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I  Introduction

We consider a market analyst observing a 
finite dataset such as consumer purchase re-
cords. It is hypothesized that in such purchases, 
consumers make choices that provide the high-
est utility within a limited budget based on 
their own preferences. One of the themes of re-
vealed preference theory is to test whether 
finite data are inconsistent with the utility 
maximization hypothesis. The study at the be-
ginning of this line of research is Afriat [1]. 
Afriat’s Theorem states that a given dataset is 
consistent with utility maximization if and on-
ly if it satisfies the generalized axiom of 
revealed preference (GARP). However, a single 
mistaken choice is enough to declare an entire 
dataset incompatible with rationality, even if 
all other choices could be explained as resulting 
from utility maximization. In practice, most 
choice datasets contain some revealed prefer-
ence cycles that do not satisfy GARP.

In order to measure the degree of deviation 
of these violations, various and sundry good-
ness- of-fit indices for revealed preference 
conditions have been proposed in the literature 
(Lanier and Quah [10], Smeulders, Crama, and 
Spieksma [15]). The Afriat index (Afriat [2]) 
measures the percentage of a consumer’s bud-
get that is spent in violation of GARP. The 
Houtman-Maks index (Houtman and Maks 
[9]) indicates the largest percentage of observa-
tions that satisfy GARP. The minimum cost 
index (Dean and Martin [3]) is the minimum 
cost of removing revealed preference relations 
so that the remaining relations satisfy GARP. 
Shiozawa ([13]) proposed a goodness-of-fit 
measure (SCCI) using information obtained 
from strongly connected components. In this 
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paper, we focus on the characteristics of strong-
ly connected components and propose two 
new goodness-of-fit measures when there are 
linear budget constraints.

II  Definitions and 
  preliminaries

We introduce some notation used through-
out the paper. There are n different types of 
goods in the market. The consumer has a bud-
get b for consumption and a utility function U : 
Rn

+ → R. We consider a market analyst observ-
ing a finite dataset D = {(pt, xt) | t = 1, . . . , T} 
over the time t ∈ {1, . . . , T}, where pt = (pt

1, . . . 
, pt

n) ∈ Rn
++ is the positive price vector and xt =  

(xt
1, . . . , xt

n)∈ Rn
+ \{0} is the consumer’s de-

mand bundle under prices pt and the available 
budget. bt ∈ R+. The inner product pt·xt =  

Note that a utility maximizer may violate 
GARP if the n types of goods are discrete, i.e., 
xt ∈ Zn

+ \{0}. S. Fujishige and Z. Yang [8] ex-
tended the theory of revealed preference to 
discrete models and established a discrete ana-
logue of Afriat’s theorem using a concept called 
tight budget demand set and the properties of 
strongly connected components of graphs. 
Polisson and Quah [11] and Forges and Iehè[6] 
also considered rationalizability for indivisible 
goods.

Theorem 2.1 (Afriat’s Theorem [1], [19]): The following four statements are equivalent:
(a) The dataset D can be rationalized by a locally non-satiated utility function U.
(b) The dataset D satisfies GARP.
(c) There is a positive solution ϕ, λ to the set of linear inequalities λj ≦ ϕi + λi pi · (xj − xi) for all i, j.
(d) The dataset D can be rationalized by a continuous, concave, strictly monotone increasing utility 
function U.
 □

Σn
i=1 pt

i xt
i represents total expenditure at time t. 

We assume pt·xt = bt. The dataset D is rational-
ized by a utility function U in the sense that for 
all t ≦ T, xt maximizes U over {x | pt·x ≦ pt·xt}. 
The basic question raised by Afriat is whether 
the dataset is rationalized by a locally non-sati-
ated utility function U .

A dataset D satisfies WARP if and only if, for 
each pair of distinct bundles xi, xj, i, j ≦ T with 
pi·xi ≧ pi·x j, it is not the case that pj ·x j ≧ pj ·xi. 
We also say that the consumer’s behavior 
satisfies Generalized Axiom of Revealed Prefer-
ence (GARP) if (pt1 , xt1), (pt2 , xt2), . . . , (ptm, xtm) 
satisfying ptk·xtk ≧ ptk·xtk+1 (k = 1, . . . , m − 1) 
for all t1, . . . , tm ≦ T, we have ptm·xt1 ≧ ptm·xtm. 
A utility function U is said to rationalize the 
observed dataset D if U (xt) ≧ U (x) for all x 
such that pt·xt ≧ pt·x.

