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Abstract

In this paper, we will investigate an existence problem of a general equilibrium of perfectly com-

petitive Fisher markets in a linear exchange model with an infinite dimensional commodity space.

We will indicate that finite dimensional approximation method in functional analysis guarantees

the existence result in our settings.
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1 Introduction

In this paper, we will investigate an existence problem of a general equilibrium of perfectly competitive

Fisher markets in a linear exchange model with an infinite dimensional commodity space.

Recently, Fisher markets model in general equilibrium analysis have been researched intensively in

connection with computation of general equilibria*1, and related to the the computaional aspect, Fisher

markets model is usually constructed as a linear exchange model or a piecewise-linear exchange model*2*3.

As with the positive and normative issue of economics, the existence of market equilibrium is an essential

problem for the computation of equilibrium. Therefore, in the analysis of Fisher markets, the existence

problem has been researched carefully and deeply. Our main concern in this paper is the extension of

such existence issue to the infinite dimensional settings*4.

Construction of Fisher markets model is the followings: There are (possibly, infinitely) many mar-

kets in an economy, which are assumed to be complete, and finitely many consumers and finitely many

suppliers or merchants participate in the trades in each markets. Spending his/her wealth or income,

each consumer purchases commodities in order to maximize his/her preference, and determines his/her

demand schedule. On the other hand, suppliers’ or merchant’s supply schedule have been already deter-

*1 For the very extensive details which include computaional aspects of Fisher markets model, see [15].
*2 For the linear exchange model, see [11], [13], [15], and for the piecewise-linear exchange model, see [12], [15]
*3 In the research area of Fisher markets model, linearlity is a crucial analityc tool.
*4 Computational aspect in infinite dimensional settings is in itself very interesting issue.
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mined before participating in the markets. Therefore, decision makers in Fisher markets are consumers

only, and Fisher markets equilibrium is a pair of equilibrium price and equiribrium allocation which

consists of equiribrium demand schedules, where equilibrium total demand schedule is basically equal to

the total supply schedule. Fisher markets model in a linear exchange model or a piecewise-linear model is

characterized by the linearlity or piecewise-linearlity of some kinds of economic primitives, in paticular,

consumer’s preference or utility*5. In this paper, we will treat a linear exchange model.

In infinite dimensional setting in our Fisher markets model, our commodity space is L∞ and our price

space is ba*6. For the detail, see next chapter. A commodity space L∞ is known to be suitable for

the analysis of dynamic economy or/and the analysis of uncertainty in an economy. In the following

chapters, we will introduce our model and establish the existence result.

2 Fisher markets model in a linear exchange economy with an infinite

dimensional commodity space

(S,Σ, µ) is a complete σ−finite measure space, where Σ is a σ-algebra on S and µ is a complete σ-finite

positive measure on Σ. Let L∞ be a set of all real valued essentially bounded measurable functions*7 on

(S,Σ, µ), which is equipped with a sup-norm || · ||∞*8. The norm dual of the Banach space (L∞, || · ||∞) is

a set of all bounded additive measures on the measurable space (S,Σ) absolutely continuous with respect

to µ, which is denoted by ba. Then, the bilinear form of the dual pair 〈L∞,ba〉 is defined by

∫
x dπ for

any π ∈ ba and x ∈ L∞, which is denoted by (π|x). A commodity space in our Fisher markets is L∞

and a price space in our Fisher markets is ba. Then, the value form of a commodity x ∈ L∞ under the

given price π ∈ ba is naturally defined by (π|x).
The topology of a commodity space L∞ is the Mackey topology τ(L∞,L1)*9, where L1 is a set of all

integrable functions on (S,Σ, µ)*10. The bilinear form of the dual pair
⟨
L∞,L1

⟩
is defined by

∫
α·x dµ

for x ∈ L∞ and α ∈L1, which will be denoted by 〈α|x〉*11. On the other hand, the topology of a price

space ba is induced by the bounded variation norm || · ||ba*12*13.
Throughout this paper, Fisher markets are assumed to be perfectly competitive and complere ones.

*5 In the former, his/her preference or utility is assumed to be linear. In the latter, his/her utility is assumed to be

piecewise-linear.
*6 For general equilibrium theory with infinite dimensional commodity space, see [3], [16]. We owe to the result of [3]

particularly.
*7 A measurable function f is called essentially bounded if there exists c ∈ R such that |f(s)| < c for a.e. s ∈ S.
*8 || · ||∞ is defined by ||f ||∞ = sup{|f(x)| : a.e. x ∈ S} for any f ∈ L∞. Under this norm, L∞ becomes a complete

normed space, in other words, a Banach space.
*9 The Mackey topology τ(L∞,L1) has a natural interpretation from the viewpoint of the consumer’s preference. That

is ”myopic preference” [3].

*10 L1 is a Banach space under the norm || · ||1, which is defined by ||f ||1 =

∫
|x| dµ for any f ∈ L1.

