
 
 
 

DISCUSSION PAPER SERIES  E 
 

 

 

 

 

 

 

 

 

 

 

 

 

The Institute for Economic and Business Research 
Faculty of Economics 
SHIGA UNIVERSITY 

 

1-1-1 BANBA, HIKONE,  
SHIGA 522-8522, JAPAN 

 

Discussion Paper No. E-46 
 

Existence and Uniqueness of General Equilibria 
in Approximately Complete Security Markets 

 

Koji Kusuda 
 

August 2025 
  

 
 
 
 
 
 
 
 



Existence and Uniqueness of General Equilibria

in Approximately Complete Security Markets

Koji Kusuda∗

August 13, 2025

Abstract

Jump-diffusion security market models have been extensively stud-
ied in finance and economics. Kusuda [32] assumes “approximately
complete jump-diffusion security markets,” and demonstrates that an
“approximate security market equilibrium” in an approximately com-
plete security market economy can be identified with an Arrow–Debreu
equilibrium in a corresponding Arrow–Debreu economy. This study
posits time-additive utilities and proves the equivalence of Arrow–
Debreu and representative agent equilibria. It then demonstrates suf-
ficient conditions for the existence, uniqueness, and local uniqueness
of representative agent equilibria.
Keywords Approximately complete markets, Approximate security
market equilibrium, Arrow–Debreu equilibrium, Infinite dimensional
martingale generator, Jump-diffusion

1 Introduction

Strong evidence1 suggests that the dynamics of most financial processes,
such as equity prices, interest rates, and exchange rates, are better described
by jump-diffusion processes than by pure diffusion processes, which are as-
sumed in standard models. Studies2 also demonstrates that the presence
of jumps could significantly influence asset pricing3 and portfolio choice4.

∗kusuda@biwako.shiga-u.ac.jp. Shiga University, 1-1-1 Banba, Hikone, Shiga 522-8522,
Japan

1See Akgiray and Booth [2], Andersen, Benzoni, and Lund [3], Bakshi, Cao, and
Chen [5], Bates [7, 8, 9], Das [17], Eraker, Johannes, and Polson [23], Jorion [28], and
Pan [41].

2See Bakshi, Cao, and Chen [5], Bates [9], Duffie, Pan, and Singleton [20], Pan [41],
and Rietz [43].

3Rietz [43] claims that jump risk premia could be high enough to explain the high
equity premia pointed out by Mehra and Prescott [37]. Pan [41] show that jump risk
premia is high enough to explain the volatility “smirks” implied by the market quoted
prices of options.

4For example, see Daglish [13] and Liu, Longstaff, and Pan [33].
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Against this extant literature, jump-diffusion security market models have
been intensively studied in finance and financial economics, particularly in
the context of the capital asset pricing model (CAPM)5, option pricing6,
and portfolio choice7. In most jump-diffusion security market models, the
jump magnitude is specified as a continuously distributed random variable
at each jump time. In this case, the dimensionality of a martingale genera-
tor8 in the markets, which can be interpreted as “the number of sources of
uncertainty,” is uncountably infinite, and no finite set of traded securities
can complete the markets.

No equilibrium analysis had been conducted in security market economy
with an infinite dimensional martingale generator until recently.9 Kusuda [32]
demonstrates that a generalized security market equilibrium, called the “ap-
proximate security market” (ASM) equilibrium in an “approximately com-
plete jump-diffusion security market” (Björk et al. [11]) economy with an
infinite dimensional martingale generator can be identified with an Arrow–
Debreu equilibrium in a corresponding Arrow–Debreu economy.

The purpose of this study, in conjunction with Kusuda [32], is to demon-
strate sufficient conditions for the existence, uniqueness, and local unique-
ness of the general equilibria (GE) in an approximately complete market
security market economy. Kusuda [32] shows that an ASM equilibrium in
approximately complete markets is identified with an Arrow–Debreu equi-
librium in a corresponding Arrow–Debreu economy (Theorem 1). I demon-
strate sufficient conditions for the existence, uniqueness, and local unique-
ness of the Arrow–Debreu equilibria.

