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I The Firm’s Expansion
  Effect versus 
  the Consumer’s 
  Income Effect

The purpose of this paper is to rigorously 
analyze producer decision and production pos-
sibility sets, thus exploring the axiomatic 
foundations of production theory.  In older 
days, Hicks (1946, 1953), Samuelson (1947), 
Morishima (1953a, 1953b), and others, elaborat-
ed upon the well-established analysis of profit-
maximizing firm's demand for inputs.  Their 
main mathematical tools were classical differen-
tial calculus. 

In more recent times, however, there have 
emerged a series of papers which bravely study 
the axiomatic foundations of production theory 
on the basis of more modern topological tools.  
For this point, see Scott (1962), Bear (1965), 
Ferguson (1966, 1968, 1969), Friedman(1972), 
Rader (1968), Basett and Borcherding (1969), 
Hirota & Sakai (1969), Syrquin (1970), Sheph-
ard (1970),  Arrow & Hahn (1971), Sakai (1973, 
1974, 1975),  and Malinvaud (1985).  After the 
1990s until the present day, unifying the axi-
omatic foundations of both consumption and 
production theories, brand new approaches 
named duality approaches to microeconomic the-
ory have emerged and widely flourished , with 
Diewert (1982, 2018), Varian (1999, 2009),  and 
McKenzie (2002) being  eminent accomplish-
ments.  

A number of those economists above men-
tioned have bravely attempted to clear up a 
matter of long-standing confusion concerning 
the analogy between consumer's income effect 
and producer's expansion effect.  While consum-
er demand theory and input demand theory 
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2)  Historically speaking, the fundamental difference 
between consumer demand theory and input demand 
theory was first noticed by Hicks (1946), Chapter 7, and 
mathematica l ly sophisticated by Samuelson (1947), 
Chapter 4.  It seems, however, that the similarity be-
tween them was not fully developed by these authors, re-
sulting in later development of input demand theory.  

Takayama, and by many brilliant students including Jer-
r y Green, Jose Sheink man, Masayoshi Hirota , and 
Michihiro Ohyama.   Though perhaps too late, I would 
like to say my sincere thanks to all of them.  

appear to be analogous, they are not the same 
at all.  Even a small difference at start may pro-
duce a big distinction at goal.  The question 
how and to what extent they are really different 
is our main concern here.1) 

As was independently shown by Hirota & 
Sakai (1969) and also by Syrquin (1970) , the 
effect of a change in the price of a certain input 
on the demand for another input can be divid-
ed into the following two separate effects.  
They are a substitution effect along the old iso-
quant and an expansion effect along the new 
expansion path.  Unfortunately, the mathemati-
cal tool they employed was simple calculus, 
thus lacking mathematical rigor and fineness.  
The main purpose of this paper is to make our 
input demand theory mathematically more so-
phisticated than the previous attempts, yet 
developing it in many possible applications to 
economic reality. 

we obtain a sort of decomposition equa-
tion in input demand theory which appears to 
correspond well to the famous Slutsky equa-
tion in consumer demand theor y.   The 
correspondence between the two decomposi-
tion equations, however, is not quite exact:  
indeed, they look similar but are not identical.  
We must pay special attention to the critical 
difference between the word "similar" and the 
word "identical." 2)

In this paper, we widely apply the powerful 
method of McKenzie (1957), which was origi-
nally used for the development of consumption 
theory, to the new area of input demand theo-
ry.  Then, we can successfully derive various 
kinds of decomposition equations.  And in so 
doing, we develop the new idea of a compensat-
ed change in output price when a certain input 
price varies.  This idea is analogous to, but not 

exactly the same as,  the familiar concept of a 
compensated change in income when a certain 
commodity price varies in the traditional con-
sumption theory à la Hicks (1946).  

So far, input demand theory has been de-
veloped in connection with the problem of 
inferior inputs.  An input is called normal (or 
inferior) if a rise in output price causes an in-
crease (or a decrease) in the demand in that 
input.  We can obtain the following results.  (i)  
While it is possible that all inputs are normal, 
it is not possible that they are all inferior.  (ii)  
In case a certain input is inferior, it is not possi-
ble that all other inputs are gross complements 
with it although it is possible that they are all 
gross substitute for it.  

The contents of this paper are as follows.  
Section II is addressed to a system or a produc-
tion technology.  In Section III, the definition 
of cost and profit functions will be given, with 
a careful discussion of their properties.  The to-
pological approach of Shephard (1970) to the 
duality principle between cost and production 
is developed in these two sections.  The total 
effect of a change in the price of a certain input 
on the demand for another input is decom-
posed into substitution and scale effects.  In 
Section IV, we are first concerned with the 
properties of substitution and total effects, and 
examine the question how and to what extent 
they are similar to, or different from, those of 
substitution and total effects in consumption 
theory.  The problems of inferior inputs and of 
net and gross substitutability are also discussed.  
Section V is devoted to various types of de-
composition equations in input demand theory 
— one finite increment and two differential 
versions.  It is rigorously shown that the de-
mand cur ve of an input is not positively 
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3)  For a topological and convex approach to production 
theor y, see Uzawa (1964), Nikaido (1968), Shephard 
(1970), and others. 

sloping, and the substitution and expansion ef-
fects always go in the same direction.  In 
Section VI, we will apply our analysis to show 
the validity of the Le Chatelier-Samuelson 
principle in input demand theory.  

II  Production Possibility Sets

We are concerned with a firm that is faced 
with the problem of producing a single output 
from a combination of a finite number of in-
puts subject to a production technology.  Let 
us suppose that there are n inputs and that in-
put-output prices are competitively determined 
in the market, being independent of the firm's 
individual behavior. 

In what follows, we will make full use of a 
powerful topological method.  For this meth-
od, see McFadden (1966), Malinvaud (1985), 
Mas-Colell & Whinston & Green (1995). 
McKenzie (2002), and Mitra & Nishimura 
(2009).

Let us denote an input bundle by x =  (x1, 
x2, ... , xn) .  The set of all conceivable input 
bundles is denoted by X.  X is the set of all non-
negative n - vectors :  

X = {x = (x1, x2, ... , xn) : x ≧ 0 } .  (1)

Let us assume that for any x ∈ X , the larg-
est output is conceivable and conveniently 
denoted by a production function f (x) .  Let Y 
be the range of the production function :

Y = { y : y ≧ 0 and y = f (x) for some x ∈ X} .
 (2)  

We assume that Y is nonempty, convex, 
and open above.  Y need not be the nonnega-
tive real line.  It may be any subset of Y. 

