DISCUSSION PAPER SERIES E

SHIGA UNIVERSITY

Discussion Paper No. E-47

Loglinear and Linear Approximate Solutions for
Finite-Time Consumption—Investment Problem

Kentaro Kikuchi Koji Kusuda

September 2025

The Institute for Economic and Business Research

Faculty of Economics

SHIGA UNIVERSITY

1-1-1 BANBA, HIKONE,
SHIGA 522-8522, JAPAN




Loglinear and Linear Approximate Solutions for
Finite-Time Consumption—Investment Problem

Kentaro Kikuchi* Koji Kusuda'

3 September, 2025

Abstract

Assuming a quadratic security market model and homothetic ro-
bust utility in the finite-time consumption-investment problem, a second-
order nonhomogeneous nonlinear partial differential equation is de-
rived. This study introduces two types of time-dependent loglinear
approximation methods related to the nonhomogeneous term and four
types of time-dependent linear approximation methods for the non-
linear term. The study derives loglinear approximate solutions and
showcases the results of linear approximate solutions. The study then
compares the approximation accuracies of the approximate optimal
portfolios based on these approximate solutions. The numerical analy-
sis indicates that the accuracies of both loglinear approximate optimal
portfolios are very low, whereas those of all linear approximate optimal
portfolios are very high.

Keywords Linear approximation; Loglinear approximation; Time-
dendent approximation; Consumption—investment problem; Homoth-
etic robust utility; Quadratic model

1 Introduction

To analyze dynamic consumption—investment problems, we should estab-
lish a realistic security market model that captures actual asset price fluc-
tuations. Prior empirical studies have shown that interest rates, market
price of risk, asset volatilities, and inflation rates are stochastic and mean-
reverting—such findings are now considered stylized facts. Batbold, Kikuchi,
and Kusuda (2022) consider a finite-time consumption-investment prob-
lem for long-term investors with constant relative risk aversion (CRRA)
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utility under a quadratic security market (QSM) model! , wherein all the
above-mentioned processes are stochastic and mean-reverting. Since the
QSM model makes the investment opportunity set stochastic, intermediate
utility generates a nonhomogeneous term in the second-order linear par-
tial differential equation (PDE) for the indirect utility function. Batbold
et al. (2022) derive a semi-analytical solution of the PDE and obtain an
optimal portfolio which is decomposed into myopic, intertemporal hedging,
and inflation-deflation hedging demands. They demonstrate that all the
demands are nonlinear functions of the state vector. Their numerical anal-
ysis highlights the nonlinearity and significance of market timing effects.
Nonlinearity stems from stochastic volatility, while significance is attributed
primarily to inflation-deflation hedging demand, in addition to myopic de-
mand. These results demonstrate that the QSM model is promising for
consumption—investment problems.

We should also consider the need for robust dynamic investment control,
which has been highlighted by the global financial crisis. Robust utility is
proposed by Hansen and Sargent (2001); however robust utility does not
have homotheticity? that CRRA utility has. Maenhout (2004) generalizes
robust utility to endow it with homotheticity, which leads to homothetic ro-
bust utility. Homothetic robust utility has been used in various robust con-
trol studies including Skiadas (2003), Maenhout (2006), Liu (2010), Branger,
Larsen, and Munk (2013), Munk and Rubtsov (2014), Yi, Viens, Law, and Li
(2015), and Batbold, Kikuchi, and Kusuda (2019). The nonlinear term ap-
pears in the PDE along with the nonhomogeneous term under the stochastic
investment opportunity set and homothetic robust utility.?

In infinite-time consumption—investment problems, the nonhomogeneous
term in the PDE is equal to the stable optimal consumption—wealth ra-
tio; thus, Campbell and Viceira (2002) use a loglinear approximation* of
the nonhomogeneous term. Previous studies including Campbell and Vi-
ceira (2001) and Liu (2010) apply the loglinear approximation method of
Campbell and Viceira (2002) to derive approximate solutions. Batbold

1QSM models are generalization of affine models independently developed by Ahn,
Dittmar, and Gallant (2002) and Leippold and Wu (2002). The QSM models are employed
in studies of empirical analysis (Leippold and Wu (2007), Kim and Singleton (2012), and
Kikuchi (2024)), security pricing (Chen, Filipovié, and Poor (2004), Boyarchenko and Lev-
endorskii (2007), and Filipovié¢, Gourier, and Mancini (2016)), and optimal consumption—
investment (Batbold et al. (2022); Batbold, Kikuchi, and Kusuda (2025), and Kikuchi and
Kusuda (2024)).

2 A utility function U is homothetic if, for any consumption plan ¢ and &, and any scaler
a>0,U(aé) > U(ac) & U(e) > U(c).