I assume a continuous-time approximately complete security market
economy wherein each agent has a time-additive utility. I generalize the
Negishi approach (Negishi [40]) adopted by Dana [14, 15] for a static econ-
omy to the continuous-time economy with jump-diffusion information. I first

5See Ahn and Thompson [1], Back [4], and Madan [?].
6See Bakshi, Cao, and Chen [5], Bates [7, 8, 9], Björk et al. [10, 11], Duffie, Pan, and

Singleton [20], Fujiwara and Miyahara [24], Merton [38], and Naik and Lee [39].
7See Daglish [13] and Liu, Longstaff, and Pan [33].
8Consider the case wherein the information filtration in security markets is generated

by a d-dimensional Wiener process and a d′-dimensional Poisson process. Then, the
martingale generator consists of the Wiener process and the compensated Poisson process,
and its dimensionality is d + d′. In this study, the finite dimensional Poisson process is
replaced with “infinite dimensional Poisson process.”

9Note that, in a security market economy with a finite dimensional martingale gen-
erator, many equilibrium analyses have been conducted. In a security market economy
wherein information filtration is generated by a finite dimensional Wiener process, Duffie
and Zame [21] as well as Huang [26] show sufficient conditions for the existence of equi-
libria, whereas Karatzas, Lakner, Lehoczky, and Shreve [29] and Karatzas, Lehoczky, and
Shreve [30] present sufficient conditions for the existence and uniqueness of equilibria.
Dana and Pontier [16] and Duffie [18] present sufficient conditions for the existence of
equilibria in a security market economy wherein information filtration is more general
than the one generated by finite dimensional Wiener process. However, the martingale
generator in their markets is still assumed to be finite dimensional.
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present that an Arrow–Debreu equilibrium is identified with a representative
agent (RA) equilibrium (Proposition 1). I then demonstrate the following
three results: (i) Assume that the aggregate endowment is bounded away
from zero. Then an “excess utility” function possesses the properties of a
finite dimensional excess demand function (Lemma 3). This result indicates
the existence of RA equilibria. (ii) Assume that each agent’s relative risk
aversion is less than or equal to one. Then the excess utility has a “gross
substitute” property (Lemma 4). This result implies the uniqueness of RA
equilibria. (iii) Assume that each agent’s risk tolerance satisfies an integra-
bility condition and that each agent’s endowment process is bounded away
from zero (Lemma 5). Then, the local uniqueness of RA equilibria follows
(Lemma 6). I thus present sufficient conditions for the existence, uniqueness,
and local uniqueness of RA equilibria (Theorem 2).

The remaining paper is organized as follows. Section 2 introduces the
approximately complete security market economy and the results on the
equivalence of ASM and Arrow–Debreu equilibria. Section 3 shows the
equivalence of Arrow–Debreu and RA equilibria. Section 4 demonstrates
the sufficient conditions for the existence, uniqueness, and local unique-
ness of RA equilibria. Seciton 5 concludes. Appendix introduces the basics
of probability theory, approximately complete markets, and the proofs of
lemma, propositions, and theorems.

2 Approximately Complete Security Market Econ-
omy and Equivalence of ASM and Arrow–Debreu
Equilibria

In this section, I introduce approximately complete security market economy
and the results on the equivalence of ASM and Arrow–Debreu equilibria
(Kusuda [32]).

2.1 Economy

I consider a continuous-time frictionless pure exchange security market econ-
omy with time span T := [0, T †] for a fixed horizon time T † > 0. The agents’
common subjective probability and information structure is modeled by a
complete filtered probability space (Ω,F ,F,P) where F = (Ft)t∈T is the nat-
ural filtration generated by a d-dimensional Wiener process W and a jump
process called marked point process ν(dt× dz) on a Lusin space (Z,Z) with
the P-intensity kernel λt(dz) (for marked point process, see Appendix A.1).
Note that the aartingale representation theorem (see Chapter III Corollary
4.31 in Jacod and Shiryaev [27]) shows that the martingale generator in this
economy is (W, (ν(dt × {z}) − λt({z}))z∈Z). If the mark set Z is infinite,
then the martingale generator is infinite dimensional. I use the following
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notation:

RN
+ := {x ∈ RN |xn ≥ 0 ∀n ∈ {1, · · · , N}},

RN
++ := {x ∈ RN |xn > 0 ∀n ∈ {1, · · · , N}}.

Consider a single perishable consumption good. The consumption space
is a Banach space L∞ := L∞(Ω × T,P, µ), where P is the predictable
σ-algebra on Ω × T, and µ is the product measure of P and Lebesgue
measure on T. There are I agents, and each of them is represented by
(ui, ei)i∈I:={1,2,··· ,I}, where ei ∈ L∞

+ is an endowment process and ui is a
time-additive utility with the properties as given below.