Let V and A be finite sets. A graph G is a pair 
(V, A) where V is the set of vertices and A is the 
set of arcs. We often denote it by G = (V, A). A 
directed graph G = (V, A) consists of a set V of 
vertices and a set A of arcs whose elements are 
ordered pairs of distinct vertices. If a ∈ A, i, j 
∈ V , and a = (i, j), then we say that a joins i to j. 
Also we call that i is the tail of a and j is the 
head of a. A path in G = (V, A) is a sequence P 
= (i1, . . . , il) of different vertices ik (k = 1, . . . , l) 
such that (ik, ik+1) ∈ A (k = 1, . . . , l − 1). The 
end vertices of this path are i1 and im, and the 
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path is said to be an (i1, il)-path. If P is an (i1, il)-
path in G = (V, A) and a ∈ A is an arc that joins 
il to i1, then C = (i1, . . . , il, i1) is called a cycle.

A graph G′ = (W, B) is called a subgraph of G 
= (V, A) if W ⊆ V and B ⊆ A. For a vertex 
subset W ⊆ V, the subgraph G[W] of G whose 
vertex set is W and whose arc set consists of the 
arcs of G joining vertices of W is called the sub-
graph of G induced by W . We denote by G − 
a the graph obtained from G = (V, A) by 
deleting the arc a ∈ A. Furthermore, if B ⊆ A, 
we denote by G − B the graph obtained by de-
leting the arcs in B. A (sub)graph H is said to 
be strongly connected if for every two vertices i, j 
in the graph H there exists a path in H from i 
to j. A maximal strongly connected subgraph 
of a graph G = (V, A) is called a strongly con-
nected component  of  the  g raph G .  G  i s 

GARP is equivalent to what Afriat called cy-
clical consistency (Proposition 2.2 (b)). The 
cyclic consistency plays a fundamental role in 
the various literature on revealed preference 
(Dziewulski, Lanier, and Quah [5]). Algo-
rithms for fast verification of GARP have been 
developed (Talla Nobibon, B. Smeulders, and 
F. C. R. Spieksma [16], etc.).

Proposition 2.2 ([8]): The following five statements are equivalent:
(a) The data matrix DT satisfies GARP.
(b) Every cycle C in the graph GD

≦0 satisfies pi·(x j − x i) = 0 for all (i, j) ∈ C.
(c) Every negative length cycle in the graph GD contains at least one arc (i, j) such that pi(x j − x i) > 0.
(d) Every cycle in the graph GD that contains an arc of negative length must also contain an arc of posi-
tive length.
(e) Every strongly connected component Hk = (Vk, Ak) of the graph GD

≦0 satisfies pi·(x j −x i) = 0 for all (i, 
j) ∈ Ak. □

III Goodness-of-fit measures 
  for GARP

For a given dataset, the revealed preference 
tests give results that either rationalizable or 
not. However, we are sometimes interested in 
the degree of these violations. A lot of good-
ness-of-fit measures for rationality have been 
proposed. In this section, we explain four 
goodness-of-fit measures.

Afriat [2] defines a partial efficiency index. 

decomposed into its strongly connected com-
ponents Hk = (Vk, Ak) (k ∈ K) where {Vk | k ∈ 
K} is a partition of V . An algorithm by Tarjan 
([17]) finds a partition in linear time, O(|V| + 
|E|).