*11 The Mackey topology τ(L∞,L1) is the strongest toplogy of L∞ under which the linear functional ⟨α, ·⟩ : L∞ −→ R
is continuous for any α ∈ L1.

*12 ba is a Banach space under the norm || · ||ba.
*13 || · ||ba is defined by ||π||ba = sup

δ
{
∑

|π(Ak)| : Ak ∈ δ} for any π ∈ ba, where δ is a finite subset of Σ whose elements

are mutually disjoint.
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Pratically, an economy E consists of a set of economic primitives, {(Xi,≿i,mi, (N ki
i )ki∈Ki)i∈I , (Sj)j∈J}:

• I = {1, · · · , i, · · · ,m}, m <∞, is an index set of consumers,

– (Xi,≿i,mi, (N ki
i )ki∈Ki

)i∈I is a set of consumer i’s characteristics,

∗ Xi ⊂ L∞
+ is a consumption set of i, where L∞

+ is a positive cone of L∞ *14.

∗ ≿i⊂ Xi ×Xi is a rational preference relation of consumer i,

∗ mi, mi > 0, is an income of consumer i,

∗ (Nki
)ki∈Ki

is a family of napsack constraint functionals of consumer i,

· Ki = {1, · · · , ki, · · · ,Ki},Ki < ∞, is an index set of i’s napsack constraint function-

als,

· napsack constraint functional Nki : Xi −→ R represents some kind of additional

indivisually specific constraint of consumer i in the decision making under his/her

market budget constraint*15,

• J = {1, · · · , j, · · · , n}, n <∞, is an index set of suppliers or merchants,

– Sj ∈ L∞
+ is a given supply schedule of supplier or merchant j.

In the following, we will require several kinds of linearity assumptions for economic primitives. In

Fisher markets, consumer i’s budget constraint under given price π ∈ ba is

BF
i (π) ≡ {x ∈ Xi : (π|x) ≦ mi ∧ Nki

(x) ≦ 0 for any ki ∈ Ki}.

Assumption 1. (linearity of napsack constraint *16) : For any ki ∈ Ki, there exist unique πki ∈ L1 and

a constant Mki ∈ R+ such that Kki
(x) =

⟨
πki |x

⟩
−Mki .

Under Assumption1, restatement of consumer i’s budget constraint under given price π ∈ ba is

BF
i (π) ≡ {x ∈ Xi : (π|x) ≦ mi, ∧

⟨
πki |x

⟩
≦Mki for any ki ∈ Ki}

= {x ∈ Xi : (π|x) ≦ mi} ∩ {x ∈ L∞ :
⟨
πki |x

⟩
≦Mki for any ki ∈ Ki}

= {x ∈ Xi : (π|x) ≦ mi} ∩
∩

ki∈Ki

{x ∈ L∞ :
⟨
πki |x

⟩
≦Mki}

In the following, we will denote {x ∈ Xi : (π|x) ≦ mi}, {x ∈ L∞ :
⟨
πki |x

⟩
≦ Mki for any ki ∈

Ki} and {x ∈ L∞ :
⟨
πki |x

⟩
≦Mki} by Bi(π), Ξi, andΞki

respectively.

Consumer i chooses the maximal element for his/her preference relation ≿i under his/her budget

constraint BF
i (π). Thus, consumer i’s decision making under Fisher markets is represented by his/her

demand relation under given price π ∈ ba

DF
i (π) ≡ {x ∈ BF

i (π) : (x, z) ∈≿i for any z ∈ BF
i (π)}.

Then, we will make the following asuumption for i’s preference relation.

*14 A natural ordering of Lp, where p = 1, or∞ is defuned by: x ≧ y ⇐⇒ x(s) ≧ y(s) a.e. s ∈ S.
*15 For the detail, see [15].
*16 More correctly, affine property of napsack constraint.
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Assumption 2. (linear representation of i’s preference relation) : Consumer i’s preference relation ≿i

is represented by a linear utility function Ui : Xi −→ R, which is defined by x ∈ Xi 7−→ Ui(x) = 〈ui|x〉
for some unique ui ∈ L1.

Let �i be i’s strict preference relation defined by ≿i, and ∼i be i’s indifference relation defined by ≿i.

Then, note that for any x, y ∈ Xi,

(x, y) ∈�i ⇐⇒ Ui(x) > Ui(y), and (x, y) ∈∼i ⇐⇒ Ui(x) = Ui(y).

Moreover, Ui is a concave κ-continuous function on Xi, where κ is a topology on L∞ which is weaker

than τ(L∞,L1) and stronger than weak topology σ(L∞,L1)*17.

Under the above economic circumstaces , Fisher markets quasi-equilibrium is defined in the following

way.

Definition 1. (π, (xi)i∈I) ∈ ba \ {0} ×
∏
i∈I

Xi is said to be a Fisher markets quasi-equilibrium of an

economy E if it satisfies the following conditions

(i)xi ∈ DF
i (π) for any i ∈ I, (ii)

∑
i∈I

xi ≦
∑
j∈J

Sj , a.e. s ∈ S.