We now let define the following sets.

W = {w = (w1, w2, ... , wn) : w ＞0 }. (3) 

P = { p : p ＞ 0 }. (4)

Evidently, W is the input price space or the 
set of all input vectors, and P is the output 
price space or the set of all conceivable output 
prices. 

There is an alternative useful description of 
the production function f (x).  To show this, let 
us define the following production possibility 
sets .

Ā(y) = {x : x ∈ X and f (x) ≧ y }.   (5)
 
A(y) = {x : x ∈ X and f (x) ≦ y }. (6)

I(y) = Ā (y) ∩ A(y) 
        = {x : x ∈ X and f (x) = y }. (7)

It is noted that the upper possibility set Ā(y) 
is the set of all input vectors which are capable 
of producing at least the output y, whereas the 
lower possibility set A(y) is the set of all input 
vectors which are capable of producing at most 
the output y.  The set I(y), which is the inter-
section of Ā(y) and A(y), is clearly the familiar 
isoquant frontier corresponding to y.3)

We are ready to define a production tech-
nolog y  a s  a  family of  those production 
possibility sets satisfying the following four as-
sumptions.

Assumption (A1)  If  0 ∈ I(y), then y = 0.

Assumption (A2)  For each y ∈ Y, Ā(y) 
and A(y) are nonempty and closed in X.
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Assumption (A3)  Let us take x0 ∈ Ā(y0) 

and x1 ∈ Ā(y1) where x0 ≠ x1.  For any t ∈ (0, 
1), if we put xt = (1–t) x0 + tx1 and yt = (1–t) 
y0 + ty1, then we must find xt ∈ Int Ā(yt) or the 
interior of the set Ā(yt).

Assumption (A4)  If x1 ≧ x0 ∈ and x0 ∈ 
Ā(y), then x1 ∈ Ā(y).

These assumptions require detailed expla-
nations.  (A1) states that a positive output 
cannot be obtained from a null input bundle.  
In short, nothing comes from nothing.  (A2) 
asserts that any output level y is attainable for 
some input bundle x, and that the production 
function f (x) is continuous.  Therefore, there 
should exist neither gaps nor jumps on the pro-
duction curve .  

Remarkably,  (A3) together with (A2) 
clearly implies that the set Ā(y) is a "strictly 
convex set," meaning that for any x0 and x1, 
namely two points of Ā(y) ,  if  xt = (1–t)x0 + 
tx1, then xt must belong to the interior of the 
set Ā(y), not to the boundary I(y).

And finally, (A4) insures that free disposal 
of inputs is possible.  In other words,  the pro-
ducer can dispose of any extra inputs with no 
costs.  Although this may not necessarily reflect 
the reality, it is theoretically a very convenient 
assumption.  

 

III The Cost and Profit 
  Functions: 
  Definitions and Properties

In what follows, we assume that Assump-
tions (A1)–(A4) are met for the production 
technology.  In this section, the definition of 

cost and profit functions will be given and their 
properties will carefully be investigated.  

First of all, for any (w, y) ∈ W×Y , we de-
fine a cost function as follows:

c(w, y) = Min {wx : x ∈ Ā(y)} .   (8)

To see that the cost function c(w, y) is well-
defined, we take any arbitrary x* ∈ Ā(y) and 
let H(w) = {x : x ∈ X and wx ≦ wx*}.  Since Ā 
(y) is closed by (A2) and H(w) is clearly com-
pact, it follows that Ā(y) ∩ H(w) is compact as 
well.  Therefore,  the continuous function wx  
takes on a minimum on Ā(y) ∩ H(w).  Note 
that for any x ∈ Ā(y)–H(w), we have wx ＞ 
wx*.  Hence, the function wx  attains a mini-
mum on Ā(y) .  

In connection with the cost function c(w, 
y), we define a compensated input function as 
follows:

u(w, y) = {x : x  ∈ Ā(y) and wx = c(w, y)}. 
                       (9)
 
The newly-defined function u(w, y) indi-

cates the input bundle demanded by the firm 
when input prices are w and output is to be y.  
Under Assumptions (A1)–(A4), u(w, y) is the 
unique element of X minimizing wx subject to 
x ∈ Ā(y).  Consequently, we should have the 
following equation:

c(w, y) = w ・ u (w, y). (10)

We are now in a position to establish the 
following useful lemma:
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4)  The purpose of Assumption (A5) is to force the profit 
function π(w, p) = {p・f  (x) – wx : x ∈ X} to be defined for 
any (w, p) ∈ W×P.

LEMMA 1  (Properties of c(w, y) and u(w, y))
For all (w, y) ∈ W×Y, we have the follow-

ing properties:
(1)   c(w, y) is continuous in (w, y).
(2)   c(w, y) is differentiable in w, and ∂c(w, 

y) / ∂wi = ui(w, y) for i = 1, 2, ..., n. 
(3)   c(w, y) is homogeneous of degree one 

in w.
(4)  c(w, y) is concave in w.
(5)  c(w, y) is strictly convex in y.
(6)   If y0 ＞ y1,  y0, y1 ∈ Y, then c(w, y0) ＞ 

c(w, y1).
(7)   u(w, y) is continuous in (w, y).
(8)   u(w, y) is homogeneous of degree zero 

in w.
The proof of this lemma is rather simple 

yet considerably lengthy.  Because of space con-
straint, it is omitted here.  For details, see Sakai 
(2023).

At first glance, the contents of Lemma 1 
appear to be rather technical and even too 
mathematical.  It should be noticed, however, 
that it discusses many important properties of 
the cost and compensated input functions 
which play critical roles in the theory of cost 
and production.  According to Property (1), 
the cost function c(w, y)  is continuous in (w, y), 
so that the cost curve as a graphical expression 
of the cost function is overall smooth and has 
neither gaps nor jumps throughout.  Property 
(2) tells us that focusing on w only, c(w, y) is ex-
tremely smooth, having no kinks at al l .  
Moreover, it also indicates a very nice bridge 
between the two functions, namely the cost 
function c(w, y) and the compensated input 
function u(w, y).  Exactly speaking, for any i, 
we should have ∂c(w, y) /∂wi = ui(w, y), dem-
onstrating that the rate of change of total cost 
when the price of an input changes is equal to 

the amount of compensated demand for that 
input.  