We use the data matrix DT = (pi·(xj − xi)) to 
construct a directed graph GD = (VT , A), 
where VT = {1, 2, . . . , T } is the set of vertices 
corresponding to the indices 1, 2, . . . , T of the 
observations, and for i, j ∈ VT with i ≠ j the 
ordered pair (i, j) ∈ A is an arc with a length pi 
· (xj − xi). A cycle is called a negative length cy-
cle if the total length of the contained arcs in 
the cycle is strictly less than zero. For a directed 
graph GD = (VT , A) we define the following 
directed subgraph GD

≦0 = (VT , A≦0) where 
A≦0 is the set of arcs with negative length, i.e., 
A≦0 = {(i, j) ∈ A | pi·(x j − x i) ≦ 0}.
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For a given real number e with 0 ≦ e ≦ 1, x t is 
directly revealed preferred to x at efficiency lev-
el e if ept·x t ≧ pt·x. We say that the consumer’s 
overall behavior satisfies e-Generalized Axiom 
of Revealed Preference (e-GARP) if (pt1, x t1), 
(pt2, x t2), . . . , (ptm, x tm) satisfying eptk·x tk ≧ 

Definition 3.1: (Afriat’s efficiency index)
For a dataset D = {(pt, x t) | t = 1, . . . , T }, the Afriat’s efficiency index (AEI) is defined as follows:

The Houtman-Maks index reports the largest 
number of elements of subset of observations 

ptk·x tk+1 (k = 1, . . . , m − 1) for all t1, . . . , tm ≦ T, 
we have ptm·x t1 ≧ eptm·x tm. If e = 1, this is the 
standard direct revealed preference relation. If 
e = 0, e-GARP is always satisfied. Hence there 
is some critical level e* where the data just sat-
isfy e-GARP.

satisfying GARP. For a finite set X we denote 
its cardinality by |X|.

Definition 3.2: (Houtman-Maks index)
For a dataset D = {(pt, xt) | t = 1, . . . , T } the Houtman-Maks index is defined as follows:

Definition 3.3: (Dean and Martin’s minimum cost index)
For a dataset D = {(pt, xt) | t = 1, . . . , T } the minimum cost index (MCI) is defined as follows:

Dean and Martin [3] proposed a goodness-
of-fit measure based on Afriat’s cyclical consis- 

On the other hand Shiozawa [13] paid atten-
tion to the fact that if there is a data which 
violates GARP then a relevant negative length 

tency.

arc is contained in a strongly connected com-
ponent of the graph G≦0.
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Definition 3.4: (Shiozawa’s strongly connected component index [13])
For a dataset D = {(pt, xt) | t = 1, . . . , T } the strongly connected component index (SCCI) is defined 
as follows:

where Hk = (Vk, Ak) (k ∈ K) is the strongly connected component decomposition of G≦0. If any (i, j) ∈ 
A≦0 satisfies pi· (x j − x i) = 0, Index 1(D) = 0. □

Example 3.5: Let t = 1, 2, 3, 4. Suppose that the dataset D1 is given by
{(pt, xt)} | t ≦ 4} = {((9, 15), (40, 31)), ((10, 14), (60, 16)), ((12, 13), (55, 19)), ((13, 12), (44, 

28))} and that the consumer has a budget of b1 = 825, b2 = 824, b3 = 907, b4 = 908.

Then

and for the directed subgraph G1
≦0 = (VT , A1

≦0), A1
≦0 = {(1, 2), (1, 3), (1, 4), (2, 3), (3, 1), (3, 4), (4, 1)}.

 
-45 

4 

-15 -8 
 

1 

3 

2 -45 

-16 

-9 
 -24 

G1
≦0 contains cycles (1, 3, 1), (1, 2, 3, 4, 1) and so on. Hence the observed data is not consistent with 

GARP. □
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Note that SCCI always returns a value of 1 
when G≦0 is a single strongly connected com-
ponent. However, it seems to be a proper 

indicator when there are multiple strongly con-
nected components.

First, we consider AEI(D1) for Example 3.5.   
If e < 883

907  , then A≦0 = {(1, 2), (1, 3)} and the 
graph G≦0 does not contain a cycle. Else if e = 

Next, we consider HMI(D1), MCI(D1), and 
SCCI(D1) for Example 3.5. Note that G≦0 
contains cycles (1, 3, 1), (1, 4, 1), (1, 2, 3, 1), 

883
907  , then A≦0 = {(1, 2), (1, 3), (3, 1)} and G≦0 
contains the cycle (1, 3, 1). Hence

(1, 2, 3, 4, 1) and G≦0 is strongly connected 
component. Hence

Example 3.6: Let t = 1, 2, 3, 4. Suppose that the dataset D3 is given by

and that the consumer has a budget of b1 = b2 = 100, b3 = 104, b4 = 110.