Additionally, we will assume:

Assumption 3. (i)Xi = L∞
+ , (ii)Sj ∈ L∞

++, where L∞
++ = {f ∈ L∞ : a.e. s ∈ S, f(s) > 0}*18.

Assumption 4. (existence of some kinds of desirable directions not binded by napsack constraints) For

any i ∈ I, there exists measurable set Ωi ∈ Σ with µ(Ωi) > 0 such that (x+αχΩi
i , x) ∈�i for any x ∈ Xi

and α > 0, and such that z + βχΩi
i ∈ Ξi for any z ∈ Ξi and β > 0, where χΩi

i is an indicator function

of Ωi.

Under these assumptions, our main result is the following theorem.

Theorem 1. There exists a Fisher markets quasi-equilibrium (π, (xi)i∈I) ∈ ba \ {0} ×
∏
i∈I

Xi under all

Assumptions in the above.

3 Existence result in the finite dimensional truncation of economy E
Let {Fλ}λ∈Λ be a family of all finite dimensional subspaces of L∞ which include all elements of

(Sj)j∈J and (χΩi
i )i∈I

*19, and define a subeconomy EFλ = {(XFλ
i ,≿Fλ

i ,mFλ
i , (NFλ

ki
)ki∈Ki)i∈I , (SFλ

j )j∈J}
of economy E for any λ ∈ Λ in the following way.

*17 The weak topology σ(L∞,L1) is the weakest toplogy of L∞ under which the linear functional ⟨α, ·⟩ : L∞ −→ R is

continuous for any α ∈ L1.
*18 BF

i (π) ̸= ∅ for any non-zero π ∈ ba under the Assumption 3 (i).
*19 Note that {Fλ}λ∈Λ constitutes a directed set by set inclusion relations. For the details about a directed set (and

related notion of net), see [9].
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• For any i ∈ I, XFλ
i = Xi ∩ Fλ, ≿Fλ

i =≿i ∩(Fλ × Fλ)*
20, mFλ

i = mi, NFλ

ki
= Nki ◦ incFλ , where

incFλ : Fλ −→ L∞ is an inclusion mapping.

• For any j ∈ J , SFλ
j = Sj

Note that any finite dimensional topological vector subspace is homeomorphic to the same dimensional

Euclidean space. Also, by Assumption 1, KFλ

ki
(x) =

⟨
πki |x

⟩
−Mki for any x ∈ Fλ is an affine mapping

on a finite dimensional subspace Fλ, and hence, we can regard {x ∈ Fλ :
⟨
πki |x

⟩
≦ Mki} as a closed

half space in Fλ.

Let F∗
λ be a dual space of Fλ. Since Fλ is a finite dimensional topological vector space, F∗

λ coinsides

with Fλ and the bilinear form on F∗
λ ×Fλ can be regarded as an inner product between them. Abusing

notations, we will denote the bilinear form by (p|x) for any p ∈ F∗
λ and x ∈ Fλ. We can define

BFλ
i (p), ΞFλ

i , andΞFλ

ki
respectively by {x ∈ Xi

Fλ : (p|x) ≦ mi}, {x ∈ Fλ :
⟨
πki |x

⟩
≦ Mki for any ki ∈

Ki} and {x ∈ Fλ :
⟨
πki |x

⟩
≦ Mki}. And, consumer i’s budget constraint BFλ

i (p) and his/her demand

relationin DFλ
i (p) in the subeconomy EFλ under given price p ∈ F∗

λ \ {0} is respectively

BFλ
i (p) ≡ {x ∈ Xi

Fλ : (p|x) ≦ mi, ∧
⟨
πki |x

⟩
≦Mki for any ki ∈ Ki}

DFλ
i (p) ≡ {x ∈ BFλ

i (π) : (x, z) ∈,≿Fλ
i for any z ∈ BFλ

i (π)}.

In the following arguments, we will restrict a price set to a normalized price set ∆Fλ ≡ {p ∈ F∗
λ :

(p|S) = M ∧ (p|d) ≧ 0 for any d ∈ Fλ+}, where S =
∑
j∈J

Sj and M =
∑
i∈I

mi > 0*21. Clearly, ∆Fλ is a

nonempty, convex and compact subset of Fλ+
*22.

Under the above descriptions, Fisher markets quasi-equilibrium of the subeconomy EFλ is defined in

the following way, and existing result holds in the subeconomy EFλ .

Definition 2. (p, (xi)i∈I) ∈ ∆Fλ ×
∏
i∈I

XFλ
i is said to be a Fisher markets quasi-equilibrium of the

subeconomy EFλ if it satisfies the following conditions

(i)xi ∈ DFλ
i (p) for any i ∈ I, (ii)

∑
i∈I

xi ≦
∑
j∈J

Sj , a.e. s ∈ S.