3Note that in the case of the portfolio choice problem as studied in Maenhout (2006),
Branger et al. (2013), Munk and Rubtsov (2014), and Yi et al. (2015), the PDE is homo-
geneous because there is no intermediate utility that generates a nonhomogeneous term,
and an analytical solution can be derived.

4Their loglinear approximation method is a continuous-time version of the method
proposed by Campbell (1993) in the discrete-time model.



et al. (2019) use another loglinear approximation method to derive another
approximate solution. All the above-mentioned studies consider infinite-
time consumption—investment problems. This study asseses the finite-time
consumption—investment problems for log-term investors with homothetic
robust utility under the QSM model assumed by Batbold et al. (2022).
Under the finite-time setting, the nonhomogeneous term is time-dependent
and unstable. Kikuchi and Kusuda (2025) propose a time-dependent lin-
ear approximation method for the nonlinear term to derive an approximate
solution.® However, there exist alternative time-dependent approximation
methods. One such approach involves the use of a loglinear approximation
related to the nonhomogeneous term, while the other entails the use of an
alternative linear approximation for the nonlinear term.

In this study, we present two types of loglinear approximation meth-
ods and four types of linear approximation methods including the method
proposed by Kikuchi and Kusuda (2025). We then compare the accura-
cies of approximate optimal portfolios based on these solutions. The objec-
tive of this study is to explore superior approximation methods for second-
order nonlinear nonhomogeneous PDEs derived from optimal conditions for
consumption—investment problems. It is not the objective of this study to
explore methods that are generally superior as approximations for second-
order nonlinear nonhomogeneous PDEs of the same type. The main contri-
butions of this study can be summarized as follows.

First, we introduce two types of time-dependent loglinear approximation
methods related to the nonhomogeneous term. One of them is a time-
dependent version of the loglinear approximation method of Batbold et al.
(2019). We then derive approximate solutions.

Second, we introduce four types of time-dependent linear approximation
methods, including the proposed method by Kikuchi and Kusuda (2025),
and present approximate solutions demonstrated by Kikuchi and Kusuda
(2025).

Third, we examine the case of a long-term investor who plans to in-
vest in the S&P500 and 10-year U.S. Treasury Inflation-Protected Securi-
ties (TIPS) in addition to the money market account over a 35-year pe-
riod under the two-factor QSM model estimated by Batbold et al. (2022).
When relative ambiguity aversion is zero, i.e., in the case of CRRA utility,
the semi-analytical solution presented by Batbold et al. (2022) is obtained.
Therefore, we confirm that the optimal portfolio based on a numerical solu-
tion of the PDE approximates the one based on the semi-analytical solution
with sufficiently high accuracy and can be regarded as the true optimal port-
folio. Then, we consider the case of homothetic robust utility and compare

5The proposed time-dependent linear approximation method is applied to finite-time
consumption-investment problems in the case of “age-dependent robust utility” (Kikuchi
and Kusuda (2024)).



the accuracies of the six types of approximate optimal portfolios based on
the numerical solution of the PDE. The results show that the accuracies of
both loglinear approximate optimal portfolios are very low, whereas those
of all linear approximate optimal portfolios are very high. Among the high-
precision linear approximation methods, three methods appear to demon-
strate slightly higher accuracy and stability than the remaining method.
One method among them is recommended for adoption due to its simplicity
in implementation.

For infinite-time consumption-investment problems, loglinear approxi-
mation methods have been exclusively used. However, the findings strongly
indicate that linear approximation methods should be used instead of log-
linear approximation methods for finite-time problems.

The remainder of this paper is organized as follows. Section 2 reviews the
optimal robust control problem and the PDE. Section 3 introduce two types
of loglinear approximation methods and derive the approximate optimal
solutions. Section 4 introduces four types of linear approximation methods.
Section 5 compares the accuracies of the approximation methods. Section 6
concludes this study and address future research issues. Appendix includes
the proof of proposition.

2 Review of Optimal Robust Control and PDE

We review the QSM model and robust consumption—investment problem.
We then show the optimal robust control and PDE derived by Kikuchi and
Kusuda (2025).

2.1 QSM Model

We consider frictionless US markets over the period [0, c0). Investors’ com-
mon subjective probability and information structure are modeled by a com-
plete filtered probability space (2, F,F, P), where F = (F¢).¢[0,00) is the nat-
ural filtration generated by an N-dimensional standard Brownian motion
B;. We denote the expectation operator under P by E and the conditional
expectation operator given F; by Ei.

There are markets for a consumption good and securities at every date
t € [0, 00), and the consumer price index p; is observed. The traded securities
are K-types of stock price indices, the instantaneously nominal risk-free
security called the money market account and a continuum of zero-coupon
inflation-indexed bonds whose maturity dates are (¢, + 7*], where 7* is the
longest time to maturity of the bonds. The payoff of bond is pr US dollar
at maturity 7. On every date ¢, Q] , and SF denote the USD prices of the
money market account, zero-coupon inflation-indexed bond with maturity
date T, and k-th index, respectively. Let A’ and I,, denote the transpose of
A and n x n identity matrix, respectively.



