Articles ] |Introduction

We consider a market analyst observing a
finite dataset such as consumer purchase re-
cords. It is hypothesized that in such purchases,
consumers make choices that provide the high-

New Goodness-of-Fit est utility within a limited budget based on

Measures for GARP and their own preferences. One of the themes of re-
Critical Arcs vealed preference theory is to test whether

finite data are inconsistent with the utility
maximization hypothesis. The study at the be-
ginning of this line of research is Afriat [1].
Afriat’s Theorem states that a given dataset is
consistent with utility maximization if and on-
ly if it satisfies the generalized axiom of
revealed preference (GARP). However, a single
mistaken choice is enough to declare an entire

Takeshi Naitoh dataset incompatible with rationality, even if

Associate Professor / Shiga University all other choices could be explained as resulting
from utility maximization. In practice, most
choice datasets contain some revealed prefer-
ence cycles that do not satisfy GARP.

In order to measure the degree of deviation
of these violations, various and sundry good-
ness- of-fit indices for revealed preference
conditions have been proposed in the literature
(Lanier and Quah [10], Smeulders, Crama, and
Spieksma [15]). The Afriat index (Afriat [2])
measures the percentage of a consumer’s bud-
get that is spent in violation of GARP. The
Houtman-Maks index (Houtman and Maks
[9]) indicates the largest percentage of observa-
tions that satisfy GARP. The minimum cost
index (Dean and Martin [3]) is the minimum
cost of removing revealed preference relations
so that the remaining relations satisfy GARP.
Shiozawa ([13]) proposed a goodness-of-fit
measure (SCCI) using information obtained
from strongly connected components. In this
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paper, we focus on the characteristics of strong-
ly connected components and propose two
new goodness-of-fit measures when there are
linear budget constraints.

Il |Definitions and
preliminaries

We introduce some notation used through-
out the paper. There are 7 different types of
goods in the market. The consumer has a bud-
get b for consumption and a utility function U':

> R. We consider a market analyst observ-
ing a finite dataset D = {(p", %) | t=1,..., T}
over the time# € {1, ..., T}, where p' = (pi, . ..
, Ph) € Rl is the positive price vector and &' =
(xf, ..., x5)E RL\{0} is the consumer’s de-
mand bundle under prices p’ and the available
budget. b, € R+. The inner product p'x’ =

S| pth represents total expenditure at time .
We assume p'x’ = b;. The dataset D is rational-
ized by a utility function U in the sense that for
all # < T, &' maximizes U over {x | p'x < p'a'}.
The basic question raised by Afriat is whether
the dataset is rationalized by a locally non-sati-
ated utility function U'.

A dataset D satisfies WARP if and only if, for
each pair of distinct bundles ', /, 7, j < T with
pla’ = plad, itis not the case that p/ &/ = p/ &
We also say that the consumer’s behavior
satisfies Generalized Axiom of Revealed Prefer-
ence (GARP) if (p", x"), (p",x"), ..., (p", x™)
satisfying pxlt = pla’t (k=1,...,m — 1)
forall#y, ..., ty = T, we have p.x't = p'm.x’.
A utility function U is said to rationalize the
observed dataset D if U (x') = U (x) for all x
such that p'x’ = p.x.

Theorem 2.1 (Afriat’s Theorem [1], [19]): The following four statements are equivalent:

(a) The dataset D can be rationalized by a locally non-satiated utility function U.

(b) The dataset D satisfies GARP.

(c) There is a positive solution §, ). to the set of linear inequalitiesd; < ¢; + Xip' - (¥ — x') for all i, j.
(d) The dataser D can be rationalized by a continuous, concave, strictly monotone increasing utility

Sfunction U.

Note that a utility maximizer may violate
GARRP if the 7 types of goods are discrete, i.c.,
¥ € Z1\{0}. S. Fujishige and Z. Yang 8] ex-
tended the theory of revealed preference to
discrete models and established a discrete ana-
logue of Afriat’s theorem using a concept called
tight budget demand set and the properties of
strongly connected components of graphs.
Polisson and Quah [11] and Forges and Iehe[6]
also considered rationalizability for indivisible
goods.