Proposition 1. For a fixed Fλ, there exists a Fisher markets quasi-equilibrium (p, (xi)i∈I) ∈ ∆Fλ ×∏
i∈I

XFλ
i of subeconomy EFλ under all Assumptions in the previous chapter.

In the followings, based on [6] [7], we will give a proof of the Proposition 1*23. For the purpose, we will

truncate a fixed subeconomy EFλ again by a convex nonempty compact cube Cθ = {x ∈ Fλ+ : ||x||∞ ≦
θ}, where θ ∈ R++ is a constant such that max{

∑
j∈J

||Sj ||∞, 1} < θ*24, and we can define a subeconomy

*20 Based on ≿Fλ
i , ≻Fλ

i is defined by ≻i ∩(Fλ ×Fλ), and ∼Fλ
i is defined by ∼i ∩(Fλ ×Fλ).

*21 Note that Fλ+ = L∞
+ ∩ Fλ, and that S ∈ int||·||∞L∞

+ by Assumption3 (ii).
*22 For the compactness of ∆Fλ , it follows from Banach-Alaoglu theorem [17], [18]. See Lemma5 and the related discus-

sion in the later section, too.
*23 D. M. Jalota, et al. have already given a proof of a existing result of a Fisher markets equilibrium with a finite

dimensinal commodity space, which is an Euclidean, in linear exchange model [15]. Our proof is a little bit different

from theirs reflecting the difference of a model-constructions, particurely, topological and normalization settings.
*24 Therefore, Cθ includes all the elements of (Sj)j∈J and (χ

Ωi
i )i∈I . Note that ||χΩi

i ||∞ = 1 for any i ∈ I. Moreover,

Xi
Cθ = Cθ ∩X

Fλ
i = Cθ in the below.
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ECθ = {(XCθ
i ,≿Cθ

i ,m
Cθ
i , (N

Cθ

ki
)ki∈Ki)i∈I , (SCθ

j )j∈J} of EFλ in the same way as the definition of EFλ*25.

Then, consumer i’s budget constraint BCθ
i (p) and his/her demand relationin DCθ

i (p) in the a subeconomy

ECθ under given price p ∈ ∆Fλ is respectively

BCθ
i (p) ≡ BFλ

i (p) ∩ Cθ,

DCθ
i (p) ≡ {x ∈ BCθ

i (p) : (x, z) ∈≿Cθ
i for any z ∈ BCθ

i (p)}.

Definition 3. (p, (xi)i∈I) ∈ ∆Fλ ×
∏
i∈I

XCθ
i is said to be Fisher markets quasi-equilibrium of the sube-

conomy ECθ if it satisfies the following conditions

(i)xi ∈ DCθ
i (p) for any i ∈ I, (ii)

∑
i∈I

xi ≦
∑
j∈J

Sj , a.e. s ∈ S.

Proposition 2. For the Cθ, there exists a Fisher markets quasi-equilibrium (p, (xi)i∈I) ∈ ∆Fλ ×
∏
i∈I

XCθ
i

of subeconomy ECθ under all Assumptions in the previous chapter.

First, we will give a proof of Propsition 2, and show that this result implies Proposition 1.

Lemma 1. A budget relation BCθ
i : ∆Fλ −→ XCθ

i is a continuous relation.

Proof. BCθ
i is nonempty-, convex- and compact-valued since 0 ∈ BCθ

i (p) for any p ∈ ∆Fλ and Cθ is a

convex and compact subset of Fλ.

Upper semicontinuity of BCθ
i : It suffices to show that BCθ

i has a closed graph. Take a sequence

{(pk, xk)} ⊂ ∆Fλ × BCθ
i (pk) such that (pk, xk) −→ (p, x) ∈ ∆Fλ × Fλ in order to show that x ∈ BCθ

i (p).

Suppose that x /∈ BCθ
i (p). Then, (p|x) > mi

*26 and, hence, (pk|xk) > mi for all k large enough, which

leads to a contradiction.

Lower semicontinuity of BCθ
i : Take a sequence {pk} ⊂ ∆Fλ such that pk −→ p ∈ ∆Fλ , and x ∈ BCθ

i (p)

in order to show that there exists a sequence {xk} ⊂ BCθ
i (pk) such that xk −→ x. If (p|x) < mi,

(pk|x) < mi for all k large enough. Fix such a k0 among ones and define {xk} by

xk =

{
x : k ≧ k0

ak ∈ BCθ
i (pk) : k < k0

, where ak ∈ BCθ
i (pk) is some arbitralily fixed element of BCθ

i (pk). This sequence is desired one. If

(p|x) = mi(> 0), note thar (1− t)x+ t0 = (1− t)x ∈ BCθ
i (p) for any t ∈ [0, 1) and that (p|(1− t)x) < mi.

Therefore, (pk|(1− t)x) < mi for any t ∈ [0, 1) and for all k large enough. Fix such a k0 among ones and

define {xk} by

xk =

{
(1− 1

k )x : k ≧ k0

ak ∈ BCθ
i (pk) : k < k0

, where ak ∈ BCθ
i (pk) is some arbitralily fixed element of BCθ

i (pk)*27. This sequence is desired one.