We assume the following QSM model introduced by Batbold et al. (2022).

Assumption 1. Let (po, Lo, Sok; Ook); (A ps Ly 0p, Ok, 0k), and (R, Ag, Xi) de-
note scalers, N-dimensional vectors, and N x N positive-definite symmetric
matrices, respectively, where k € {1,--- , K}.

1. State vector process X; is N-dimensional and satisfies the following
stochastic differential equation (SDE):

dX; = —KX;dt + Iy dB, (2.1)

where K is an N x N lower triangular matriz, and all the diagonal
elements are positive.

2. Market price A+ of risk and instantaneous nominal risk-free rate ry are
provided as

1
)\t =+ AXt, e = po + ,OIXt + §X£,R,Xt, (22)
where A is an N x N matriz.

3. Consumer price index p; satisfies

d
% = P (Xy) dt + oP(Xy)'dB, po =1, (2.3)
¢

where pP(X;) and oP(Xy) are given by
1
,U,p(Xt) = + L/Xt + QXZIXH (24)
O'p(Xt) = O0Op + EpXt, (25)
where T is an N X N positive-semidefinite symmetric matriz.
4. The dividend of the k-th stock price index is given by
1 1
Df = (5Ok + 62;Xt + QXI{AkXt) exXp (O’()kt + O'%Xt + 2X£EkXt> .
(2.6)

5. Markets are complete and arbitrage-free.

2.2 Homothetic Robust Utility and Portfolio

Let P denote the set of all equivalent probability measures.> We use the
follwoing notation: ( is the subjective discount rate, v > 1 is the relative
risk aversion coefficient, § > 0 is the relative ambiguity aversion coefficient,
and « € [0,1] represents the relative importance of the intermediate and
terminal utility.

5A probability measure P is said to be an equivalent probability measure of P if and
only if P(A) =0 < P(A) =0.



Assumption 2. The investor’s utility is the homothetic robust utility of the

form:
T* 1—y 3 1—vy
-t G (1 -7V, 2 1— —BT* 1
/Oe (al—fy+ 50 1&)7 | dt + (1 — a)e |
(2.7)

where ¢ is a consumption plan such that ¢ = (ct)icp,r+) i an adapted non-

Ulc) = inf E*
PéeP

negative consumption-rate process, B¢ is the expectation under P&, and V; is
the utility process defined recursively as

T* 1—y 3 gl
—B(s—t) Cs (1—=7)Vs 2 1— —B(T*—t) ‘T*
/te (041_7—1— 50 [€s]“ ) ds + (1 — a)e |
(2.8)

Vi =Ef

Let Qi(7) = Q] where 7 =T —t.
Assumption 3. The investor invests in P, Q¢(71),- -+, Q¢(77), and S}, --- , SE
at time t where J+ K = N.

Let ®(7) and ®* denote the portfolio weight of inflation-indexed bond
with 7-time to maturity and that of the k-th stock price index, respectively.
Let 6z(X;) and 6%(X;) denote the volatility of inflation-indexed bond with
7-time to maturity and that of the k-th stock price index, respectively. Let @
and X (X;) denote the portfolio weight vector and portfolio volatility matirx.
Then, &; and X(X;) are expressed as

ng(@t(%l)a 7¢t(7~_J)7¢%;"' aéf)a (29)
Z(Xt)/ - (&7:1 (Xt)7 T 7&’FJ<Xt)7&1(Xt)7 T 7&k(Xt))' (2'10)

2.3 Optimal Robust Portfolio and PDE

We define the real market price of risk A(X;) and real instantaneous interest
rate 7(X;) as

AMXy) = N — oP(Xy), (2.11)
T(Xt) = re — pP(Xy) + NoP(Xy). (2.12)

Then, A\(X;) and 7(X;) are expressed as
X)) = A+ AKXy, (2.13)
F(Xy) = po+ p' X + %Xﬁéxt, (2.14)

where

A=A—0p, A=A-3, (2.15)
po = po — to + NaoP, p=p—t+Nop+ I\ (2.16)
R=R-I+LA+AS, (2.17)



Let ¢; and W; denote the consumption rate process and the real wealth
process, respectively. Let X; = (W, X[) and let Wy > 0. Batbold et al.
(2022) show the following:

1. 6-(X;) and 6%(X;) are given by
67(Xy) = 0(7) + op + (B(F) + Ip) X4, (2.18)
6"(X1) = o + S X, (2.19)

where (3(7), (7)) is a solution to ordinary differential equations (ODEs)

(A.1) and (A.2), and (X, 0%) is a solution to Egs. (A.3) and (A.4).