New Goodness-of-Fit Measures for GARP and Critical Arcs

L]

Let V7 and A be finite sets. A graph G is a pair
(V, A) where Vis the set of vertices and A is the
set of arcs. We often denote it by G = (V, A). A
directed graph G = (V, A) consists of a set J of
vertices and a set A of arcs whose elements are
ordered pairs of distinct vertices. If a € 4, 4, j
€ V,and a = (i,7), then we say that a joins i to .
Also we call that 7 is the zil of a and j is the
head of a. A path in G = (V, A) is a sequence P
=(#1,..., i) of different vertices i (k= 1,..., )
such that (i, ixr1) EA(k=1,...,/—1). The

end vertices of this path are 7; and 7, and the
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path is said to be an (i1, i)-pazh. If Pis an (i1, ij)-
pathin G = (V, A) and a € A is an arc that joins
irto iy, then C= (i1, ..., 4, 1) is called a cycle.

A graph G = (W, B) is called a subgraph of G
= (V, A) if W< Vand B € 4. For a vertex
subset 7 C V, the subgraph G[IV] of G whose
vertex set is / and whose arc set consists of the
arcs of G joining vertices of /¥ is called the sub-
graph of G induced by /7. We denote by G —
a the graph obtained from G = (¥, 4) by
deleting the arc a € A. Furthermore, if B C 4,
we denote by G — B the graph obtained by de-
leting the arcs in B. A (sub)graph H is said to
be strongly connected if for every two vertices 7, j
in the graph H there exists a path in A from i
to j. A maximal strongly connected subgraph
of a graph G = (V, A) is called a strongly con-
nected component of the graph G. G is

decomposed into its strongly connected com-
ponents Hy = (Vi, Ax) (k € K) where {Vi | k €
K} is a partition of 7. An algorithm by Tarjan
([17]) finds a partition in linear time, O(|V] +
) o
We use the data matrix D7 = (p'-(¥ — &')) to
construct a directed graph Gp = (V7 , A),
where V7 ={1,2,..., T} is the set of vertices
corresponding to the indices 1, 2, ..., T of the
observations, and for 7, j € V7 with i # j the
ordered pair (4, /) € A is an arc with a length p'
- (& = ). A cycle is called a negative length cy-
cle if the total length of the contained arcs in
the cycle is strictly less than zero. For a directed
graph Gp = (V'r, A) we define the following
directed subgraph G5O = (Vr, A~°) where
A=Y is the set of arcs with negative length, i.e.,

A== {(i,j) EA| p-(x) —x) < O},

Proposition 2.2 ([8]): The following five statements are equivalent:

(a) The data matrix Dr satisfies GARD.

(b) Every cycle C in the graph G5O satisfies p'-(x/ —

x')=0/forall (i, j) € C.

(c) Every negative length cycle in the graph Gp contains at least one arc (i, ) such that p'(x/ — x) > 0.

(d) Every cycle in the graph Gp that contains an arc of negative length must also contain an arc of posi-

tive length.

(¢) Every strongly connected component Hy, = (Vi, Ay) of the graph G50 satisfies p'(x/ —x") = 0 for all (i,

j) € Ar.

GARRP is equivalent to what Afriat called cy-
clical consistency (Proposition 2.2 (b)). The
cyclic consistency plays a fundamental role in
the various literature on revealed preference
(Dziewulski, Lanier, and Quah [s]). Algo-
rithms for fast verification of GARP have been
developed (Talla Nobibon, B. Smeulders, and
F. C.R. Spicksma [16], etc.).

006
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Goodness-of-fit measures

Il
for GARP

For a given dataset, the revealed preference
tests give results that either rationalizable or
not. However, we are sometimes interested in
the degree of these violations. A lot of good-
ness-of-fit measures for rationality have been
proposed. In this section, we explain four
goodness-of-fit measures.

Afriat [2] defines a partial efficiency index.
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For a given real number e with 0 < e < 1, x" is
directly revealed preferred to x at efficiency lev-
el e if ep'x' = p'x. We say that the consumer’s
overall behavior satisfies e-Generalized Axiom
of Revealed Preference (e-GARP) if (p", x™),
(P x2), ..., (p™, x™) satisfying ep'x’ =

Definition 3.1: (Afriat’s efficiency index)

plx (k=1,...,m—1)forallsy,....t, =T,
we have p'mxt = ep'mx™. If ¢ = 1, this is the
standard direct revealed preference relation. If
¢ = 0, e-GARP is always satisfied. Hence there
is some critical level e* where the data just sat-

isfy e-GARD.