Assumption 1. For every agent i ∈ I, U i is a time-additive utility func-
tional of the form:

U i(c) = E

[∫ T †

0
ui(t, cit) dt

]
,

where the von Neumann-Morgenstern (vNM) utility function ui : T×R+ →
R satisfies the following properties:

1. ui(t, · ) is strictly increasing and strictly concave on R+ for every t ∈
T.

2. ui is C1,2(R2
+).

Remark 1. In a static economy, Dana [14] assumes that the consumption
space is Lp

+ and every agent’s endowment is in Lp
+ where p ∈ [1,∞], while

I specify p = ∞. Also, Dana [14] assumes that ui depends on ω ∈ Ω, while
I assume that ui is independent of ω ∈ Ω.

The economy is described by a collection

E := ((Ω,F ,F,P), (U i, ei)i∈I).

There are markets for the consumption good and securities at every date
t ∈ T. The traded securities are nominal-risk-free security called the money
market account and a continuum of zero-coupon bonds whose maturity dates
are (0, T †], each of which has $1 payoff at its maturity date.

Remark 2. In the standard security market model for GE analysis, it is
assumed that zero-coupon bonds with a unit payoff of the consumption
good at each maturity date, i.e., inflation-linked bonds, are traded. Given
that the volume of traded inflation-linked bonds in reality is significantly
smaller than that of bonds with a unit payoff of currency, the assumption
of trading in inflation-linked bonds contradicts the price-taker assumption,
which is the fundamental assumption of the general equilibrium analysis
model. Thus, following Kusuda [32], I assume that bonds with $1 payoff
and nominal-risk-free security are traded in lieu of bonds with a unit payoff
of the consumption good and risk-free security.
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Let p, B, and (BT )T∈(0,T †] denote the processes of consumption good
price, nominal money market account price, and nominal bond pricees, re-
spectively. Let B := (B, (BT )T∈(0,T †]), termed bond price family.

2.2 Approximately Complete Security Markets

I briefly review the approximately complete jump-diffusion security market
model (Björk et al. [10, 11]). Each agent is allowed to hold a portfolio of
the money market account and a continuum of bonds. Thus, the portfolio
component of the continuum of bonds is set to be a signed finite Borel
measure on [t, T †] for every event ω ∈ Ω and time t ∈ T.

A portfolio is a stochastic process ϑ = (ϑ0, ϑ1(·)) that satisfies the fol-
lowing:

1. The component ϑ0 is a real-valued P-measurable process.

2. The component ϑ1 is such that

(i) For every (ω, t) ∈ Ω × T, the set function ϑ1
t (ω, · ) is a signed

finite Borel measure on [t, T †].

(ii) For every Borel set A, the process ϑ1(A) is P-measurable.

Let B denote the class of regular (for definition, see Appendix B.1) bond
price families. The value process of a feasible portfolio is given by

VB
t (ϑ) := Bt ϑ

0
t +

∫ T †

t
BT

t ϑ1
t (dT ) ∀t ∈ T. (2.1)

A feasible portfolio (for definition, see Appendix B.2) ϑ is said to be
self-financing at B if and only if the following equation holds:

VB
t (ϑ) = V B

0 (ϑ) +

∫ t

0
ϑ0
s dBs +

∫ t

0

∫ T †

s
ϑ1
s(dT ) dB

T
s ∀t ∈ T. (2.2)

For a real-valued P-measurable process X, the discounted process is defined

by X̃ :=
X

B
. The collection (B̃, (B̃T )T∈T) of security prices is abbreviated

by B̃.
To eliminate unrealistic portfolios such as a doubling strategy (see Chap-

ter 6 in Duffie [19]), the class of feasible portfolios is restricted to that
of admissible portfolios (introduced by Dybvig and Huang [22]) which are
credit-constrained. A self-financing portfolio ϑ at B is said to be admissible
at B if and only if the discounted value process Ṽ B(ϑ) is bounded below
P -a.e. Let Θ(B̃) denote the class of admissible portfolios at B. The notion
of approximately complete markets is introduced by Björk et al. [10, 11].
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Definition 1. Let B ∈ B. Markets are approximately complete at B if and
only if, for any T ∈ (0, T †] and any T -contingent claim XT , there exists a
sequence of replicable claims (XTn)n∈N converging to XT in L∞(Ω,FT , P̃B),
where P̃B is a risk-neutral measure (for definitions of contingent claim and
replicable claim, see Appendix B.3).