2. The investor’s consumption—investment problem and the value func-
tion are defined by

V(Xp)= sup inf Up. (2.20)
(c,5)€B(Xo) PEEP

where B(Xj) is the set of admissible controls defined by the following
real budget constraint:

dW;
Wi

- (ft+a;;t_;§

) dt +6,dB;, te[0,T7], (2.21)
t

with initial state Xo = (Wp, X{)’, and & is the investment control
given by
5',5 = E(Xty@t — O'tp. (222)

Let 7 = T*— t, hereafter. Kikuchi and Kusuda (2025) present that the
indirect utility function, optimal consumption, and optimal investment for
problem (2.20) satisfy Eqgs. (2.23), (2.24), and (2.25), respectively, and G is
a solution of the PDE (2.26).

i
J(t, X)) = e—ﬁtﬁ(G(T, X)), (2.23)
* 1 Wt*
c; = aij(T, X)) (2.24)
B 1 - 1 v Gx(1,Xy)
. N+ (11— 2.2
5T “L( 7+9)7—1 G(r, Xy) (2.25)
G, 1 |Gxx Gx |? y+O-1 - !
ak— X (kx+ L (N AX
& =3 | e o | (e g e A
1
@ Y=l g aep A= (o 1\ B
C T N4+ AxpP -1 X+ -XIRX, ) - 2
G0, Xp+) = (1 —a)7. (2.26)

Gx



3 Loglinear Approximations

We introduce two types of loglinear approximation methods, wherein the
nonhomogeneous term in the PDE (2.26) is loglinearly approximated.
3.1 Loglinear Approximation Method I

We apply a time-dependent loglinear approximation to the nonhomogeneous
term in the PDE (2.26) as follows:

M ~ k(r)(1 — log k(r)) — k(r) log G(r, X), (3.1)
where
Ko = 5 (i o (3.2)

We refer to this as the loglinear approximation method I (LLM I). Approx-
imating the nonhomogeneous term in PDE (2.26) by Eq. (3.1) leads to the
following approximate PDE:

2

¢ 1, [Cxx], Cx
G 2 G 20 -1D(v+0) | G
- | KX —i—LH(;\—i-AX) /G—X—oﬁklo G
t ) t G g
1 y—1 < 5 =1/, | B
k(1-log k)— —— | M+ A X |*—— Xe+ - XiRXy | ——.
radk(1-log k)5 AN -1 (X iR ) -
(3.3)
An analytical solution of the PDE (3.3) is expressed as
1 1
G(r, X)) =(1— oz)i exp (ao(T) +a(1)' X + 2X£A(T)Xt> , (3.4)
where A(7) is a symmetric matrix. Thus, k is computed as
_1
k(t) =(1—a) 7 exp(—ap(r)). (3.5)

3.2 Loglinear Approximation Method II

In the loglinear approximation method II (LLM II), we generalize the method
following Batbold et al. (2019) for infinite-time problems to a time-dependent
approximation and redefine k in (3.2) as follows.

k() = exp (—E Lliglo log G(, Xt)D . (3.6)



Let X = tlim X;. Then,
—00

k() = exp (=2 Tog(1 = @) ~ an(r) ~ a(r) Xl = JEIXATIX])

(3.7)
is calculated by the following lemma.

Lemma 1. Under Assumptions 1-3, k is represented by the following equa-
tion with (ag,a, A):
1 1 —1y/ -1
k(T) = exp —;log(l —a) —ap(T) — itr (@ H'MmQ™] ), (3.8)
where Q and M(T) are matrices such that
Q7 'KQ = L = diag(ly,la,--- ,In), (3.9)

Miy(r) = = (@A) (310)

where M (1) and (Q'A(1)Q);; are the (i, j)-th element of M(7) and Q' A(T)Q,

respectively.

Proof. See Appendix B.1. O

3.3 Loglinear Approximate Solution

Note that in Egs. (3.5) and (3.8), (4, a,ap) can be transformed to (A4, a, k),
since k is a monotonic function of ag. We use the following notation.

0—1-
H=Kk+ 170" K (3.11)
v +6
Define functions ho, h1, and hg by
T +0-1) o o -1 o5 v—1s
ho(A) = 117~ 2 A2 H'A—AH - "~ NA— 1 —-R,
+(4) (v—=D(v+90) (v +0) ¥
Yy +60-1) ) y+0-1 o  y—1 o y-1_
hi(da)= 1~ A—H Ja—1— —AN— " — _ANN—-1 =}
1(4,0) (W—iﬂv+@ v +0 v(v +0) v 7
1 Ty+0-1) 5 y+0-1g, T-1 5o -1 B
ho(A,a) = = tr|A] + — a— Alf — - —.
o(d-a) =5 trldl %7—UW+®|’ y+0 2%7+®“ y Ty
(3.12)

The solution of the approximate PDE (3.3) is referred to as the loglinear ap-
proximate optimal control and is denoted by (¢*,5*). We have the following
proposition.