According to Properties (3), (4), (5) and 
(6),  while the cost function c(w, y) is homoge-
neous one and concave in w, it is strictly convex 
in y and also strictly increasing.  Such concave 
and convex relations should be worthy of at-
tention.  Finally, in the light of Properties (7) 
and (8), whereas the compensated input de-
mand function u(w, y) is continuous in (w, y), 
it is homogeneous of degree zero in w only.  
This teaches us that u(w, y) reflects the nice 
properties of u(w , y) .

In addition to Assumptions (A1)–(A4), 
we are now ready to postulate the following as-
sumption.

Assumption (A5)   Y is bounded from 
above.4)

 
As will be seen later, the purpose of As-

sumption (A5) is to force the profit function 
to be defined later for any (w, p) ∈ W×P.  The 
newly added Assumption (A5) together with 
the previous assumptions on Y implies that Y  
= [0, y*) for some  y* ＜ + ∞.  Let E(w, p) = {x  
: x ∈ X and pf (x) – wx ≧ 0} .  Then, under As-
sumptions (A1)–(A5) , the newly defined set  
E(w, p) is clearly bounded and closed; there-
fore, the continuous function pf (x) – wx takes 
on maximum on E(w, p).

Note that by Assumption (A1), pf (x) –wx  
= 0 for x = 0 ; pf (x) – wx ＜ 0 for any x ∈ X – 
E(w, p).  Thus, the maximum attained on E(w, 
p) is actually the maximum on the whole X.

Now, for any (w, p) ∈ W×P, let us define a 
profit function π(w, p) as follows.

π(w, p) = Max { pf (x) – wx : x ∈ X}.  (11)
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Clearly, for any given price vector (w, p), 
π(w, p) stands for the maximum profit which 
can be obtained from the production technol-
o g y.   S ince  f  (x)  i s  strictly  concave  by 
Assumption (A3), it is clear that π(w, p) is pos-
itive for some (w ,  p) ∈ W×P .   Thus, an 
optimum input function and x(w, p) and an op-
timum output function y(w, p) ∈ W×P are 
defined for all (w, p).  Evidently, x(w, p) and 
y(w, p) respectively indicate the input bundle 
as follows.

x(w, p) = { x : x ∈ X and π(w, p)
              = pf (x) – wx} .                (12)
 
y(w, p) = f (x(w, p)) .     (13)

Evidently, x(w, p) and y(w, p) respectively 
indicate the input bundle demanded by the 
firm, and the output bundle supplied by the 
firm.  It is noted that  the input-output vector  
(x(w, p), y(w, p)) is uniquely determined for 
each price vector (w, p) ∈ W×P since the prof-
it π(w, p) is strictly concave in x .

The properties of the profit function along 
with those of the optimum input-output func-
tion will be seen in the following lemma.

LEMMA 2  (Properties of π(w , p))
For all (w, p) ∈ W×P, we have following 

properties .
(1)  π(w, p)is differentiable in (w, p) , and 
∂π(w, p)/∂wi = –xi (w, y) for i  = 1, 2, ..., n ,
∂π(w, p)/∂p = y(w, y ) .  
(2)   π(w, p) is homogeneous of degree one 

in (w, p).
(3)  π(w, p)is convex in (w, p).

(4)   If w0 ≧ w1 ＞ 0 , then π(w0, p) ≦ 
π(w1, p), with strict inequality if x(w0, 
p) ＞ 0.

(5)   If p0 ＞ p1 ＞ 0, then π(w, p0) ＞ π(w, 
p1), with strict inequality if y(w0, p1) ＞ 
0 .

(6)   x(w, p) and y(w, p) are continuous in 
(w, p). 

(7)   x(w, p) and y(w, p) are homogeneous 
of degree zero in (w, p).

The proof of Lemma 2 is omitted here.  For 
details, see Sakai (2023). It is interesting in 
making a bridge between the profit and opti-
mum input-output functions.  The essence of 
Property (1) is expressed by the two equations; 
∂π/∂wi = – xi (w, p) and ∂π/∂p = y(w, y).  
Graphically, it can easily be seen in Fig. 1.

In plain English, on the one hand, the rate 
of change of total profit when the price of an 
input price changes is equal to the amount of 
the input demanded by the firm, multiplied by 
(–1) .  On the other hand, the rate of change of 
total profit when the price of an output chang-
es is equal to the amount of the output 
supplied by the firm.  

According to Property (1), the profit func-
tion π(w, p) is not only continuous but also 
differentiable in (w, p), so that the profit curve 
as a graphical expression of the profit function 
is overall very smooth, with no kinks, having 
neither gaps nor jumps throughout.  Property 
(2) implies that when (w, p) doubles, π also 
doubles.  It follows from Property (3) that for 
any (w, p) ∈ W×P, and for any fraction t ∈ (0, 
1), the following inequality holds.

(1–t)π(w0, p0) + tπ(w1, p1) 
 ＞ π ((1–t)w0 + tw1 , (1–t)p0+tp1).  (14)
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5)  For the properties of convex and concave functions, 
see Fenchel (1953) , Rockafellar (1970), Shephard (1970) 
and Varian (1999, 2009).

According to Properties (3) and (4), while 
π tends to decrease as w rises, but it tends to in-
crease as p rises, thus agreeing with common 
sense.  

Finally, by help of Property (6), inputs and 
outputs continuously change in response to a 
small change in (w, p).  And Property (7) 
shows us that when all input prices and all out-
put prices change in the same proportion, all 
inputs and all output are  expected to remain 
unaffected, agreeing with our common sense.  

Now, we are ready to establish the follow-
ing interesting lemma.

LEMMA  3  (Marginal cost and output price)
For all (w, p) ∈ W×P,  we obtain ∂c(w, 

y(w, p)) /∂y = p, almost everywhere .

Proof.  By the definition of c(w, y(w, p)), we 
note that the following inequality must hold:

p ・ y(w, p)– c(w, y(w, p)) ≧ py – c(w, y)  
for all (w, y) ∈ W×Y. (15)

Since c(w, y) is concave in y by Lemma 1 
(4), it must be almost everywhere differentia-
ble in y.5) 

Further, Eq. (15) asserts that the function 
py – c(w, y) is maximized at y = y(w, p).  There-
fore, the first-order characterization for the 
maximum yields the following . 

∂(py – c(w, y))/∂y = 0 , almost everywhere.
 
This implies that p – ∂c(w, y)/∂y = 0 at y = 

y(w, p) almost everywhere, from which imme-
diately ∂c(w, y(w, p))/∂y = p almost everywhere.      
Q.E.D.