2.3 ASM Equilibrium

Kusuda [32] introduces a class of implementable bond price families.

Definition 2. Let B ∈ B. A family B of bond prices is implementable if
and only if there exists a unique risk-neutral measure P̃B such that Λ̃B for
P̃B is bounded above and bounded away from zero µ-a.e., where ΛB is the
density process for P̃B (for definition, see Appendix A.3.).

Let B̄ denote the class of implementable bond price families. The notion
of ASM is proposed by Kusuda [32].

Definition 3. A collection ((ĉi)i∈I, p,B) ∈
∏
i∈I

L∞
+ ×L∞

+ × B̄ constitutes an

ASM equilibrium for E if and only if the following conditions hold:

1. For every i ∈ I, ĉi solves the problem

max
ci∈C̄i(p,B)

U i(ci)

where

C̄i(p,B) =
{
ci ∈ L∞

+ : ∃(ϑi
n)n∈N ∈

∏
n∈N

Θ(B̃) s.t.

VB
t (ϑi

n) =

∫ t

0
ϑi0
ns dBs +

∫ t

0

∫ T †

s
ϑi1
ns(dT ) dB

T
s +

∫ t

0
ps(e

i
s − cis) ds ∀(n, t) ∈ N×T,

lim
n→∞

VB
T †(ϑ

i
n) = 0

}
.

2. The good market is cleared:
∑
i∈I

ĉit =
∑
i∈I

eit ∀t ∈ T.

3. The security markets are cleared:
∑
i∈I

ϑ̂i
n = 0 for every n ∈ N where

(ϑ̂i
n)n∈N supports ĉi.

Remark 3. Note that the bond price family B can be given exogenously,
whereas the inflation-linked bond price family is determined endogenously
in equilibrium. Therefore, we are free to choose B from among the imple-
mentable bond price families.
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The definition of an Arrow–Debreu equilibrium in our economy is as

follows. A collection ((ĉi)i∈I, π) ∈
∏
i∈I

L∞
+ ×L∞

+ constitutes an Arrow–Debreu

equilibrium for E if and only if the following conditions hold:

1. For every i ∈ I, ĉi solves the problem

max
ci∈Ci(π)

U i(ci)

where

Ci(π) =
{
ci ∈ L∞

+ , : E
[∫ T †

0
πsc

i
s ds
]
= E

[∫ T †

0
πse

i
s ds
]}

.

2. The good market is cleared:
∑
i∈I

ĉit =
∑
i∈I

eit ∀t ∈ T.

2.4 Equivalence of ASM and Arrow–Debreu Equilibria

Kusuda [32] proves that, for every implementable family of bond price family,
an ASM equilibrium is identified with an Arrow–Debreu equilibrium.

Theorem 1. Let B ∈ B̄. Under Assumption 1, the following holds:

1. If ((ĉi)i∈I, π) satisfying π ∈ L∞
++ is an Arrow–Debreu equilibrium

for E, then ((ĉi)i∈I, p,B) is an ASM equilibrium for E, where p =
(Λ̃B)−1π.

2. If ((ĉi)i∈I, p,B) satisfying p ∈ L∞
++ is an ASM equilibrium for E, then

((ĉi)i∈I, π) is an Arrow–Debreu equilibrium for E, where π = Λ̃Bp.

Now my task is reduced to present sufficient conditions for the exis-
tence, uniqueness, and local uniqueness of Arrow–Debreu equilibria in a
corresponding Arrow–Debreu economy.

3 Equivalence of Arrow–Debreu and RA Equilib-
ria

In this section, I show that, under certain regularity conditions, an Arrow–
Debreu equilibrium is identified with an RA equilibrium.

3.1 Representation and Properties of Aggregate Utility

I introduce the aggregate utility to exploit the Negishi approach. Let α ∈
∆I

+, where ∆I
+ = {α ∈ RI

+ |
∑

i∈I αi = 1}, and I define the aggregate utility
Uα : L∞

+ → R by

Uα(c) = max
(c1,c2,··· ,cI)∈

∏
i∈I L

∞
+

∑
i∈I

αiU
i(ci) s.t.

∑
i∈I

ci ≤ c.
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Then, the demand function c∗ : T× R+ × RI
+ → RI

+ is defined by

(c∗i (t, x, α))i∈I = argmax{ (x1,··· ,xI)∈RI
+ :

∑
i∈I xi≤x }

∑
i∈I

αiu
i(t, xi).