For adataset D ={(p", x") | t=1,..., T}, the Afriat’s efficiency index (AEl) is defined as follows:

AEI(D) = sup {e ‘ D satisfies efGARP} .

0<e<1

The Houtman-Maks index reports the largest
number of elements of subset of observations

Definition 3.2: (Houtman-Maks index)

]

satisfying GARP. For a finite set X we denote
its cardinality by |X].

For adataset D ={(p",x") | t=1,..., T} the Houtman-Maks index is defined as follows:

HMI(D) =

Dean and Martin [3] proposed a goodness-
of-fit measure based on Afriat’s cyclical consis-

max {
XC{1,..T}

% ‘ D satisfies GARP} .

tency.

Definition 3.3: (Dean and Martin'’s minimum cost index)

For adataset D ={(p",x") | t=1,..., T} the minimum cost index (MCI) is defined as follows:

SA
T
Zpt ot
t=1

where SA" = Z p-(x' —at).
(i,5)e A’

MCI(D) = min

On the other hand Shiozawa [13] paid atten-
tion to the fact that if there is a data which
violates GARP then a relevant negative length

New Goodness-of-Fit Measures for GARP and Critical Arcs

A'C A= and &' = (Vyy, A=\ A') contains no directed cycle

arc is contained in a strongly connected com-

ponent of the graph G=Y.
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Definition 3.4: (Shiozawa’s strongly connected component index [13])
For a dataset D = {(p", x") | t =1, ..., T} the strongly connected component index (SCCI) is defined
as follows:

o> P -2

kEK (i,j)€A

> p(@—a)

(1,4)€A=0

SCCI(D)

where Hy = (Vi, Ay) (k € K) is the strongly connected component decomposition of G=°. If any (i, j) €
A=Y satisfies p'- (x/ — x") = 0, Index 1(D) = 0.

Example 3.5: Let t = 1,2, 3, 4. Suppose that the dataset Dy is given by
(0, )} | £ = 4} = {((9, 15), (40, 31)), (10, 14), (60, 16)), (12, 13), (55, 19)), (13, 12), (44,
28))} and that the consumer has a budger of by = 825, by = 824, b3 = 907, by = 908.

9 15 825 780 780 816
10 14 40 60 55 44 \ | 834 824 816 832
12 13 < 31 16 19 28 > | 883 928 907 892
13 12 892 972 943 908

Then

0 —45 —-45 -9
10 0 -8 8
—-24 21 0 —-15
—-16 64 35 0

Dyr =

and for the directed subgraph G = (Vr, A=), A0 = {(1,2), (1,3), (1,4), (2,3), 3, 1), (3,4), (4, 1)}.

G0 contains cyeles (1,3,1),(1,2,3,4, 1) and so on. Hence the observed data is not consistent with
GARP. [
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First, we consider AEI(D1) for Example 3.s. % ,then 4=°={(1,2),(1,3),(3,1)} and G=°
Ife <% , then 4=% = {(1, 2), (1, 3)} and the  contains the cycle (1, 3, 1). Hence
graph G=C does not contain a cycle. Else if e =

883
Next, we consider HMI(D;), MCI(D1),and (1,2, 3,4, 1) and G=0 is strongly connected
SCCI(D;) for Example 3.5. Note that G=°  component. Hence
contains cycles (1, 3, 1), (1,4, 1), (1,2, 3, 1),

HMI(D;) = @ = 0.75.
MCI(D) = g5 8§i i 513(6)7 +908 3ig4 = 00116
SCCIUDY = 1 s s a5 16~ 102 =
Note that SCCI always returns a value of 1~ indicator when there are multiple strongly con-
when G=Y is a single strongly connected com-  nected components.

ponent. However, it seems to be a proper

Example 3.6: Ler t = 1,2, 3, 4. Suppose that the dataset D3 is given by
{(p',2") [t =4} = {((3,4), (12,16)), ((4.3), (19,8)), ((4,4), (21,5)), (4. 5). (15, 10))}

and that the consumer has a budget of by = by = 100, b3 = 104, by = 110.