Lemma 3 is an important lemma, saying 
that the marginal cost of an output is equal to 
output price.  Surely, it demonstrates profit-
maximizing behavior of the firm from a 
different angle.  The essence of Lemma 3 is 
graphically illustrated in Fig. 2 .

We are now in a position to discuss how 
the optimum and compensated input functions 
are related with each other.  

Fig. 1  Nice relationship between profit and input-output : ∂π/∂wi = –xi  and ∂π/∂p = y  .
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LEMMA 4  (Properties of x(w, p) and y(w , p))
For all (w, p) ∈ W×P,  we obtain the fol-

lowing equations .
(1)  x(w, p) = u(w, y(w, p)).
(2)  c(w, y(w, p)) = w ・ x (w, p).
(3)  π(w, p) = p ・ y(w, p) – c(w, y(w, p)).

Proof.  To see Property (1), we first note 
x(w, p) ∈ Ā(y(w, p)).  Let us next take xs ∈ 
Ā(y(w, p)), and xs ≠ x (w, p).  This is possible by 
Assumptions (A2) and (A4).  Now, let a "mid-
dle point" xt = (1–t)x(w, p) + txs,  t ∈ (0, 1).  
Then, by means of Assumptions (A2) and (A3), 
we obtain xt ∈ Int Ā(y(w, p)), so that wxt ＞ w 
・ x(w, p).  

Letting t → 0 yields xt → x(w, p), and w x ≧ 
w ・ x (w, p).  Since x(w, p) ∈ Ā(y(w, p)), and u 
(w, y(w, p)) is uniquely determined for each (w, 
p), it must follows that u(w, y(w, p)) = x(w, p).  
This proves Property (1).  

From (1), we find c(w, y(w, p)) = w ・ x(w, p) 
= u(w, y(w, p)), and π(w, p) = p ・ y(w, p) – c(w, 
y(w, p)), assuring Properties (2) and (3).
Q.E.D.

From this lemma, the economic signifi-
cance of u(w, y(w, p)) is quite clear.  For an 
arbitrary price vector (w, p), the optimum in-
put-output combination (x(w, p)) is uniquely 
determined from the production technology.  
Then, c(w, y(w, p)) denotes the cost level which 
governs the output level y(w, p), and u(w, y(w, 
p)) is the corresponding input bundle.  It is also 
seen that the profit gained by the firm is equal 
to the difference between p ・ y(w, p) and c(w, 
y(w, p)).

IV Properties of 
  the Substitution and 
  Total Effects

In the last section, we sought the informa-
tion about conditions governing inputs 
demanded by the firm at given input-output 
prices.  In this section, we are now ready to use 
it to discover how the inputs will change when 
these prices change.  

Now, let us consider a change in wj.  Then, 
we will see that its impact on xi can be divided 
into the following two effects:  a substitution ef-

Fig. 2   At equilibrium, the following relation holds almost everywhere:

∂c(w, y)/∂y  = p  at y = y(w, p).  
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differentiable in  y .  5)  
     Further, Eq. (15) asserts that the function p y  — c ( w , y ) is maximized at  y  = 
y (w , p ) .   Therefore, the first-order characterization for the maximum yields the 
following .  
 
      ∂( p y — c ( w , y ) ) /∂y  = 0 , almost everywhere . 
  
     This implies that p —∂c (w , y )/∂y = 0 at y = y (w , p ) almost everywhere , from 
which immediately ∂c ( w , y (w , p ) ) /∂y  = p  almost everywhere .      Q.E.D.                    
                                                   
     Lemma 3 is an important lemma, saying that the marginal cost of an output is 
equal to output price.   Surely, it demonstrates profit-maximizing behavior of the firm 
from a different angle.   The essence of Lemma 3 is graphically illustrated in Fig. 2 . 
 
 

                  
 
 Fig. 2   At equilibrium, the following relation holds almost everywhere: 
         ∂c ( w , y ) /∂y  = p  at y = y (w , p ) .   
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6)  Note that any concave or convex function is almost 
everywhere twice differentiable.   See Alexandroff (1939).

fect along the old isoquant and an expansion 
effect(or a scale effect) along the new expansion 
path (or scale path).  Although the naming of 
the first effect is fairly traditional, that of the 
second effect might be quite new.  The compo-
sition of the total effect into the substitution 
and the expansion (or scale) effect in produc-
tion theory was first noticed by Hirota and 
Sakai (1969), and later developed by Sakai 
(1973), Sakai (1974), and others.  Such compo-
sition in production seems to be similar to, yet 
not as the same as the composition into the 
substitution and income effects in consump-
tion theory.  How and to what extent the 
expansion effect differs from the income effect 
is a very important question, thus composing 
the main theme of this paper.  A detailed dis-
cussion on this point will be made in the next 
section.  Although "the expansion effect" has 
been  frequently used in the previous literature 
and also in present paper, we would like to say 
that "the scale effect" may be an equally appeal-
ing name because it deals with "expansion" (or 
larger scale) as well as "contraction" (or smaller 
scale).

The properties of the substitution effect 
can be summarized in the following theorem.

THEOREM  5  ( Differential properties of u 
(w, y))

For all (w, y) ∈ W×Y, we have the follow-
ing properties almost everywhere. 

(1)   (∂ui / ∂w1) w1 + ... + (∂ui / ∂wn) wn = 
0 for any i .

(2)   w1(∂u1 / ∂wj) + ... + wn(∂un / ∂wj) = 0 
for any j.

(3)   ∂ui / ∂wj = ∂uj / ∂wi for any i, j.
(4)   The following matrix is negative semi-

definite :

　　　　　　　　　　　　　 

Proof.  Recalling that c(w, y) is concave in 
w by Lemma 1 (4) , it should be almost every-
where twice differentiable in w.  Note that by 
Lemma 1 (2) , we find that ∂c(w, y) / ∂wi = 
ui(w, y) for all i.  Therefore, it follows that for 
any i, ui (w, y) is almost everywhere differentia-
ble in w.6)

With those preparations in mind, we also 
recall that u(w, y) is homogeneous of degree 
zero in w by Lemma 1 (8).  Here, if we apply 
the famous Euler theorem on homogeneous 
equations. we immediately find the following 
equation.