Then

and A≦0 = {(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 4), (4, 3)}. G≦0 contains cycles (1, 2, 1) and 
(3, 4, 3).
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If e <  96
100 , then A≦0 = {(1, 2), (1, 3), (1, 4), 

(2, 4)} and the graph G≦0 does not contain a 
cycle.  Else if e =  96

100 , then A≦0 = {(1, 2), (1, 3), 

Example 3.7: Let t = 1, . . . , 8. Suppose that the dataset D3 = {(pt, xt) | t ≦ 8} is given by
{((3, 5, 5), (27, 24, 29)), ((4, 5, 4), (21, 34, 24)), ((4, 4, 5), (31, 28, 22)), ((4, 5, 5), (29, 25, 24)), 
((3, 5, 6), (26, 27, 24)), ((4, 5, 6), (29, 27, 25)), ((3, 5, 7), (27.5, 30.5, 23)), ((4, 6, 5), (31, 28, 
23))} and that the consumer has a budget of b1 = 346, b2 = 350, b3 = 346, b4 = 361, b5 = 357, b6 = 
401, b7 = 396, b8 = 407. Corresponding data matrix DT is

(1, 4), (2, 1), (2, 4)} and G≦0 contains the cycle 
(1, 2, 1). Hence

Strongly connected components of the graph G≦0 are H1 = ({1, 2}, {(1, 2), (2, 1)}) and H2 = ({3, 4}, 
{(3, 4), (4, 3)}). □
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G2
≦0 contains three strongly connected components. □

IV  Critical arcs

SCCI uses all negative length arcs of the 
strongly connected components. However, the 
information that some of the length could be 
improved to satisfy GARP seems to be lost. In 
this section, we propose a concept called criti-
cal arcs about the arcs to be removed so that 
the sum of the length is as small as possible 
under the condition that the remaining 
relationships satisfy GARP. First, examples are 
used to illustrate the procedures for identifying 
critical arcs.

We denote by ASCC(G) the set of arcs of the 
strongly connected components of G. Decom-
pose GD

≦0 into strongly connected components. 
If any (i, j) ∈ ASCC(GD

≦0) satisfies pi ·(xj −xi) = 
0, GARP is satisfied. If GARP is not satisfied, 
then there exists at least one arc with negative 
length contained in (i, j) ∈ ASCC(GD

≦0).
Choose one arc a1 = (i1, j1) ∈ ASCC(GD

≦0) 
with the maximum length l1, but if there is 
more than one arc with the length l1, select the 
arc with the maximum value of       . If the val-
ues of        are also equal, choose the arc with 
the smallest tail number i, and if the number i 

pi·xj

pi·xi
pi·xj

pi·xi
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is also equal, choose the arc with the small-
est head number j. The arc a1 = (i1, j1) is a 

Example 4.1: For Example 3.5, ASCC(G≦0
D1 ) = A≦0 and a critical arc is (2, 3) with length l1 = −8. For 

Example 3.6, ASCC(G≦0
D2 ) = {(1, 2), (2, 1), (3, 4), (4, 3)} and a critical arc is (4, 3) with length l1 = 

−1. For Example 3.7

ASCC(G≦0
D 3 ) = {(1, 3), (3, 2), (2, 1), (4, 5), (5, 4), (6, 7), (7, 8), (8, 6)} and a critical arc is (6, 7) 

with length l1 = −0.5. □

Example 4.2: Let t = 1, . . . , 7. Suppose that the dataset D4 is given by
{(pt, xt) | t ≦ 7}

=  {((4, 5, 4), (30, 44, 34)), ((3, 5, 6), (38, 34, 37)), ((4, 4, 6), (44, 36, 31)), ((4, 5, 5), (39, 29, 41)), 
((4, 5, 6), (37, 43, 28)), ((3, 5, 7), (36, 27, 41)), ((4, 4, 7), (44, 38, 29))}

and that the consumer has a budget of b1 = 476, b2 = b3 = b4 = 506, b5 = 531, b6 = 530, b7 = 531.

critical arc.
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Hence the corresponding data matrix is
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Since G4
≦0 is strongly connected component, ASCC(G≦0

D4 ) = A≦0. The maximum length l1 of each arc 
is −1, which corresponds to the arcs (1, 5) and (6, 3).