3 4 100 89 83 85
4 3 1219 21 15\ 96 100 99 90
4 4 < 16 8 5 10 > | 112 108 104 100
4 5 128 116 109 110

Then

0 —-11 —-17 -15
—4 0 -1 =10
8 4 0 -4
18 6 -1 0

Dop =

and A=°={(1,2), (1,3), (1,4), (2, 1), (2,3), (2, 4), (3,4), (4, 3)}. G=° contains cycles (1,2, 1) and
(3,4,3).
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Strongly connected components of the graph G=° are Hy = ({1,2},{(1,2), (2, 1)}) and H> = ({3, 4},
{(3.4).(4.3)}). O

If e <% , then 4=0 = {(1, 2), (1, 3), (1,4),  (1,4),(2,1),(2,4)} and G=° contains the cycle
(2, 4)} and the graph G=C does not containa (1,2, 1). Hence
cycle. Elseife =lgT6() , then 4=°={(1,2), (1, 3),

AEI(Dy) = % — 0.96.

HMI(Dy) = @ =0.5.

4+1 5
MCI(Dy) = — 2 = 0.0121.
CI(D2) 100 + 100 + 104 £ 110 — 412 - 0012
1M+4+4+1 20
SCCI(Ds) ratkat == 0.317.

T +17+ 154441 +10+4+1 63

Example 3.7: Lerr=1,..., 8. Suppose that the dataset D3 = {(p', x') | t = 8} is given by
(3,5, 5), (27,24, 29)), (4, 5, 4), (21, 34, 24)), (4, 4, 5), (31,28, 22)), ((4, 5, 5), (29, 25, 24)),
(3,5, 6), (26, 27, 24)), (4, 5, 6), (29, 27, 25)), (3, 5, 7), (27.5, 30.5, 23)), ((4, 6, 5), (31, 28,
23))} and that the consumer has a budget of by = 346, by = 350, b3 = 346, b4 = 361, bs = 357, bs =
401, b7 =396, bg = 407. Corresponding data matrix Dr is

0o 7 -3 -14 -13 1 4 2

-6 0 2 -13 =156 1 45 6

3 -6 0 —-10 =14 3 1 5

Dy — 1213 13 0 -2 15 165 18
18 20 8 -—1 0 15 16 14

1 -3 -5 =16 =18 0 -05 1

8§ 5 -9 —-16 =15 1 0 -2

-10 1 -5 =21 -21 -4 1 0
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G5 contains three strongly connected components. []
343
AEI(D3) = — =0.991.
(D3) 316 -0.99

1,2,4

HMI(Dy) = 2 H0TH g 6or

05+1+3 4.5
MCI(D3) = = = 0.00152.
CI(Ds) 346 + 350 + 346 + 361 4 357 4+ 401 4+ 396 + 407 2964 - 0.0015

6+6+3 2+1 05+2+4 24.5

SOCT(Dy) = 03 £+ D+ (O5+2+4) = 0101,

> v -a))

(i,§)€AZ0

[V |Critical arcs

SCCI uses all negative length arcs of the
strongly connected components. However, the
information that some of the length could be
improved to satisfy GARP seems to be lost. In
this section, we propose a concept called criti-
cal arcs about the arcs to be removed so that
the sum of the length is as small as possible
under the condition that the remaining
relationships satisty GARP. First, examples are
used to illustrate the procedures for identifying
critical arcs.

New Goodness-of-Fit Measures for GARP and Critical Arcs

We denote by A5cc(G) the set of arcs of the
strongly connected components of G. Decom-
pose G5 into strongly connected components.
Ifany (,7) € Ascc(GEO) satisfies p’ (¥ —«f) =
0, GARRP is satisfied. If GARP is not satisfied,
then there exists at least one arc with negative
length contained in (7, /) € Ascc( G5 0).