(∂ui / ∂w1)w1 + ... + (∂ui / ∂wn)wn = 0 for 
any i , almost everywhere , 

assuring Property (1). 
To prove Property (2), it is noted that by 

definition of the compensated function u, the 
following inequality holds. 

w ・ u(ws, y) ≧ w ・ u(w, y) for all ws ∈ W.
 (16)

Eq. (16) tells us that the function w ・ u(w, 
y) attains minimum among all the functions of 
the form w ・ u (ws, y) at ws = w.  Hence, the 
first order characterization for the minimum 
yields the following .

 ∂(w ・ u(ws, y)) / ∂ws
j = 0 at ws = w, j  

= 1, ... , n , almost everywhere,

 12

might be quite new.   The composition of the total effect into the substitution and the 
expansion (or scale) effect in production theory was first noticed by Hirota and Sakai 
(1969), and later developed by Sakai (1973), Sakai (1974), and others.  Such 
composition in production seems to be similar to, yet not as the same as the composition 
into the substitution and income effects in consumption theory.   How and to what 
extent the expansion effect differs from the income effect is a very important question, 
thus composing the main theme of the present chapter.   A detailed discussion on this 
point will be made in the next section.  Although "the expansion effect" has been  
frequently used in the previous literature and also in present paper, we would like to 
say that "the scale effect" may be an equally appealing name because it deals with 
"expansion" (or larger scale) as well as "contraction" (or smaller scale). 
     The properties of the substitution effect can be summarized in the following 
theorem. 
 
THEOREM  5  ( Differential properties of u (w , y ) ) 
For all ( w , y ) ∈W ×Y , we have the following properties almost everywhere.  
   (1)  (∂u i /∂w 1 ) w 1 + ... + (∂u i /∂w n ) w n  = 0  for any i . 
   (2)  w 1 (∂u 1 /∂w j )  + ... + w n (∂u n /∂w j ) = 0 for any j . 
   (3)  ∂u i /∂w j  =∂u j /∂w i for any i, j .    
   (4)  The following matrix is negative semi-definite :    
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Proof.  Recalling that c (w , y ) is concave in w  by Lemma 1 (4) , it should be almost 
everywhere twice differentiable in w .  Note that by Lemma 1 (2) , we find that ∂c ( w , 
y ) / ∂w i  = u i  (w , y ) for all  i .   Therefore, it follows that for any i , u i  (w , y )  is 
almost everywhere differentiable in w .  6)         
    With those preparations in mind, we also recall that u (w , y ) is homogeneous of 
degree zero in w  by Lemma 1 (8).  Here, if we apply the famous Euler theorem on 
homogeneous equations. we immediately find the following equation. 
 
   (∂u i /∂w 1 ) w 1 + ... + (∂u i /∂w n ) w n  = 0  for any i , almost everywhere ,  
 
assuring Property (1).  
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7)  See Takagi (1961), pp. 57-58.   

from which Property (2) follows.
To see Property (3), we recall the well-

known Young theorem on differential calculus, 
which says that whenever a function is twice 
differentiable, the order of differentiation is 
not important.7)

Therefore, by Lemma 1 (2), for any i, j, we 
obtain ∂ui / ∂wj = ∂2c / ∂wj ∂wi = ∂2c / ∂wi ∂wj 
= ∂uj / ∂w, almost everywhere, which proves 
Property (3).

Finally, since the Hessian matrix of the 
concave function c(w, y) with respect to w is al-
most everywhere negative semi-definite,  
Property (4) is easily derived from Lemma 1 
(2).    Q.E.D.

We are in a position to discuss a new con-
cept of net substitution and  net complementarity 
in contrast to a more traditional concept of 
gross substitution and gross complementarity.  
We say that the input i is a net substitute for the 
input j if ∂ui / ∂wj ＞ 0, and a net complement 
for it if ∂ui / ∂wj ＜ 0.  Possibly as a rare case, we 
could have the special situation in which ∂ui / 
∂wj ≦ 0 for all i.  Generally speaking, when the 
price of a certain input price rises, the demand 
for that input tends to decrease if output is to 
be constant.  In other words, the compensated 
demand curve tends to be negatively sloping.  
Coupled with this result, Property (1) of Theo-
rem 5 implies that whereas it is possible that all 
other inputs are net substitutes for an input, it 
is not possible that they are net complements 
for it.  In short, although net substitutability 
can be seen everywhere, net complementarity 
is a rare phenomenon.  Property (2) also shows 
further limits on the possibility of net comple-
mentarity.  Property (3) asserts that the 
substitution effect should be symmetrical be-

tween two inputs.  Naturally, this agrees with 
common sense.

The properties of the total effect will be 
summarized in the following theorem.

THEOREM  6   (Differential properties of x 
(w, p) and y (w, p))

For all (w, p) ∈ W×P, we have the follow-
ing properties, almost everywhere.  

(1)   (∂xi / ∂w1)w1 + ... + (∂xi / ∂wn) wn + 
(∂xi / ∂p) p = 0   for any i.

(2)   (∂y / ∂w1) w1 + ... + (∂y /∂wn) wn + (∂y 
/ ∂p) p = 0 . 

(3)   ∂xi / ∂wj = ∂xj / ∂wi   for all i, j. 
(4)   ∂xi / ∂p + ∂y / ∂wi = 0   for all i.
(5)   The following matrix is positive semi-

definite :  

   

Proof.  We first note that the profit func-
tion π(w ,  p) is almost ever ywhere twice 
differentiable since it is convex by Lemma 2 (3).  
Since ∂π / ∂wi = –xi for any i, and ∂π / ∂p  = y,  
this obviously implies that both input function 
x(w, p) and the output function y(w, p) are al-
most  e ver y where  d i f ferentiable .   Such 
differential properties are quite important for 
further derivations.

From Lemma 2 (7),  we see that x(w, p) and 
y(w, p) are homogeneous of degree one.  There-
fore, by applying the famous Euler theorem on 
homogenous functions here , we can immedi-
ately obtain Properties (1) and (2).

Next, Let us recall the famous Young theo-
rem, which says that if a function is twice 

 14

Theorem  6   (Differential properties of  x (w , p ) and y (w , p )  )  
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Proof.   We first note that the profit function π(w , p ) is almost everywhere twice 
differentiable since it is convex by Lemma 2 (3).  Since∂π/∂w i = —ｘi  for any i , and 
∂π/∂p  = y  ,  this obviously implies that both input function x (w , p ) and the 
output function y ( w , p ) are almost everywhere differentiable.  Such differential 
properties are quite important for further derivations. 
     From Lemma 2 (7),  we see that x (w , p ) and y ( w , p ) are homogeneous of 
degree one.  Therefore, by applying the famous Euler theorem on homogenous 
functions here , we can immediately obtain Properties (1) and (2). 
     Next, Let us recall the famous Young theorem, which says that if a function is 
twice differentiable, the order of differentiation does not matter, leading to the same 
result.  So, if we apply the Young theorem to the profit functionπ(w , p ) which is 
convex by Lemma 2 (7) , then we can obtain the following equations almost everywhere:. 
 