Hence a critical arc is (6, 3). □

Next, decompose GD
≦0 − a1 into strongly 

connected components. If G≦0 − a1 satisfies 
GARP, then the critical arc of G≦0 is a1 = (i1, 
j1) .  Else choose one arc a2 = ( i2,  j2)  ∈ 

Example 4.3: For Example 3.5, a1 = (i1, j1) = (2, 3) with length l1 = −8. ASCC(G≦0
D1  − a1) = {(1, 3), 

(1, 4), (3, 1), (3, 4), (4, 1)}.

ASCC(GD
≦0 − a1) based on the same rules as 

when we chose a1 . Repeat these procedures 
until G≦0 −  {ah} satisfies GARP. Then 
critical arcs of GD

≦0 is {a1, . . . , an}.
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a2 = (1, 4) with length l2 = −9.
a3 = (3, 4) with length l3 = −15.

ASCC(G≦0
D1  − {a1, a2, a3}) = {(1, 3), (3, 1)}.

Hereafter, the data matrix DT is assumed to be 
non-negative, i.e., it has at least one negative el-
ement.
Algorithm
G := GD

≦0.
1. Decompose G into strongly connected 

components. If any (i, j) ∈ ASCC(G) satisfies pi 
· (xj − xi) = 0, GARP is satisfied, and the algo-
rithm terminates.
2. Set n := 1 and l : = 0, and repeat the follow-
ing loop.

Choose one arc an = (in, jn) ∈ ASCC(G) with 
the maximum length ln, but if there is more 
than one arc with the length ln, select the arc 
with the maximum value of        . If the values 
of       are also equal, choose the arc with the 
smallest tail number i, and if the number i is al-
so equal, choose the arc with the smallest head 
number j.

G := G − an

pi·xj

pi·xi
pi·xj

pi·xi

a4 = (3, 1) with length l4 = −24.
Since ASCC(G1

≦0 −{a1, a2, a3, a4}) = ∅, i.e., G1
≦0 −{a1, a2, a3, a4} satisfies GARP. Hence critical 

arcs of G1
≦0 is {(2, 3), (1, 4), (3, 4), (3, 1)}. □

l := l − ln
The loop terminates when any (i , j) ∈ 

ASCC(G) satisfies pi · (xj − xi) = 0.
Otherwise, n := n + 1 and return to the be-

ginning.

V Our goodness-of-fit 
  measures for GARP

In this section, we introduce two goodness-
of-fit measures for GARP that use information 
on the length of the critical arcs. Denote by L 
the sum of absolute lengths of critical arcs. We 
focus on L as the numerator. This value L can 
be obtained using the algorithm in the previ-
ous section.

The first index we propose uses the sum of 
the lengths of the arcs of the strongly connect-
ed component of G≦0 as the denominator.
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Definition 5.1: For a dataset D = {(pt, xt) | t = 1, . . . , T }, if some (i, j) ∈ A≦0 satisfies pi · (xj − xi) 
< 0, Index 1 is defined as follows:

If any (i, j) ∈ A≦0 satisfies pi · (xj − xi) = 0, we define Index 1(D) = 0. □

Note that the denominator of Index 1 is equal 
to the numerator of SCCI.

Example 5.2: For Example 3.5,

Example 5.3: For example 4.2, ASCC(G≦0
D1 ) = A≦0.
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Hence a3 = (5, 6). ASCC(G≦0
D4  − {a1, a2, a3}) = {(1, 2), (2, 3), (3, 1), (6, 5), (7, 5)}. a4 = (3, 1).
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a1 = (6, 3) with length l1 = −1.

