained in strongly connected components.

mentioned in Example 4.2, ay = (6,2). After removal,

ASC’C(RG%1> - {al} = {(173)7 (17 6)7 (27 1)7 (37 2)7 (4, 5)7 (574)7 (67 3)}

Among these arcs, the arc (5,4) has the highest ratio: P

ASCC(RGEI) - {ala a2} = {(1’ 3)a (17 6)7 (27 1)> (3a 2)7 (67 3)}

5.4

_ 356
pb.xd 37

As

~ 0.9972. Set az = (5,4).

Among these arcs, the arc (6,3) has the highest ratio. Hence az = (6,3).

14



After removing (6,2) and (6,3), node 6 becomes disconnected from any cycle.

Asco(RGTY) — {a1,as,a3} = {(1,3),(2,1),(3,2)}.

As a result, the arc (1,6) is no longer part of any strongly connected component. Among these
arcs, the arc (2,1) has the highest ratio. Hence aqy = (2,1).

Since ASCC(RGél) — {a1,a2,a3,a4} = 0, the graph RG3™> is acyclic. Hence, by Proposi-
tion 3.6, emax = 121 = 345/350 ~ 0.9857. The total violation length is L = 10, which will be
used in the next section. O

5 Goodness-of-fit indices and approximation measures

Dean and Martin [3] proposed a goodness-of-fit measure based on Afriat’s cyclical consistency.
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Definition 5.1: (Dean and Martin’s minimum cost index)
For a dataset D = {(p',z') |t = 1,..., T} the minimum cost index (MCI) is defined as follows:

A/
MCI(D) = A'réliAnSO Tsi G’ = (Vp, ASY\ A') contains no directed cycle
= Z Pt

t=1

where SA’ = p' - (x' — a7) and A=Y is the arc set of G=Y.
D
(i,j)€A!

That is, MCI measures the minimum total cost of removing arcs that violate GARP in order to
obtain an acyclic graph.

To illustrate the implications of MCI, we visualize the revealed preference graph using arc
lengths defined as p' - (z/ — x*), instead of the ratio-based weights.

Example 5.2: Consider the dataset used in Example 2.4. If we delete {(5,4),(2,1)}, then G=°
does not contain a cycle, since every directed cycle in G=° uses at least one of these arcs.

1+5 6

Hence MCI(D) ~ 0.00278. O

T 348 + 350 + 346 + 361 + 357 + 399 2161

MCI can be considered to effectively use information on the length of arcs, that need to be
modified minimally to satisfy GARP. However, it is known that computing MCI is NP-hard
([11]). In this section, we introduce a goodness-of-fit measure for GARP that uses the violation
lengths of the arcs selected as critical components. Denote by L the sum of the absolute violation
lengths of these arcs. We focus on L as the numerator. This value L can be obtained using the
algorithm in the previous section. The index we propose uses the same denominator as MCI.

Definition 5.3: For a dataset D = {(pt,z!)|t =1,...,T}, Index(D) is defined as follows:

L

Y ot

teT

Index(D)
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where L is the total violation length, defined as the sum of the absolute violation lengths of the
arcs selected as critical components.

Index(D) = 0 iff G%O is acyclic (i.e., GARP holds). The index is scale-invariant in prices: scaling
all p' by a > 0 scales both L and the denominator by «.

Example 5.4: Consider the dataset used in Example 2.4. The arcs removed as critical compo-
nents are {(67 2)7 (57 4)1 (67 3)7 (27 1)}

1414345 10
Index(D) = —— = = 5757

While MCI directly seeks a minimum-cost subset of arcs whose removal restores GARP, it is

~ 0.00463. O

known to be NP-hard to compute. On the other hand, Index (D) offers a tractable, approximation-
based alternative: it measures the total violation cost incurred by removing the most critical
arcs, as determined by their revealed efficiency ratios. This makes Index particularly useful in
settings where computational efficiency is a priority, even if optimality is not guaranteed.

6 Conclusion

This paper proposed a graph-based algorithm for computing Afriat’s Critical Efficiency In-
dex (ACEI), in which arcs with high revealed efficiency ratios are incrementally removed from
strongly connected components of the revealed preference graph. This method yields the critical
efficiency threshold directly and provides an interpretable decomposition of revealed preference
violations. The algorithm identifies a sequence of critical components—arcs within strongly con-
nected components containing at least one arc with a revealed preference violation—and records
the maximum expenditure ratio among these arcs. This maximum ratio reflects the most severe
local violation and precisely corresponds to the ACEI

Unlike existing approaches such as Varian’s approximation method [17] and the exact algo-
rithm by Smeulders et al. [13], which evaluate rationalizability by globally enumerating efficiency
thresholds, our approach focuses on the internal structure of strongly connected components to
avoid such exhaustive enumeration. Moreover, whereas Polisson and Quah [10] establish a theo-
retical equivalence between e-GARP and cost-rationalizability, our method attempts to identify

the specific structural violations contributing to irrationality.
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In this respect, our approach bridges the gap between computational efficiency and structural
interpretability, and may serve as a practical tool for both evaluating and visualizing the degree
of inconsistency in empirical consumption data. Furthermore, by utilizing the violation lengths
of arcs selected as critical components, our method is expected to serve as a natural approxima-
tion to the Minimum Cost Index (MCI). While the MCI requires solving a global-optimization
problem, our approach instead uses the total violation length L accumulated during the crit-
ical component deletion process as a tractable surrogate. This algorithm not only identifies
the threshold level of inefficiency (ACEI) but also captures the cumulative cost of corrections
required to restore rationalizability.
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