   ∂x i /∂w j  = —∂2π/∂w j∂w i  = —∂2π/∂w i∂w j  =∂x j /∂w i  for all i , j , 
   ∂x i /∂p +∂y /∂w i  = —∂2π/∂p∂w i  +∂2π/∂w i∂p  
   = —∂2π/∂w i∂p  +∂2π/∂w i∂p  = 0   for all i .  
 
     Therefore, Properties (3) and (4) are surely assured. 
     Finally, since the risk functionπ(w , p ) is convex, its Hessian matrix must be 
positive semi-definite, almost everywhere.   We note that the following set of equations 
hold. 
 
        ∂2π/∂w j ∂w i =∂x i /∂w j ,∂2π/∂p∂w i =∂x i /∂p .  
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8)  This markedly contrasts with the income effect in 
consumption theory since the latter may be non-sym-
metrical.

differentiable, the order of differentiation does 
not matter, leading to the same result.  So, if we 
apply the Young theorem to the profit function 
π(w, p) which is convex by Lemma 2 (7) , then 
we can obtain the following equations almost 
everywhere:.

∂xi / ∂wj = –∂2π / ∂wj∂wi = –∂2π / ∂wi∂wj

= ∂xj / ∂wi   for all i, j, 
∂xi / ∂p +∂y / ∂wi = –∂2π /∂p ∂w i  + ∂2π / 
∂wi ∂p 
= –∂2π / ∂wi ∂p +∂2π / ∂wi∂p  = 0   for all i. 

Therefore, Properties (3) and (4) are surely 
assured.

Finally, since the risk function π(w, p) is 
convex, its Hessian matrix must be positive 
semi-definite, almost everywhere.  We note 
that the following set of equations hold.

∂2π /∂wj ∂wi = ∂xi / ∂wj, ∂2π / ∂p ∂wi = ∂xi 
/ ∂p.
∂2π / ∂wj ∂p = ∂y / ∂wj, ∂2π / ∂p2 = ∂y / ∂p.

Hence, Property (5) is definitely assured.
Q.E.D.

To see the economic significance of Theo-
rem 6, let us introduce several useful concepts 
here.  We say that the input i is a gross substitute 
for the input j if ∂xi / ∂wj ＞ 0 ; a gross comple-
ment for it if ∂xi / ∂wj ＜ 0.  We also say that the 
input i is a normal input if ∂xi / ∂p ＞ 0 ; an in-
ferior input if ∂xi / ∂p ＜ 0.  If we employ these 
concepts, we can give new light on the relation-
ship between inputs and outputs on the one 
hand and input prices and output prices on the 
other hand.  

First of all, Property (4) of Theorem 6 tells 
us that the "supposedly normal situation" under 
which ∂xi / ∂wi ≦ 0 for any i and ∂y / ∂p ≧ 0  
is certainly plausible but not inevitable.  As can 
easily be expected, while the input demand 
curve tends to be negatively sloping, the out-
put supply curve tends to be positively sloping.  
Property (4) means that ∂xi / ∂p ＞ 0 (or ＜ 0) 
if and only if ∂y / ∂wi ＜ 0 (or ＞ 0).  In plain 
English, this means that the input i is a normal 
input (or am inferior input) if and only if a fall 
in the price of the input leads to an increase (or 
a decrease) in output.

In the light of Property (5), we find ∂y / ∂p  
≧ 0.  So, Property (2) implies that although it 
is likely that all of inputs are normal, it is a mis-
sion impossible that they are all inferior.  Now 
suppose that a certain input, say xi, is an inferi-
or input, so that ∂xi / ∂p ＞ 0.  It follows from 
Property (1) that, in such a case, it is not possi-
ble at all  that all  other inputs are gross 
complements for the input i although it is truly 
possible that they are all gross substitutes for it.  
Because of Property (3), the total effect is sym-
metrical between two inputs.  However, we 
already know from Theorem 5 (3) above that 
the substitution effect is symmetrical between 
them.  Therefore, the expansion effect, as the 
difference of the total and substitution effects, 
must be symmetrical as well.8)

Finally, in the light of Properties (3) and 
(5), we obtain the following inequalities for all 
i ≠ j.

(∂xi / ∂wi) (∂xj / ∂wj) ≧ (∂xi/ ∂wj)2. 
 (–∂xi / ∂wi) (∂y / ∂p) ≧ (∂xi / ∂p) (–∂y / 
∂w1).
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Clearly, these inequalities indicate domi-
nance of the own effects over the cross effects.  
Summing up, the differential properties of x(w, 
p) and y(w, p) are so important that they will 
be utilized for further discussions on input de-
mand theory.

V Decomposition 
  Equations in 
  Input Demand Theory

As stated above, the total effect of a change 
in the price of an input on the demand for an-
other input can be split up into the two 
separate effects, namely the substitution and 
scale effects.  The purpose of this section is to 
use the previous results to derive various types 
of decomposition equations in input demand 
theory.  Our attention will be mainly devoted 
to seeing how and to what extent they are anal-
ogous to , or distinct from, the famous Slutsky 
equations in consumer demand theory (see 
Slutsky (1915) and McKenzie (1957) ). 

Let us attempt to decompose the change of 
the demand for the input i responding to a 
change in the price of the input j.  For that pur-
pose, let us consider the following increment .

 Δxi(w, p) = xi(w +Δjw, p) – xi(w, p), with 
Δjw = (0, ... , 0, Δwj, 0, ... , 0). 
Then, by 4 (1) above, we obtain the follow-

ing.

 Δxi(w, p) = ui(w+Δjw, y(w+Δjw, p)) –ui(w, 
y(w, p)).
= ui(w+Δjw, y(w, p)) – ui(w, y(w, p))
 + ui(w+Δjw, y(w+Δjw, p)) – ui(w+Δjw, 
y(w, p)). (17)

Now, let us newly define the quantities SEij 
and EEij as follows.

 SEij = 【ui(w+Δjw, y(w, p)) –ui(w, y(w, p))】
/ Δwj. (18)
 E E ij  =【u i( w + Δ jw ,  y ( w + Δ jw , p ) )  –
ui(w+Δjw, y(w, p))】/ Δwj. (19)

Then, it is easily seen from Eq. (17) that the 
following equation holds.