Let uc( · , x, · ) denote the first partial derivative of u with respect to
x. The subsequent lemma immediately follows from Propositions 2.1 and
2.3 in Dana [14]. It demonstrates that the aggregate utility Uα has the
expected utility representation and the properties of the vNM aggregate
utility function and the demand function.

Lemma 1. Under Assumption 1, the aggregate utility Uα is a time-additive
utility of the form

Uα(c) = E

[∫ T †

0
u(t, ct, α) dt

]
where u(t, x, α) =

∑
i∈I

αiu
i(t, c∗i (t, x, α)).

(3.1)
Moreover, u and (c∗i )i∈I satisfy the following conditions:

1. (i) The function u is a real-valued C1,1,0-function on T × R+ × RI
+

such that u(t, · , α) is strictly increasing and strictly concave on
R+ for every (t, α) ∈ T× RI

+.

(ii) For every (t, x, α) ∈ T× R+ × RI
+ such that c∗i (t, x, α) > 0,

uc(t, x, α) = αiu
i
c(t, c

∗
i (t, x, α)). (3.2)

2. Let i ∈ I.

(i) The function c∗i is continuous on T× R+ × RI
+.

(ii) For every (t, x) ∈ T×R++, the function c∗i (t, x, · ) is homogeneous
of degree zero.

(iii) For every (t, α) ∈ T× RI
+, c

∗
i (t, 0, α) = 0.

3. (i) The functions uc and c∗i for every i ∈ I are differentiable off the
set D of Lebesgue measure zero:

D = { (t, x, α) ∈ T×R++×RI
++ : uc(t, x, α) = αiu

i
c(t, c

∗
i (t, 0, α)) for some i ∈ I }.

(ii) For every t ∈ T, the functions uc(t, · , · ) and c∗i (t, · , · ) for every
i ∈ I are Lipschitz continuous on compact subsets of R+ × RI

+.

(iii) Let (t, x, α) ∈ Dc. Assume that c∗i (t, x, α) > 0 for every i ∈ I.
Then, it follows that, for every i, j ∈ I,

∂c∗i
∂αj

(t, x, α) =
ujc(t, c∗j (t, x, α))

αiαjuicc(t, c
∗
i (t, x, α))u

j
cc(t, c∗j (t, x, α))η(t, x, α)

(3.3)
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where

η(t, x, α) =
∑
i∈I

1

αiuicc(t, c
∗
i (t, x, α))

.

Proof. Proofs of 1(i) and 2(iii) that are obvious are omitted. For proofs of
1(ii) and 2(i)(ii), see the proofs of Proposition 2.1(ii) and 2.1(1) in Dana [14],
respectively. For proofs of 3(i)(ii), see the proofs of Proposition 2.3(a) in
Dana [14]. 3(iii) is obtained by differentiating the first-order condition

α1u
i
c(t, c

∗
i (t, x, α)) = α2u

2
c(t, c

∗
2(t, x, α)) = · · · = αIu

I
c(t, c

∗
I(t, x, α))

and the relation
∑
i∈I

c∗i (t, x, α) = x with respect to αj .

3.2 Equivalence of Arrow–Debreu and RA Equilibria

The notion of an RA equilibrium α̂ ∈ ∆I
++ for E is introduced, which is

characterized by the Pareto optimal allocation (c∗i (t, et, α̂)) without transfer
payments under the supporting state price uc(s, es, α̂).

Definition 4. A utility weight α̂ ∈ ∆I
++ constitutes an RA equilibrium for

E if and only if α̂ is a solution of the equation ξ(α̂) = 0, where ξ : RI
++ → RI

is the excess utility function defined by

ξi(α) =
1

αi
E

[∫ T †

0
uc(s, es, α)(c

∗
i (s, es, α)− eis) ds

]
∀i ∈ I.

To show that an RA equilibrium is identified with an Arrow–Debreu
equilibrium, I use the following lemma, which is a direct generalization of
Proposition 2.6 in Dana [14].

Lemma 2. Under Assumption 1, an allocation (ci)i∈I ∈
∏

i∈I L
∞
+ is Pareto

optimal for E if and only if there exists α̂ ∈ ∆I
++ such that c∗(t, et(ω), α̂) =

(cit(ω))i∈I µ-a.e.