*25 Based on ≿Cθ
i , ≻Cθ

i is defined by ≻Fλ
i ∩(Cθ × Cθ), and ∼Cθ

i is defined by ∼Fλ
i ∩(Cθ × Cθ).

*26 Note the closedness of related primitives.
*27 In both cases, note the closedness and convexities of related primitives.
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Lemma 2. A demand relation DCθ
i : ∆Fλ −→ XCθ

i is a nonempty-, convex- and compact-valued upper

semicontinuous relation.

Proof. DCθ
i is clearly nonempty-, convex- and compact-valued by assumptions in the previous chapter

and Lemm 1. Take a sequence {(pk, dk)} ⊂ ∆Fλ ×DCθ
i (pk) such that (pk, dk) −→ (p, d) ∈ ∆Fλ × Fλ in

order to show that d ∈ DCθ
i (p). Note that d ∈ BCθ

i (p) by Lemma 1. Suppose that d /∈ DCθ
i (p). Then, there

exists x ∈ BCθ
i (p) such that (x, d) ∈�Cθ

i . By the continuity of preferences and similar argument of Lemma

1, (1− 1
k )x ∈ BCθ

i (pk) and ((1− 1
k )x, d

k) ∈�Cθ
i for all k large enough, which leads to a contradiction.

Define an excess demand relation ζCθ : ∆Fλ −→ Cθ by ζCθ (p) =
∑
i∈I

DCθ
i (p) −

∑
j∈J

Sj
*28. By Lemma

1, ζCθ is a nonempty- convex- and compact- valued upper semicontinuous relation. Next, define a price

adjustment relation µCθ : Cθ −→ ∆Fλ by µCθ (z) = {p ∈ ∆Fλ : (p|z) = max
q∈∆Fλ

(q|z)} for any z ∈ Cθ.

Since (·|z) : ∆Fλ −→ R is continuous, clearly, µCθ is a nonempty-, convex- and compact-valued upper

semicontinuous relation. Therefore, the relation ψCθ : Cθ × ∆Fλ −→ Cθ × ∆Fλ , which is defined by

ψCθ (z, p) = ζCθ (p) × µCθ (z) for any (z, p) ∈ Cθ ×∆Fλ , satisfies all of the conditions in Kakutani’s fixed

point theorem*29.

Lemma 3. A fixed point (z∗, p∗) ∈ ψCθ (z∗, p∗) constituties a Fisher markets quasi-equilibrium of the

subeconomies ECθ , and EFλ .

Proof. (z∗, p∗) ∈ ψCθ (z∗, p∗) = ζCθ (p∗) × µCθ (z∗) implies that there exists d∗i ∈ DCθ
i (p∗) for any i ∈ I

such that z∗ =
∑
i∈I

d∗i −
∑
j∈J

Sj and that (p∗|
∑
i∈I

d∗i −
∑
j∈J

Sj) ≧ (q|
∑
i∈I

d∗i −
∑
j∈J

Sj) for any q ∈ ∆Fλ . By

Assumption 4, (p∗|d∗i ) = mi, and hence, (p∗|
∑
i∈I

d∗i −
∑
j∈J

Sj) = 0. Therefore, 0 ≧ (q|
∑
i∈I

d∗i −
∑
j∈J

Sj) for any

q ∈ ∆Fλ . Suppose that there would exist a measurable set E ∈ Σ with µ(E) > 0 such that
∑
i∈I

d∗i >
∑
j∈J

Sj

a.e. s ∈ E. Define πE ∈ ba+ by πE(A) =

∫
A

χE dµ for any A ∈ Σ*30, and put γ = (πE |S) > 0 and

ΠE ∈ ba+ by
M

γ
πE . Then, we can regard ΠE as an element of ∆Fλ . Then, (ΠE |

∑
i∈I

d∗i −
∑
j∈J

Sj) > 0,

which leads to a contradiction. Thus,
∑
i∈I

d∗i ≦
∑
j∈J

Sj a.e. s ∈ S.

Next, suppose that there would exist i ∈ I such that d∗i /∈ DFλ
i (p∗)*31. Then, there would exist

z ∈ BFλ
i (p∗) such that (z, d∗i ) ∈�Fλ . (tz + (1− t)d∗i , d

∗
i ) ∈�Fλ for any t ∈ (0, 1] because of convexity (or

linearlity) of preference, and tz + (1 − t)d∗i ∈ BCθ
i (p∗) for t sufficiently close to 1 because of d∗i ∈ int Cθ,

which leads to a contrudiction.

Thus, (p∗, (d∗i )i∈I) ∈ ∆Fλ ×
∏
i∈I

XFλ
i is a Fisher markets quasi-equilibrium of both of the subeconomy

ECθ and the subeconomy EFλ , which completes the proofs of Proposition 1 and 2.

*28 Recall that Xi
Cθ = Cθ.