Δxi / Δwj = SEij + EEij. (20)

In our opinion, Eq. (20) has very impor-
tant implications.  It is noted that SEij and EEij  
respectively show the substitution effect and the 
expansion effect.  At first appearance, it seems to 
be the finite increment version of the famous 
Slutsky equation in consumer demand theory.  
In fact, a change Δwj in the price of the input j 
affects the behavior of the firm in two different 
ways.  While it causes a change in input price 
ratios which induces technical substitution 
among inputs along the old isoquant, it entails a 
change in the profit maximizing output along 
the new scale path.   

On the one hand, the first substitution ef-
fect stands for the variation in the optimum 
combination of inputs within the isoquant class 
to which the original x(w, p) belongs.  Then, c(w 
+ Δjw, y(w, p)) represents the corresponding 
level of cost which keeps the firm within the 
same isoquant class as before the input price 
change, even in the new input price situation 
w+Δjw.  On the other hand, the scale effect 
represents the shift of the optimum input combi-
nation in the new input price situation w +Δjw, 
responding to the change of output level from the 
old level w + Δjw to the new level y(w +Δjw, p).
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9)  The f irst version of decomposition equation was 
merely referred to by Basett & Borcherding (1969) with-
out any proof, and later was given a formal proof by Hi-
rota & Sakai (1969) and Syrquin (1970) by using simple 
calculus.  It is noted that the most exact form of decom-
position equations in input demand theory is given here 
in terms of the compensated input functions. 

Note that Eqs. (18)-(19) stand for the dif-
ference versions of the decomposition equations.  
We are now ready to derive the differential ver-
sions, which are perhaps more interesting than 
the difference versions.  To this end, it is neces-
sary to make an additional assumption as 
follows.

Assumption (A6)  For all (w, p) ∈ W×P , 
x(w, p) and y(w, p) are differentiable in (w, p). 

This newly added assumption (A6) is not 
so far from the previous assumptions (A1)–
(A5).  In fact, as was seen above, the latter ones 
already assure almost everywhere differentiabili-
ty of x(w, p) and y(w, p).  The only difference 
between the previous assumptions and the 
newly added assumption comes down to the 
difference between "almost everywhere" and 
"everywhere."  Moreover, when (A6) is as-
sumed, it is not hard to see from Lemma 4 that 
u(w, y) and c(w, y) are also differentiable.

Now, we are in a position to establish and 
prove one of the most important theorems in 
this paper.

THEOREM 7  (The first kind of decomposi-
tion equations)

For all (w, p) ∈ W×P, we have the follow-
ing equations.

(1)   ∂xi / ∂wj = ∂ui / ∂wj + (∂ui / ∂y) (∂y / 
∂wj)   for all i, j.

(2)   ∂xi / ∂p = (∂ui / ∂y) (∂y / ∂p) for all i.

Proof.  In the light of Lemma 4 (1), the 
proof of (1) and (2) is easy and straightforward.   
Indeed, we know that the following important 
equation holds.

x(w, p) = u(w, y(w, p)).
 
If we apply the well-known rule on the dif-

ferentiation of a composite function, then we 
can immediately obtain the desired Properties 
(1) and (2).  Q.E.D. 

Property (1) indicates the first version of 
decomposition equation in input demand the-
ory in differential terms.  Exactly speaking, we 
find that ∂xi / ∂wj = ∂ui / ∂wj + (∂ui / ∂y) (∂y / 
∂wj).  The first term (∂ui / ∂wj) on the right-
hand side tells us to what extent a change in wj 
influences ui .  The second term (∂ui / ∂y) (∂y / 
∂wj) on the right-hand , representing the re-
markable scale effect term, shows the composite 
effect containing the following two partial de-
rivative terms : 

(i)  The partial derivative term (∂y / ∂wj), 
representing the change in the optimum out-
put corresponding to the change in the price of 
the input j,

(ii)  The partial derivative term (∂ui / ∂y),  
showing the change in the optimum input re-
sponding to the variation in the output above 
mentioned.9)

Property (2) demonstrates that the total ef-
fect of a change in input price on the input i  
can be decomposed into the following two par-
tial derivative terms :

(i)  The partial derivative term (∂y / ∂p), 
representing the change in the optimum out-
put as a result of the change in output price,

(ii)  The partial derivative term (∂ui / ∂y), 
showing that the change in the optimum input 
corresponding to the variation in output above 
mentioned.

At first appearance, the combination of the 
firm's substitution and expansion effects seems 
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may look a small step, but surely a giant jump indeed.  10)  By relying on the traditional calculus method, Hi-
rota & Sakai (1969) succeeded in deriving the second ver-
sion of decomposition equations.  To our regret, howev-
er, their proof was rather sketchy and based on the Hes-
sian matrix of the production function per se.  We be-
lieve that a topological approach taken here is more gen-
eral, and more elegant, than the previous method.  This 

to be analogous to that of the consumer's well-
known substitution and income effects.  We 
must say, however, that they are not exactly the 
same.

Whereas in consumption theory we have 
simply to consider the relations between those 
commodities which can be regarded as being 
essentially similar, in production theory we 
have two different kinds of commodities to con-
sider — inputs and outputs.  Therefore, their 
mutual relations and their cross-relations take a 
little more disentangling.  We remind readers 
that, to obtain a decomposition equation in 
consumption theory, it is necessary to imagine 
a compensated change in consumer's income so 
as to keep the same preference level as before, 
in spite of a change in the price of a certain 
commodity.  In contrast to such a compensated 
change in income in consumption theory, in 
production theory we have to introduce the 
idea of a compensated change in output price, 
which was first introduced by Hirota & Sakai 
(1969) and later developed by Sakai (1973), 
Otani (1982), Diewert (1982, 2018), and others.  
More exactly speaking, when the price of a cer-
tain input price varies, we imagine such a 
compensated change in output price as would 
induce the firm to maintain the output level as 
before the input price change.  

By making use of the above-mentioned 
idea peculiar to production theory, we can now 
derive the second version of decomposition equa-
tion.  Compared with the first version, this 
second one will turn out to be more analogous 
to the decomposition equation in consump-
tion theory.  For that purpose, Assumption 
(A6) needs to be a bit strengthened to the fol-
lowing assumption.