Choose one arc a; = (i, j1) € ASCC(GDéo)
with the maximum length /i, but if there is
more than one arc with the length [1, select the
arc with the maximum value of % If the val-
ues of f,% are also equal, choose the arc with
the smallest tail number 7, and if the number ;
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is also equal, choose the arc with the small- critical arc.
est head number j. The arc a; = (i1, /1) is a

Example 4.1: For Example 3.5,ASCC(G§]0 ) = A=0 and a critical arcis (2, 3) with length [ = -8. For
Example 3.0, ASCC(G%ZO )=1(1,2), (2, 1), (3,4), (4, 3)} and a critical arc is (4, 3) with length | =
—1. For Example 3.7

-10
-6 -2 —2
21 4
3 = 7
-1 -1 7
1014 3 15
5 -05
4 6
-2 ~16
-1 5 A

Ascc(GEY ) ={(1,3), (3,2), (2. 1), (4, 5), (5, 4), (6, 7). (7, 8), (8, 6)} and a critical arc is (6,7)
with length [y = =0.5. []

Example 4.2: Lert =1,..., 7. Suppose that the dataset Dy is given by
{4 |t =7}
=1{((4,5,4),(30,44,34)),((3,5,6),(38,34,37)), ((4,4,6), (44, 36,31)), (4.5, 5), (39,29, 41)),
((4,5,6),(37,43,28)),((3,5,7),(36,27,41)), ((4,4,7), (44, 38,29))}

and that the consumer has a budget of by = 476, by = by = by = 506, bs = 531, bs = 530, b7 = 531.

476 470 480 465 475 443 482
514 506 498 508 494 489 496
30 38 44 39 37 36 44 500 510 506 518 488 498 502
44 34 36 29 43 27 38 | = 510 507 511 506 503 484 511
34 37 31 41 28 41 29 544 544 542 547 531 525 540
548 543 529 549 522 530 525
534 547 537 559 516 539 531

B R R o
= O O O s Ot Ot
N 3O T OY O =~

Hence the corresponding data matrix is
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0 -6 4 -11 -1 =33 6

8§ 0 -8 2 =12 —-17 -10

-6 4 0 12 -18 -8 —4

Dyr = 4 1 5 0 -3 -22 5
13 13 11 16 0 -6 9

8 13 -1 19 -8 0 -5

3 16 6 28 —-15 8 0

Since G4§ 0 s strongly connected component, Ascc( Gﬁo) = A=Y, The maximum length [y of each arc
is =1, which corresponds to the arcs (1, 5) and (6, 3).

1.5 6. 3
p-x 475 | p’-x 529
= — =10.9979, - = — = 0.9981.
pl-xl 476 pb-x6 530 0-998
Hence a critical arc is (6, 3). L]

Next, decompose G'[%O — aj into strongly ASCC(G[%O — a1) based on the same rules as
connected components. If G=0 — g satisfies when we chose a; . Repeat these procedures
GARP, then the critical arc of G=is a; = (71,  until G=0 — Uj_, {a} satisfies GARP. Then
j1). Else choose one arc az = (iz, j2) € critical arcs opréo is{as...,an}.

Example 4.3: For Example 3.5, a1 = (i1, j1) = (2, 3) with length [, = —S-ASCC(GI%]O —a1) ={(1,3),
(1,4),(3,1),(3,4), (4, 1)}.
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ar = (1, 4) with length [, = -9.
az = (3,4) with length 3 = —15.
Ascc(G, —{an ax a3}) ={(1,3), (3, 1)},

as = (3, 1) with length [y = -24
Since Ascc(Gléo —{al, ap, as, a4}) =
arcs 0fG1§0 is{(2,3),(1,4)

Hereafter, the data matrix Dr is assumed to be
non-negative, i.c., it has at least one negative el-
ement.
Algorithm
G:= G§ 0

1. Decompose G into strongly connected
components. If any (i, /) € Ascc(G) satisfies p’
- (@ — &') = 0, GARP is satisfied, and the algo-
rithm terminates.
2.Setz:= 1 and /: = 0, and repeat the follow-
ing loop.

Choose one arc a, = (ip, jn) € Ascc(G) with
the maximum length /,, but if there is more
than one arc with the length ln, select the arc

with the maximum value of &% o . If the values

of ﬁ, 7 are also equal, choose the arc with the
smallest tail number 7, and if the number 7 is al-
so equal, choose the arc with the smallest head

number ;.