Proposition 1. Under Assumptions 1-3, the loglinear approximate opti-
mal consumption and investment for problem (2.20) satisfy Eqs. (3.13) and
(8.14), respectively.

¢ = a%Wt exp [— <a0(7') +a(r) Xy + ;XQA(T)Xtﬂ ) (3.13)
5 = vie (3 +AX) + <1 - 71+9> %(a(ﬂ LAMX),  (3.14)

where (A, a, k) is a solution of the system of ODEFEs:

dA 1

2 hy(A) — a7 kA, (3.15)
dr

9 (Aa) = atka (3.16)
dr — 1 ; ) .
dk 1

= —k(ho(A, a) + onk), (3.17)

with (A(0),a(0), k(0)) = (0,0, (1 — a) 7).

Proof. See Appendix B.2. O

4 Linear Approximations

We introduce four types of linear approximation methods, including the
proposed method by Kikuchi and Kusuda (2025), for the nonlinear term in
the PDE (2.26), and present approximate solutions demonstrated by Kikuchi
and Kusuda (2025).

The PDE (2.26) is rewritten as

1 0 G’ y+60—-1 - - !
G,=-tr|@ XGx— KX, + ———— A+ AX G
21“[ XX]+2(’7—1)(7+0)G X< t+ 10 (—l— t)> X
e an 2 (s ) + 2!
A N+ AX P+ (G + X+ XRX )+ 2 G+ an.
270y 1 6) e (R S “

(4.1)

4.1 Four Types of Linear Approximation Methods

G
Linear approximation methods approximate ~X in the nonlinear term of
the PDE (4.1) by a time-dependent linear function of Xj.

Gx

o~ d(t) + D(7)X;. (4.2)

10



Using Eq. (4.2), we obtain the following approximate nonhomogeneous linear
PDE:

1 1
G, = LG d(T)+D(1)X;) Gx+a7, G(0,X)=(1-a)7,
+2(7_1)(7+9)((7)+ (1)X¢) Gx+an (0, X) = (1—a)~
(4.3)
where L is the linear differential operator defined by
1 yH+O-1 - !
LG = §tI’[GXX] - <ICXt+’Y+9 ()\+AXt)> GX
D e S S AT R el B S B

Consider the following homogeneous linear PDE:

0 6 /
— X) = X D(1)X X)=1
5-9(m X) = Lg(7, X) + R (d(r)+D(1)X:)'gx, (0, X)
(4.5)
An analytical solution of the homogenous PDE (4.5) is expressed as
g(1, X) = exp <b0(T) +b(1)' X + ;X’B(T)X) , (4.6)

where B(7) is a symmetric matrix. Then, a semi-analytical solution of the
approximate PDE (4.3) is expressed as

G(r,Xy) = s /OT g(s, Xy)ds+ (1 — a)%g(T, Xy). (4.7)

Define b*(r, X;) and B*(1, X;) by

b (r, Xy) = G(:Xt) </O v g(s, X)b(s) ds + (1 — )7 g(r, Xt)b(r)> ,
B* (1, X)) = G(T:,lXt) (/0 a%g(s,Xt)B(s) ds+ (1— a)%g(T, Xt)B<7')> :

(4.8)

The linear approximation methods I (LM I) and IT (LM II) set (d(7), D(1)) =
(a(r), A(T)) where (a(7), A(7)) are solutions used in LLM I and LLM II, re-
spectively. The linear approximation method IIT (LM III), which is proposed
by Kikuchi and Kusuda (2025), sets (d(7), D(1)) = (b*(7,0), B*(7,0)).

To introduce the linear approximation method IV (LM IV), we consider
the conditional probability density function of X; given that X; 1 = 0 and

let x1,- -+, x)s denote a bootstrapping sample from the conditional probabil-
Gx(T,%Xm) . .. )
ity density function. Then, for each 7, M is linearly approximated
T? Xm

11



as the following seemingly unrelated regression (SUR) model, proposed by

Zellner (1962). .

where €], is the error term such that E[e] (€7 )/|x] = 2. The SUR model
can be estimated equation-by-equation using the OLS. It is well known that
the OLS estimators of the SUR model is consistent, though not efficient. Let
(5:0(7'),5:(7')) denote the OLS estimators. The LM 1V sets (d(7), D(7)) =

(Bo(7), B(7))-

4.2 Linear Approximate Solutions

Define functions me, m1, and mqg by

-1 -, ~v—1-
mo(B) = B2 — H'B— BH — ——~_NA - R,
2(B) (v +0) ¥
+60—-1_- y—1 -~ ~v—=1_
my(B,b) = B—H’)b—'VBA—A’A—p,
1(5:0) ( v+0 (v +0) ¥
1 y+60—1- y—1 < y—1_
B,b) = = (tr[B] + |b]?) — Nb— A2 — - =
(4.10)

where H is given by Eq. (3.11).