ASCC(G≦0
D4  − a1) = {(1, 2), (2, 3), (3, 1), (5, 6), (6, 5), (6, 7), (7, 5)}.  a2 = (6, 7) with length l2 = 

−5.

ASCC(G≦0
D4  − {a1, a2}) = {(1, 2), (2, 3), (3, 1), (5, 6), (6, 5), (7, 5)}.  There are three arcs of length 

−6 : (1, 2), (3, 1), (5, 6).



017New Goodness-of-Fit Measures for GARP and Critical Arcs Takeshi Naitoh

Since ASCC (G4
≦0 − {a1, a2, a3, a4}) = ∅, each arc contained in ASCC(G1

≦0 − {a1, a2, a3, a4}) has 
length 0. Critical arcs of G4

≦0 is {(6, 3), (6, 7), (5, 6), (3, 1)}.

MCI can be considered to effectively use in-
formation on the length of arcs, that need to be 
minimally modified to satisfy GARP. Howev-

Definition 5.4: For a dataset D = {(pt, xt) | t = 1, . . . , T }, Index 2 is defined as follows:

For Example 4.2,

er, MCI is not polynomial time. The second 
index has the same numerator as Index 1 and 
the same denominator as MCI.

For Example 3.5,
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VI  Conclusion

SCCI uses all negative length arcs of the 
strongly connected components in the calcula-
tion of the numerator. By using the length of 
critical arcs instead, Index 1 may be more suit-
able than SCCI for cases with fewer strongly 
connected components of G≦0. Index 2 may be 
a relatively efficient way to obtain an approxi-
mate solution for MCI. However, it is a future 
issue that the ordering rule for arcs of the same 
length in the procedure for seeking a critical 
arc.

Appendix
For example 3.7, we show AEI(D3), HMI(D3), MCI(D3), Index 1(D3), and Index 2(D3).
For a given e its corresponding data matrix is
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If e < 343
346  , then G≦0

D3  is acyclic.
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Else if e = 343
346  , then G≦0 contains the arc (1,3) with length 0 and the cycle (1, 3, 2, 1). Hence

Note that for Index HMI, G≦0 [V \ t] (t ∈ 1, 2, 3) contains two cycle ((4, 5, 4) and (6, 7, 8, 6)), 
G≦0 [V \ t] (t ∈ 4, 5) contains two cycle ((1, 3, 2, 1) and (6, 7, 8, 6)), and G≦0 [V \ t] (t ∈ 6, 7, 8) 
contains two cycle ((1, 3, 2, 1) and (4, 5, 4)). Therefore

If we delete {(6, 7), (5, 4), (1, 3)}, then G≦0 does not contain a cycle. Hence
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Moreover Index 2(D3) = MCI(D3).
For Example 4.2 (the dataset D4), we show AEI(D4), HMI(D4), MCI(D4), and Index 2(D4). If e 

< 500
506  , then G≦0

D4  is acyclic.

A≦0 = {(1, 2), (1, 4), (1, 6), (2, 3), (2, 5), (2, 6), (2, 7), (3, 5), (3, 6), (4, 6), (6, 5), (7, 5)}

Else if e = 500
506  , then G≦0 contains the cycle (1, 2, 3, 1). Hence

Note that for Index HMI, G≦0[V \ t] (t ∈ 1, 2, 3, 4) contains a cycle (5, 6, 7, 5) and G≦0[V \ t] (t 
∈ 5, 6, 7) contains a cycle (1, 2, 3, 1). Therefore

If we delete {(1, 2), (5, 6), (6, 3)}, then G≦0 does not contain a cycle. Hence
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New Goodness-of-Fit Measures 
for GARP and Critical Arcs

Takeshi Naitoh

It is a well-known result in revealed prefer-
ence theory that a dataset is rationalizable if 
and only if the axiom called GARP is satisfied. 
We propose the concept of critical arcs, refer-
ring to the arcs to be removed from a graph 
representing a given dataset. These are collec-
tions of arcs whose total absolute length is as 
small as possible under the condition that the 
remaining relationships satisfy GARP after re-
moval. We also propose two goodness-of-fit 
measures using critical arcs.

Key words:  revealed preference, goodness-of-
fit measures, strongly connected 
components
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