*29 Kakutani’s fixed point theorem asserts that a nonempty-, convex- and compact-valued upper semicontinuous relation

from a nonempty, convex and compact subset of a finite dimensional topological vector space to the same subset has

a fixed point [2], [4].
*30 A positive measure πE is regarded as an elment of L1 which is suitably embeded in ba.

*31 Recall that BCθ
i (p) = BFλ

i (p) ∩ Cθ for any p ∈ ∆Fλ , and hence, d∗i ∈ BFλ
i (p∗).
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4 A proof of Theorem 1

In this chapter, we will give a proof of Theorem 1. For the purpose, we will first make the price-extension

argument. Let (L, κ) be a Hausdorff locally convex space*32, where κ is a vector space topology of L,

D ⊂ L be a convex cone with vertex 0, and L◦ be a topological dual of (L.κ). Abusing notation, we will

denote the bilinear form of the dual pair 〈L,L◦〉 by ( · | · ) : L◦ × L −→ R. In this more general settings,

the next two lemmata hold.

Lemma 4. In addition to the above conditions, assume that M is a finite dimensional vector subspace

of L and that M ∩ intκD 6= ∅. Then, if a linear functional ρ : M −→ R is continuous in the relative

κ-topology, which hence is homeomorphic with the same dimensional Eucledean topology as M , and if

(ρ|d) ≧ 0 for any d ∈ D ∩M , there exists a κ-continuous linear functional π : L −→ R such that

π ◦ incM = ρ*33 and (π|d) ≧ 0 for any d ∈ D.

Lemma 5. In addition to the above conditions, assume that intκD 6= ∅. Then, {π ∈ L◦ : (π|d0) =

α ∧ (π|d) ≧ 0 for any d ∈ D} is a σ(L◦, L)-compact subset of L◦ for any constant α > 0 and d0 ∈ intκL,

where σ(L◦, L) is a weak∗ topology of L◦*34.

We will give a proof of Lemma 4 and 5 later in Appendix.

Let {pFλ}λ∈Λ be a family of Fisher market quasi-equilibrium price of subeconomy EFλ , which consti-

tutes net. Take || · ||∞-topology as κ, Fλ as M , and L∞
+ as D in Lemma 4. Then, pFλ satisfies all of the

conditions of Lemma 4 for any λ ∈ Λ. Therefore, pFλ has a price-extension πFλ ∈ ba+ with (π|S) =M .

Next, define ∆ by {π ∈ ba : (π|S) = M ∧ (π|x) ≧ 0 for any x ∈ L+
∞}. Take S as d0, and α as M > 0.

Then, the above ∆ is σ(ba,L∞)-compact subset of ba by Lemma 5. Note that πFλ ∈ ∆ by the definition

of ∆.

Next, define FE by {(xi)i∈I ∈
∏
i∈I

Xi :
∑
i∈I

xi ≦ S}, and CS by {x ∈ L∞ : ||x||∞ ≦ ||S||∞}. FE is a

feasible set of an economy E , and it is a subset of m-hold product of CS . Clearly, CS is convex, and

|| · ||∞-bounded, and m-fold product C ≡ CS × · × CS of CS includes FE . Since CS is a || · ||∞-closed

ball at a center 0 is a σ(L∞,L1)-compact subset of L∞ by Banach-Alaoglu theorem and Minkowski’s

inequality*35, C is compact with a product topology of σ(L∞,L1).

Let dFλ
i be a i’s equilibrium demand schedule of a truncated subeconomy EFλ . According to the above

argument, a net {(πFλ , (dFλ
i )i∈I)}λ∈Λ has a convergent subnet with a product topology σ(ba,L∞) ×

σ(L∞,L1)× · · · × σ(L∞,L1). Suppose that (π∗∗, (d∗∗i )i∈I) ∈ ∆× C is a limit of a convergent subnet of

{(πFλ , (dFλ
i )i∈I)}λ∈Λ.

*32 A locally convex space is a topological vetor space whose topology is genarated by a separating family of seminorms.

Note that all of spaces in this paper are locally convex ones. For the details, see [17], [18]
*33 incM : M −→ L is an inclusion mapping.
*34 The weak∗ topology σ(L◦, L) is the weakest toplogy of L◦ under which the linear functional (·|x) : L◦ −→ R is

continuous for any x ∈ L.
*35 See [1], [17], [18].
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Lemma 6. (π∗∗, (d∗∗i )i∈I) ∈ ∆×
∏
i∈I

Xi is a Fisher markets quasi-equilibrium of an economy E.

Proof. Abusing notations, let {(πFλ , (dFλ
i )i∈I)}λ∈Λ be a convergent subnet with a limit (π∗∗, (d∗∗i )i∈I)

in the above. As already mentioned, π∗∗ ∈ ∆ and hence π∗∗ 6= 0. Since Xi = L∞
+ is σ(L∞,L1)-

closed convex subset of L∞, d∗∗i ∈ Xi for any i ∈ I. Note that we can regard a convergence of net

{dFλ
i }λ∈Λ to the limit d∗∗i in the topology σ(L∞,L1) as a convergence in the topology τ(L∞,L1) since

σ(L∞,L1)-closed convex subset of L∞ is τ(L∞,L1)-closed convex subset of L∞ *36.