Kikuchi and Kusuda (2025) demonstrate that the linear approximate
optimal consumption and investment for problem (2.20) satisfy Eqgs. (4.11)
and (4.12), respectively.

1
o J— oWy NERTY
a / g(s, Xp)ds + (1 —a) g(T*—t, Xp=y)
0

where g is given by Eq. (4.6), and

- 1 < = 1 ~
= —— (MAX 1— —— | ——(b" (7, Xo)+B*(1, X)X, 4.12
o7 = g Ax) (1= 5 ) 2 (7 X5 (7. X0 X0, (412)
where (b*, B*) is given by Eq. (4.8), and (B, b, by) is a solution of the system
of ODEs:

dB 0 /
E = m2<B) + WD(T) B(T),
% =mqy(B,b) + 30y = 3(7 0 (D(T)'b(T) + B(T)’d(T)), (4.13)
T = ma(Bb)+ s ()b
with (B(0), b(0), bo(0)) = (0,0,0).

12



5 Comparison of Approximation Accuracies

Here, we first confirm the optimal portfolio based on a numerical solution of
the nonhomogeneous nonlinear PDE (4.1) as the true one and then compare
the accuracies of approximate optimal portfolios based on the aforemen-
tioned six types of approximate solutions.

5.1 Approximate Optimal Portfolios

From Egs. (2.22) and (3.14), the loglinear approximate optimal portfolio
weights are given by

&r = 71+92()(t)’—1 ()\ + AXt> + <1 - 719> S(X,) ! (ap + EpXt)
4 (1 _ 71+9> o) () + A@X). (6.)

Similarly, from Egs. (2.22) and (4.12), the linear approximate optimal port-
folio weights are given by

Tk 1 /—1 _ 1 /—1
B = 5B ()\ +AXt) + <1 7 9> 2(X,) (ap + szt)

+<1 wlr0> 7 2 (X,)- 1(5*(T Xt)+B(,Xt)Xt>. (5.2)

Remark 1. Note that in Egs. (5.1) and (5.2), the first term (myopic de-
mand) and the second term (inflation—deflation hedging demand) are identi-
cal and evaluated exactly. Conversely, the third term (intertemporal hedging
demand) is different and evaluated approzimately. Thus, to measure the
accuracies of approximate optimal portfolios, measuring the accuracies of
approzimate optimal intertemporal hedging demands is sufficient.

5.2 Basic Setup

Consider a long-term investor who has an initial asset W, and plans to invest
in the S&P500 and 10-year U.S. TIPS in addition to the money market
account over a 35-year period. Then, ®; and 3(X}) are given by

0= (40, s (TR

where 0(10) = 5(10) + 0, and X(10) = %(10) +X,. We set T*= 35 and a =
0.5, 8 = 0.04. For the parameters in the QSM model, we use them estimated
by Batbold et al. (2022) (for details, see Appendix C). Since the optimal
portfolio depends on the state vector, we use probability-weighted mean
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absolute errors (PWMAESs) along with the standard mean absolute errors
(MAESs) to measure the approximate accuracies. We employ the probability
density function of stationary state vector X., as the probability in the
PWMAE. Batbold, Kikuchi, and Kusuda (2024) show X, ~ N(0,Xx),
where X x is the solution of the following standard Lyapunov equation.

—KEx —3xK' + Iy =0. (5.4)

Let CC' = X x be the Cholesky decomposition and define the standardized
stationary state vector Z = C~!X,,. Then, Z ~ N(0,Iy). Therefore, it is
reasonable to assume that Z takes the following values:

7= () , (5.5)

where z; = —2.50,—2.25, -, 2.50 for each i € {1,2}.

5.3 Numerical Solution

A high-precision numerical solution of the PDE (4.1) is required to mea-
sure the accuracy of the six approximate solutions. Note that we cannot
use the implicit methods in finite difference methods to compute the nu-
merical solution of the PDE because it has no boundary conditions. Thus,
we adopt an explicit method. A typical explicit method in the absence of
boundary conditions requires one to interpolate the boundary values of the
space domain. Therefore, we use a method wherein the boundary values of
the space domain are interpolated by the values computed in the previous
time step. To measure the approximate accuracy of this numerical solution,
we consider the case of § = 0 in the PDE (4.1), that is,

1 -1 ,- - !
G‘,-ZitI‘[GX)(]* <ICXt+PY7()\+AXt)> Gx

-1 - -1 1., 1
—{7 - |A+AXt12+7<po+p’Xt+Xt’RXt>+ﬂ}G—ai.