Assumption  (A6')  For all (w, p) ∈ W×P, 
x(w, p) and y(w, p) are twice differentiable in(w, 
p).

When Assumption (A6') is made, it is ob-
vious by Lemma 4 that u(w, p) and c(w, y) are 
also twice differentiable.  We are now ready to 
derive the following theorem.

THEOREM  8  (The second kind of decom-
position equations)

For all (w, p) ∈ W×P, we have the follow-
ing equations.

∂xi / ∂wj = ∂ui / ∂wj – (∂xi / ∂p) (∂p / ∂wj) 
for all i, j ,

where ∂p / ∂wj ≡ [dp / dwj]dwi = 0(i ≠ j), dy = 0.

The proof of this theorem is similar to that 
of THEOREM 7, thus being omitted. For de-
tails, see Sakai (2023) 

Theorem 8 gives us the second version of de-
composition equations in input demand theory.  
The scale effect here is meant to represent the 
composite effect of the following two terms:

(i)  The change in output price so as to 
maintain the same output level as before, in 
spite of the change in the price of the input j.

(ii)  The change in the input i correspond-
ing to the variation in output price above 
mentioned.10)

This second version of decomposition 
equations are as important as the first version, 
presumably being even more comparable to the 
famous Slutsky equations in consumption the-
ory (see Slutsky (1915)).  As an immediate 
result of this theorem, we can finally derive the 
following.
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THEOREM  9  ( Property of the expan-
sion effect )

For all (w, p) ∈ W× P, we have the follow-
ing property.

EEii  ≡ – (∂xi / ∂p) (∂p / ∂wi) ≦ 0, i = 1, ... , n.

Proof.  By making use of Theorem 8, Theo-
rem 7 (2), and Lemma 1 (2), we can obtain the 
following sequence of equations.

– (∂xi /∂p) (∂p / ∂wi) =  – (∂xi / ∂p) (∂2c / 
∂y ∂wi ) 

= –(∂ui / ∂y) (∂y / ∂p) (∂ui / ∂y) = – (∂y / 
∂p) (∂ui / ∂y)2 .

Clearly, it should be non-positive by Theorem 
6 (5).   Q.E.D.

The economic significance of this theorem 
is quite clear.  It is recalled by Theorem 5 (4) 
that SEii  ≡ ∂ui / ∂wi ≦ 0.

In the light of the previous discussions, it is 
clear that the substitution effect SEij and the 
scale effect EEii should always go in the same 
direction.  Surely, this is also a remarkable con-
trast to consumption theory à la Hicks (1946), 
in which the substitution and income effects 
may go in opposite directions.  

In short, input demand theory is input de-
mand theor y,  thus being distinct  from 
consumer demand theory.  Although those two 
theories look somewhat similar, they are defi-
nitely different.  We have to understand exactly 
how and to what extent they are analogous or 
distinct.  

VI Final Remarks 
  on the Le Chatelier -
  Samuelson Principle

In the above, we have been manly con-
cerned with the axiomatic foundations of input 
demand theory.  While the approach taken 
here looks mathematical and rigorous, it has 
useful economic implications.  In particular, it 
is noted that the total effect of a change in an 
input can be decomposed into the substitution 
and expansion effect.  How and to what extent 
such decomposition in input demand is com-
parable to that in consumer demand is 
certainly a very important question to ask.  To 
our surprise, such comparison has been rather 
neglected for long time in the economics litera-
ture.  We do believe, however, that as the saying 
goes, it is better late than never.  

We are ready here to do some economic 
applications and make final remarks.  First, we 
note that our decomposition in input demand 
is closely related to the famous Le Chatelier 
-Samuelson principle.  Although this connec-
tion was pointed out by our friend Yoshihiko 
Otani (1982), we are going our own way to 
confirm it below.  

Henri Louis Le Chatelier (1850-1936) was 
a noted French scientist.  He was best known 
for his work on his chemical equilibrium, 
which was to be called Le Chatelier principle 
in the academia.  In his classical work con-
tained in Samuelson (1947, enlarged edition 
1983), Samuelson boldly applied the principle 
to economic equilibrium, so that naming of the 
Le Chatelier - Samuelson principle has been so 
popular in the academic world, especially in 
the economic profession (see Stiglitz (1966)).11)
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principle.  Also see Dietzenbacher (1992) and Alexan-
drov & Bedre-Defolie(2017).  

11)  According to Samuelson (1972), the Le Chatelier 
Principle was discovered more than one hundred years 
ago by Le Chatelier, French chemist.  Samuelson found, 
however, that it was a rather vaguely stated principle.  
So, he decided to make it more perfect, and boldly ap-
plied to economic theory.  This is the reason why this 
principle is now cal led the Le Chatel lier-Samuelson 

In our setting of input demand theory dis-
cussed so far, we have only to compare

the case with no isoquant constraint and 
the one with a single constraint, namely the 
constraint that output y remains constant re-
gardless of a change in wi.  So, in terms of the 
input demand setting, we must have (dxi / dwi) 
0 ≦ (dxi / dwi ) 1 ≦ 0.

If we rather want to follow the decomposi-
tion equation formula above mentioned, then, 
we must find ∂xi / ∂wi = ∂ui / ∂wi – (∂xi / ∂p) 
(∂p / ∂wi), or in short, TEii  = SEii  + EEii

Since the terms TEii, SEii, and EEii are all 
non-positive, we must have the following:  TEii 
≦ SEii (≦ 0 ).  Needless to say, this inequality 
clearly demonstrates the validity of the famous 
Le Chatelier - Samuelson principle in input de-
mand equilibrium.  For this point, also refer to 
Rader (1968). 

In conclusion, the name of Chemist 
Le Chatelier is brilliantly shining not only in 
the chemical world but also in the economic 
world as well.  Life may be short, but science is 
long and spreading indeed !  
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Producer Decision and Input Demand Theory 
A Modern Approach

Yasuhiro Sakai

This paper is concerned with an axiomatic 
approach to input demand theory.  By help of 
general production possibility sets, we intend 
to derive decomposition equations in input de-
mand theory, which have been rather neglected 
so far in the economics literature.  Special at-
tention is paid to important comparison 
between the firm’s expansion effect and the 
consumer’s income effect.  We discuss the ques-
tion how and to what extent the expansion 
effect is distinct from the income effect. In this 
connection, the Le Chatelier -Samuelson prin-
ciple is also discussed, 

Keywords:  producer decision, comparative 
static analysis, expansion effect, infe-
rior input, Le Chatelier-Samuelson 
principle