By the definition of the ordering on L∞,
∑
i∈I

d∗∗i ≦
∑
j∈J

Sj , a.e. s ∈ S since
∑
i∈I

dFλ
i ≦

∑
j∈J

Sj , a.e. s ∈ S

holds for any λ ∈ Λ. Therefore, (d∗∗i )i∈I ∈ FE .

Recall that Ξi = {x ∈ L∞ :
⟨
πki |x

⟩
≦ Mki for any ki ∈ Ki} is a set of commodity bundles which are

attainable to i under i’s all of the napsack constraints and that dFλ
i ∈ BFλ

i (pFλ). By the constructions

or Assumption 1, d∗∗i ∈ Ξi. Take x ∈ Xi ∩Ξi such that (x, d∗∗i ) ∈≿i in order to show that (π∗∗|x) ≧ mi.

By Assumption 4, there exists y ∈ Xi∩Ξi∩B(x : ϵ) such that (y, x) ∈�i, where B(x : ϵ) is a || · ||∞-closed

ball at the center x with a radius ϵ > 0. Then, by Assumption 2, the strict lower contour set {z ∈ Xi :

(y, z) ∈�i} is τ(L∞,L1)- or σ(L∞,L1)-open subset of Xi. Let λ1 ∈ Λ be such that y ∈ Fλ1
. Then,

(y, dFλ
i ) ∈�Fλ

i for any successor Fλ of Fλ1
since dFλ

i −→ d∗∗i . Therefore, (πFλ |y) > (πFλ |dFλ
i ) = mi for

any successor Fλ of Fλ1 , and, hence, (π
∗∗|y) ≧ mi. Thus, there exists a || · ||∞-convergent net {yϵ} with

a limit x such that yϵ ∈ Xi ∩ Ξi ∩ B(x : ϵ) and (π∗∗|yϵ) ≧ mi, and, hence, (π
∗∗|x) ≧ mi, which implies

(π∗∗|d∗∗i ) ≧ mi. Suppose that there would exist i ∈ I such that (π∗∗|d∗∗i ) > mi. Summing over these

inequalities, we could get (π∗∗|
∑
i∈I

d∗∗i − S) > 0, which leads to a contradiction since π∗∗ is a positive

linear functional. Therefore, d∗∗i ∈ BF
i (π

∗∗).

Finally, we would like to show that d∗∗i ∈ DF
i (π

∗∗). By the above argument, it suffices to show that

x ∈ Xi ∩ Ξi and (π∗∗|x) = mi implies (d∗∗i , x) ∈≿i. Suppose that (x, d∗∗i ) ∈�i. Since 0 ∈ BF
i (π

∗∗) and

the continuity and the convexity of preference, there would exist t ∈ [0, 1) sufficiently close to 1 such

that (tx, d∗∗i ) ∈�i. However, (π
∗∗|tx) < mi, which leads to a contradiction in the above argument.

Thus, (π∗∗, (d∗∗i )i∈I) ∈ ∆×
∏
i∈I

Xi is a Fisher markets quasi-equilibrium of an economy E .

Finally, we will argue about the feasibility of a Fisher markets quasi-equilibriun allocation of an

economy E . Let (π∗∗, (d∗∗i )i∈I) ∈ ∆×
∏
i∈I

Xi be a Fisher markets quasi-equilibrium.

Proposition 3. For a Fisher markets quasi-equilibrium allocation (d∗∗i )i∈I ∈
∏
i∈I

Xi of an economy E,∑
i∈I

d∗∗i =
∑
j∈J

Sj , a.e. s ∈ E for any E ∈ Σ with π∗∗(E) > 0.

Proof. Note that (d∗∗i )i∈I satisfies
∑
i∈I

d∗∗i ≦
∑
j∈J

Sj , a.e. s ∈ S. Suppose that there would exist a measur-

able set E ∈ Σ with π∗∗(E) > 0 such that
∑
i∈I

d∗∗i 6=
∑
j∈J

Sj , a.e. s ∈ E. Since π∗∗ is a positive bounded

*36 It is known that the converse is true. In general, if L◦is a topological dual of a locally convex space (L, κ), then a

convex subset of L is κ-closed if and only if it is σ(L,L◦)-closed [17], [18].
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additive non-zero measure,

(π∗∗|
∑
j∈J

Sj −
∑
i∈I

d∗∗i ) =

∫
(
∑
j∈J

Sj −
∑
i∈I

d∗∗i ) dπ∗∗

=

∫
E

(
∑
j∈J

Sj −
∑
i∈I

d∗∗i ) dπ∗∗ +

∫
S\E

(
∑
j∈J

Sj −
∑
i∈I

d∗∗i ) dπ∗∗ > 0.