2y Y 2 8l
(5.6)

Since we obtain a solution of the linear PDE (5.6) up to the system of
ODEs, we can compute a high-precision numerical solution. We regard the
numerical solution of the system of ODEs as the true solution of the PDE.
Subsequently, we evaluate the accuracy of the optimal portfloio based on the
numerical solution of the PDE with respect to that based on the numerical
solution of the system of ODEs.

We set v = 4. Let At and |AX]| denote the time and space steps,
respectively. Then, the explicit method becomes numerically stable and
convergent whenever At < v|AX|? where v is constant and the numerical
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errors are proportional to At and |[AX |2, We set At = 0.004 and |AX| =

0.1 x V2.

The MAE and PWMAE between numerical and true optimal portfolio
weights to S&P500 and TIPS, when the value of the state vector is in the
aforementioned range, are shown in Table 1.

Table 1: The MAE (%) and PWMAE (%) between numerical and true
optimal portfolio weights.

Asset MAE PWMAE
S&P500 0.312 0.301
TIPS 0.512 0.452
S&P500 & TIPS | 0.412 0.376

Both the MAE and PWMAE are negligibly small. Therefore, we regard
the numerical solutions of PDE (2.26) as the true solutions. Since the MAE
and PWMAE are almost equal, only the PWMAE is used hereafter.

5.4 Comparison of Approximate Optimal Portfolios

We set v = 4. Consider high and low cases for relative ambiguity aversion.
The high case is set as § = 6 and the low case as § = 2. The PWMAE of
approximate optimal portfolio weights to S&P500 and TIPS are shown in
Tables 2 and 3.

Table 2: The PWMAE (%) between approximate and true optimal portfolio
weights in the case of § = 6.

Asset LLMI LLMII LMI LMII LMII LMIV
S&P500 21.27 16.08  0.42 0.45 0.37 0.37
TIPS 19.93 98.09 0.37 0.66 0.39 0.41
S&P500 & TIPS | 20.60 57.08  0.39 0.56 0.38 0.39

Table 3: The PWMAE (%) between approximate and true optimal portfolio
weights in the case of 0 = 2.

Asset LLMI LLMII LMI LMII LMII LMIV
S&P500 18.44 11.40  0.35 0.36 0.33 0.33
TIPS 17.65 86.58  0.46 0.45 0.37 0.38
S&P500 & TIPS | 18.04 48.99  0.35 0.40 0.35 0.35
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The results show that the PWMAESs of both loglinear approximate opti-
mal portfolio weights are very large, whereas those of all linear approximate
optimal portfolio weights are negligibly small. Therefore, we focus on the re-
sults of the linear approximation methods and analyze them in detail. First,
the approximation accuracy with high ambiguity aversion is slightly lower,
but it remains high. Second, the accuracy of TIPS is slightly lower than that
of the S&P500, but it remains high. Although all the linear approximation
methods are highly accurate, LM I, III and IV appear to be slightly more
accurate and stable than the rest.

6 Conclusion

We considered a finite-time consumption—investment problem for homoth-
etic robust utility under a QSM model. Since the PDE for indirect utility
is nonlinear and nonhomogeneous, we introduced two types of loglinear ap-
proximation methods and four types of linear approximation methods, in-
cluding the proposed method by Kikuchi and Kusuda (2025). We derived
loglinear approximate solutions and presented linear approximate solutions
derived by Kikuchi and Kusuda (2025). We confirmed that the optimal
portfolio with respect to the numerical solution of the PDE can be regarded
as the true optimal portfolio. Subsequently, we compared the accuracies of
approximate optimal portfolios based on these six types of solutions. The
numerical analysis showed that the PWMAEs of both loglinear approximate
optimal portfolios are very large, whereas those of all linear approximate
optimal portfolios are negligibly small. Among the high-precision linear
approximation methods, LM I, III, and IV appear to demonstrate slightly
higher accuracy and stability than the remaining method. Among them, LM
IIT is recommended for adoption due to its simplicity in implementation.

For infinite-time consumption-investment problems, loglinear approxi-
mation methods have been exclusively used. However, the findings strongly
indicate that linear approximation methods should be used instead of log-
linear approximation methods for finite-time problems.

Finally, the poor performance of loglinear approximation methods for
finite-time consumption-investment problems also raises questions about the
reliability of loglinear approximation methods for infinite-time problems.
Consequently, it is imperative for future studies to ascertain the accuracy of
these methods for infinite-time problems.
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A Coefficients of Volatility Functions
1. (2(7),0(7)) is a solution to the following system of ODEs.

PO _ (s A5+ SOE D -SEP AR, (A

=—(K+A—-%(7)5(F) — (S(FHA+ p), (A.2)
with (2,5)(0) = (0,0).
2. ¥ is a solution to Eq. (A.3) and oy, is given by Eq. (A.4).