G:=G-a,

014

a, ie., G']é
,(3,4),(3, 1}

0 —{ay, az, az, aa} satisfies GARP, Hence critical

[

[:=1-1,
The loop terminates when any (7, j) €
Ascc(G) satisfies p' - (¥ — &) = 0.
Otherwise, 7 := 7 + 1 and return to the be-
ginning.
V |Our goodness-of-fit
measures for GARP

In this section, we introduce two goodness-
of-fit measures for GARP that use information
on the length of the critical arcs. Denote by L
the sum of absolute lengths of critical arcs. We
focus on L as the numerator. This value L can
be obtained using the algorithm in the previ-
ous section.

The first index we propose uses the sum of
the lengths of the arcs of the strongly connect-
ed component of G=C as the denominaor.
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Definition s.1: For a dataset D ={(p', &) | t=1,..., T}, if some (i, j) € A= satisfies p' - (¥ — x')
<0, Index 1 is defined as follows:

Index 1(D) = L - —.
> p(@ —ad)
(i,j)€ASO
If any (i,j) € A= satisfies p' - (¥ — &%) = 0, we define Index 1(D) = 0. L]

Note that the denominator of Index 1 is equal

to the numerator of SCCI.

Example s.2: For Example 3.5,

8+9+15+24 28

Index 1(Dy) = 0.346.

T 45+454+9+8+24+15+16 8L

Example s.3: For example 4.2, Ascc( Gﬁo )= A=°,
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ai = (6, 3) with length [, = —1.

-5.

ASCC(GiO —f{a, a2}) ={(1,2),(2,3),(3,1),(5,6), (6,5), (7, 5)}. There are three arcs of length
-6:(1,2),(3,1),(5,6).

pl-x? 470 p3 -zt 500 p°-xb 525

=—=0987, ——==-——=-=0988, ——=_——
’ T op3-x3 506 p°-x® 530

= (.989.
ol ol = 376 . 0.989

Hence as = (5,6). Ascc(Goy —{ar, az a3}) ={(1,2), (2,3), (3, 1), (6,5), (7, 5)}. as = (3, 1).
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Since Ascc (G4§0 —{a1, ay, as, as}) = B, each arc contained in Ascc(Gléo —A{a1, az, as, aq}) has
length 0. Critical arcs z)fG4§0 is {(6, 3), (6,7),(5,6), (3, 1)}.

Z p'-(x' —27) =194
(i.) €A
1+5+6+6

194

1
18 = 0.093.

Index 1(Dy) = = To1

MCI can be considered to effectively use in- er, MCI is not polynomial time. The second

formation on the length of arcs, that need to be index has the same numerator as Index 1 and
minimally modified to satisfy GARP. Howev- the same denominator as MCIL.

Definition s.4: For a dataset D ={(p', x*) | t =1, ..., T'}, Index 2 is defined as follows:

L
Zpt.wt'

Index 2(D) =

teT
O
For Example 3.,
8+9+15+24
Index 2(D;) = = 0.016
ndex 2(D1) = oo 007 1 908
For Example 4.2,
1454646 18
Index 2(Dy) = - — 0.00502.
ndex 2(Ds) = e 06 506 1 506 1 531 1530 1 531 3586
Index 1(D) | Index 2(D) | MCI(D) | SCCI(D) | 1-AEL(D) | 1-HMI(D)
Example3.5 | 0.346 0.016 0012 |1 0.026 0.25
Example3.6 | 0.25 0.012 0012|0317 0.04 05
Example3.7 | 0.019 0.0015 0.0015 | 0.101 0.009 0.375
Exampled.2 | 0.093 0.0050 0.0036 |1 0.012 0.286

New Goodness-of-Fit Measures for GARP and Critical Arcs
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‘V[ ‘ Conclusion

SCCI uses all negative length arcs of the
strongly connected components in the calcula-
tion of the numerator. By using the length of
critical arcs instead, Index 1 may be more suit-
able than SCCI for cases with fewer strongly
connected components of G=. Index 2 may be
a relatively efficient way to obtain an approxi-
mate solution for MCI. However, it is a future
issue that the ordering rule for arcs of the same
length in the procedure for seeking a critical

arc.
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Appendix

For example 3.7, we show AEI(D3), HMI(D3), MCI(D3), Index 1(D3), and Index 2(D3).