On the otherhand, by linearlity of linear functional,

(π∗∗|
∑
j∈J

Sj −
∑
i∈I

d∗∗i ) = (π∗∗|S)−
∑
i∈I

(π∗∗|d∗∗i ) =M −M = 0

,which leads to a contradicrion.

Appendix

In this appendix, we will give proofs of Lemma 4 and 5. Recall the conditions about Lemma 4 and 5:

Let (L, κ) be a Hausdorff locally convex space, where κ is a vector space topology of L, D ⊂ L be a

convex cone with vertex 0, and L◦ be a topological dual of (L, κ). We will denote the bilinear form of

the dual pair 〈L,L◦〉 by ( · | · ) : L◦ × L −→ R.

Lemma 4. In addition to the above conditions, assume that M is a finite dimensional vector subspace

of L and that M ∩ intκD 6= ∅. Then, if a linear functional ρ : M −→ R is continuous in the relative

κ-topology, which hence is homeomorphic with the same dimensional Eucledean topology as M , and if

(ρ|d) ≧ 0 for any d ∈ D ∩M , there exists a κ-continuous linear functional π : L −→ R such that

π ◦ incM = ρ and (π|d) ≧ 0 for any d ∈ D.

Proof. There exists d0 ∈ M ∩ intκD and a balanced κ-open neighborhood of {0} such that {d0}+ V ⊂
D*37. Take x ∈ M ∩ (V −D). Then, there exists v ∈ V and y ∈ D such that x = v − y, and , hence,

x = d0 − {(d0 − v) + y} ∈ M ∩ ({d0} − D) since V is balanced and D is a convex cone with vertex

{0}. Putting x = d0 − d for some d ∈ D, (ρ|x) = (ρ|d0) − (ρ|d) ≦ (ρ|d0). Therefore, there exists

α > 0 such that (ρ|x) < α for any x ∈ M ∩ (V − D) since {0} ∈ M ∩ (V − D). Define N ⊂ M by

{z ∈ M : (ρ|z) = α}, which is an affine subspace of M and satisfies N ∩ (V −D) = ∅ by its definition.

Note that intκ(V −D) 6= ∅. Therefore, by Hahn-Banach extension theorem*38, there exists a hyperplane

H ⊂ L such that N ⊂ H and H ∩ (V −D) = ∅, and hence, there exists a linear functional π : L −→ R
such that H = {z ∈ L : (π|z) = α}.
(π|x) < α for any x ∈ (V −D) since 0 ∈ V −D and V −D is convex, and hence, (π|x) > −α for any

z ∈ D since 0 ∈ V . Suppose that there would exist x ∈ D such that (π|x) < 0 in order to show that

(π|x) ≧ 0 for any x ∈ D. Then, there exists β > 0 such that (π|βx) < −α. Since D is a convex cone

with a vertex {0}, βx ∈ D, which leads to a contradiction.

*37 The balancedness of an open neighborhood V of {0} means that αV ⊂ V holds for any α ∈ [−1, 1].
*38 See [17], [18]. Note that this version is sometimes called Geometric Hahn-Banach extension theorem [18].
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Finally, we will show π ∈ L◦. Take v ∈ V arbitrarily. Then, (π|v) ≧ −(π|d0) since (π|v) = (π|v +
d0) − (π|d0) and v + d0 ∈ D. Since v ∈ V , −v ∈ V . Therefore, (π| − v) ≧ −(π|d0). These imply

|(π|v)| ≦ (π|d0) for any v ∈ V . Since a bounded linear functional on κ-open neighborhood of {0} is

continuous, π ∈ L◦.

Lemma 5. In addition to the above conditions, assume that intκD 6= ∅. Then, {π ∈ L◦ : (π|d0) =

α ∧ (π|d) ≧ 0 for any d ∈ D} is a σ(L◦, L)-compact subset of L◦ for any constant α > 0 and d0 ∈ intκD,

where σ(L◦, L) is a weak∗ topology of L◦.

Proof. Take a balanced κ-open neighborhood of {0} such that {d0}+ V ⊂ D. Then, by Banach-Alaoglu

Theorem [17] [18], V ◦ ≡ {π ∈ L◦ : |(π|v)| ≦ α for any v ∈ V } is a σ(L◦, L)-compact subset of L◦. It

suffices to show that P ≡ {π ∈ L◦ : (π|d0) = α ∧ (π|d) ≧ 0 for any d ∈ D} is a σ(L◦, L)-closed subset of

V ◦. Take π ∈ P . Since d0 ± v ∈ D for any v ∈ V , (π|d0 ± v) ≧ 0. Therefore, |(π|v)| ≦ α for any v ∈ V ,

and hence, P ⊂ V ◦. On the other hand, P = {π ∈ L◦ : (π|d0) = α} ∩
[ ∩
d∈D

{π ∈ L◦ : (π|d) ≧ 0}
]
, which

is an intersection of σ(L◦, L)-closed subsets of L◦.
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