0=(K4+ANSp +S(K+A) -3 +R - Ay,
o = (’C + A - Zk)’_l(ék —p— Ek)\),

=
= &

B Proofs

B.1 Proof of Lemma 1

This proof is a time-dependent version of that shown by Batbold et al.
(2019). X; is expressed as the solution to linear SDE (2.1) as follows:

t
X, = Qe Q7 Xy + Q/ e =)L g-14RB..
0

Thus, as tl m et =0, E[tlim X:] = 0 holds. Next, the following equation
— 00

RS
holds:
t /
X A(T) X, = {Qe‘tLQ‘lXo +0 / e =Lty st}
0
t
A(T) {Qe‘tLQ_lXo+ Q / e_(t_s)LQ_lst}.
0

Because E[dBsdBj] = §s;Inds, the following equation holds:

t
E[tli}n;j XéA(T)Xt] = tlig.lo ; tr [(Q—l)/e—(t—S)LQ/A(T)Qe—(t—s)LQ—l} ds
t

—tr [(Q‘l)’tlggo i e~ I A(r) Qe =) s Q‘l] =tr [(Q"YM(1)Q7!].
(B.1)

Therefore, Eq.(3.8) holds.

785+ is the Kronecker’s delta.
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B.2 Proof of Proposition 1

The proof establised by Kikuchi and Kusuda (2025) is as follows. Substi-
tuting G and its drivatives into Eqs. (2.24), (2.25), and the PDE (3.3), we
obtain Egs. (3.13), (3.14), and

day  ,da 1 _,dA

1 1 (1 1
I +X E+§X/EX = h(Xy)+avk(1-logk)—ak (7 log(1 — ) + ag + a’' X; + 2X£AX,5> ,

(B.2)
where h(X;) is given by
h(X:) = 1tr[A] + ! <1 + 0) (Ja|® + 2X}Aa + X[ A?X;)
2 2 (v =Dy +0) ' '
— 1< —1- ! —1-
—{7+0A+<K+7+0A>X%<V—V+HXA&
v+0 v+ 0 v+0
1, yHO—1\ 1, YO —1
2Xt <IC+ po A) AX, 2XtA K+ o A) X,
v—1 312 /R A y—1/[(_ _ 1, - B
—_— 2NAX + XGNAXy ) ——— X+ X, RX; | ——.
27(~ + ) (W +2A t+ Ay t) 5 (P0+P t+2 FRXy 5
(B.3)

As Eq. (B.2) is identical on X, we have the system of ODEs (3.15), (3.16),
and (B.4).

d 1 1 1
% = ho(A, a)—i—aikz <1 —logg — 5 log(l —a) — a0> = ho(A4, a)+a’1Vk‘, ap(0) = 0.
-
(B.4)

Differentiating both sides of Eq. (3.5), we obtain

dg dag

49 _ _p2% B.

dr dr (B-5)

Substituting Egs. (3.15) and (B.4) into the above equation, we obtain Eq. (3.17).

C Estimated Parameters in the QSM Model

Batbold et al. (2022) estimate the QSM model using the quasi-maximum
likelihood method with unscented Kalman filter on 262 month-end data
from January 1999 to October 2020, observed in the US security markets.
The time-series data used for estimation are 6-month, 5-year, and 10-year
treasury spot rates, To reduce the estimation burden, they assume Z = 0.
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The estimation results are as follows.

0.002356 0 X1t
—0.01797 0.005239) \ Xo

~ {02515\ | (0.01744 0 X
A=At AKX = <0.3235> * (0.001100 1.670 x 10—6> <X2t> ’

o A 6.179 x 104\ /Xy,
it = 1o+ ¢ Xy = 0.01844 + (5.030 < 10-5 X )

dX; = —KXdt + IdB, = — ( ) dt + LdB,,

1 —0.01227\" (X1,
re=po+pXe+ 2XtRXt 0.03146 + (0.007496) <X2t

—1—1 Xlt/ 0.002460 —0.001156Y\ [ X1+
2 \ Xy —0.001156  0.002308 Xot )’

0.04742 1.953 x 10~ 0 X1
p __ _
o1 = op 2K = (—0.03516) * ( 0 6.656 x 10—4) (th) :

X:A—ap:<0'2041>, A:A—zp:<0'01725 0 >

0.3587 0.001097 —6.639 x 10~4
_ Py _ / /v _ (—0.01205
po=po—to+0o,A=0.01357, p=p—1+Nop+X A= (0.007661)’

b / - - —0.003598\" [ X1
5, - 0o+ 0 Xt + §XtAXt = 0.01441 + 0.008137 Xoy

" 1 /Xy ' 70.002427 —0.001154 X1t
2 \ Xot —0.001154  0.002308 Xot )
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