Fora given e its corresponding data matrix is

0 353 —346e 343 — 346e 332 — 346e

344 — 350e 0 352 —350e 337 — 350e
349 — 346e 340 — 346e 0 336 — 346e
373 —36le 374 —36le 374 — 361e 0

375 — 357e 377 — 357e 365 — 357e 356 — 357e
402 — 401e 398 —401le 396 —40le 385 —401le
404 — 396e 401 — 396e 387 — 396e 380 — 396e
397 — 407e 408 — 407e 402 — 407e 386 — 407e

333 — 346e 347 — 346¢ 350 — 346e 348 — 346¢
335 — 350e 351 — 350e 354.5 — 350e 356 — 350e
332 — 346e 349 — 346e 347 — 346e 351 — 346e
359 — 36le 376 — 36le 377.5 —36le 379 — 36le

0 372—357¢ 373 — 357e 371 — 357e

383 —401e 0 400.5—401le 402 —401e
381 — 396e 397 — 396e 0 394 — 396e
386 — 407e 403 —407e 408 —407e 0

E=TPPONY

|
3 7
-
4 6
5 /
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Ife< % , then Gﬁo is acyclic.
1 \
"

7

8
7
6

Elseife = % , then G=0 contains the arc (1,3) with length 0 and the cycle (1, 3,2, 1). Hence
343

Note that for Index HMI, G=° [\ 7] (+ € 1, 2, 3) contains two cycle (4, 5,4) and (6,7, 8, 6)),
G=° [\ 1] (t € 4, 5) contains two cycle ((1,3,2, 1) and (6,7, 8,6)),and G=° [I'\ 7] (+ € 6,7, 8)

contains two cycle ((1,3,2, 1) and (4, 5, 4)). Therefore

AEI(D3) =

~ H1,2,4,6,7}]

= 0.625.
8

HMI(Ds)

If we delete {(6, 7), (5,4), (1, 3)}, then G=C does not contain a cycle. Hence

05+1+3
MCI(D3) = = 0.00152.
(Ds) = 316+ 350 + 346 + 361 + 357 + 401 £ 306 £ 407

6+6-+3 241 05+2+4 24.5

SCCI(Dy) = S H6+DFQED+(05+2+4) — 0.101.
S P (@ - o) 212.5
(i,j)€A=0

054143
I 1(D3) = —— = 0.019.
ndex 1(Ds3) CYOR -0.019
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Moreover Index 2(D3) = MCI(D3).
For Example 4.2 (the dataset Dy), we show AEI(Dy4), HMI(D4), MCI(D4), and Index 2(Dy). If €

TN

=0 . .
<506 » then Gp, isacyclic.

J

A=0={(1,2),(1,4),(1,6).(2,3),(2,5).(2,6).(2.7).(3,5).(3.6), (4, 6). (6,5). (7. 5)}

Elseife= % , then G=° contains the cycle (1,2, 3, 1). Hence

500
AEI(Dy) = £ = 0.988.

Note that for Index HMI, G=[1"\ ] ( € 1,2, 3, 4) contains a cycle (5, 6,7, 5) and G=[1'\ 7] (¢
€ 5,6,7) contains a cycle (1,2, 3, 1). Therefore

_ {1,2,4,5,7}]

HMI(Dy) -

=0.714.

If we delete {(1, 2), (5, 6), (6, 3)}, then G=° does not contain a cycle. Hence

6+6+1 13

= = = 0.00363.
476 4 506 4 506 4 506 4 531 4+ 530 4+ 531 3586 °

MCI(Dy)
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New Goodness-of-Fit Measures
for GARP and Critical Arcs

Takeshi Naitoh

It is a well-known result in revealed prefer-
ence theory that a dataset is rationalizable if
and only if the axiom called GARP is satisfied.
We propose the concept of critical arcs, refer-
ring to the arcs to be removed from a graph
representing a given dataset. These are collec-
tions of arcs whose total absolute length is as
small as possible under the condition that the
remaining relationships satisfy GARP after re-
moval. We also propose two goodness-of-fit

measures using critical arcs.
Key words: revealed preference, goodness-of-

fit measures, strongly connected
components
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