Proof. See the proof of Proposition 2.6 in Dana [14].

Proposition 1. Under Assumption 1, it follows that:

1. Assume α̂ is an RA equilibrium for E. Define ((ĉi)i∈I, π) by (ĉ
i
t(ω))i∈I =

c∗(t, et(ω), α̂) and πt = uc(t, et(ω), α̂) for every (ω, t) ∈ Ω ×T. Then
π ∈ L∞

++ and ((ĉi)i∈I, π) is an Arrow–Debreu equilibrium for E.

2. Assume ((ĉi)i∈I, π) is an Arrow–Debreu equilibrium for E. Then, there
exists α̂ ∈ ∆I

++ such that c∗(t, et(ω), α̂) = (ĉit(ω))i∈I µ-a.e., and α̂ is
an RA equilibrium for E.

Proof. See Appendix C.1.

Now my task is reduced to show sufficient conditions for the existence,
uniqueness, and local uniqueness of RA equilibria.
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4 Existence, Uniqueness, and Local Uniqueness of
ASM Equilibria

In this section, by showing sufficient conditions for the existence, uniqueness,
and local uniqueness of RA equilibria, I show sufficient conditions for the
existence, uniqueness, and local uniqueness of ASM equilibria.

4.1 Existence of RA Equilibria

To prove the existence of RA equilibria, I impose the following assumption
on the aggregate endowment.

Assumption 2. The aggregate endowment is bounded away from zero, i.e.,
there exists a positive constant δ such that et ≥ δ µ-a.e. for every t ∈ T.

Note that this assumption implies that uc(t, et(ω), α) ∈ L∞
+ because

0 < uc(t, et, α) ≤ max
(t,α)∈T×∆I

+

uc(t, δ, α) µ-a.e.,

and uc( · , δ, · ) is continuous on T ×∆I
+. Then, the excess utility function

satisfies the following desired properties for proving the existence of RA
equilibria.

Lemma 3. Under Assumptions 1 and 2,

1. The excess utility function ξ is homogeneous of degree zero, and satis-
fies α · ξ(α) = 0 for every α ∈ RI

+, and bounded above on RI
+.

2. The excess utility function ξ is continuous on RI
++, and ξi(α) → −∞

whenever αi → 0 for some i ∈ I.

Proof. Note that there exists a positive constant δ̄ such that et(ω) ≤ δ̄
µ-a.e. because e ∈ L∞

+

Step 1 – (1): It is obvious that ξ is homogeneous of degree zero, and
satisfies α · ξ(α) = 0 for every α ∈ RI

+. Therefore, it is proven that ξ is
bounded above on RI

+. Let i ∈ I and α0 ∈ ∆I
+ be such that α0

i = 0. It is
sufficient to show that ξi(α) is bounded above, as α ∈ ∆I

+ tends to α0. It
follows from the Lipschitz continuity of c∗i (t, · , · ) and c∗i (t, ei(ω), α

0) = 0
that there exists a K such that

c∗i (t, et(ω), α) ≤ max
t∈T

c∗i (t, δ̄, α) ≤ K∥α− α0∥ µ-a.e.

Thus, it follows that

1

αi
uc (t, et(ω), α){c∗i (t, et(ω), α)−eit(ω)} ≤ ∥α− α0∥

αi
K max

(t,α′)∈T×∆I
+

{uc(t, δ, α′)} µ-a.e.
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The right-hand side of the above equation converges toKmax(t,α′)∈T×∆I
+
{uc(t, δ, α′)}

as α tends to α0. Therefore, it follows from Lebesgue’s dominated conver-
gence theorem that ξ(α) is bounded above as α tends to α0.

Step 2 – (2) Continuity on RI
++: It is enough to present the continuity

of ξ on a compact subset S of RI
++ bounded away from the boundary. Since

ξ is homogeneous of degree zero on α, it follows that for every i ∈ I,∣∣∣∣ 1αi
uc (t, et(ω), α){c∗i (t, et(ω), α)− eit(ω)}

∣∣∣∣
=

∑
j∈I αj

αi

∣∣∣∣∣uc
(
t, et(ω),

α∑
j∈I αj

){
c∗i

(
t, et(ω),

α∑
j∈I αj

)
− eit(ω)

}∣∣∣∣∣
≤

√
I ∥α∥
αi

max
(t,α′)∈T×∆I

+

{uc(t, δ, α′)} δ̄ µ-a.e.

Thus, the continuity of ξ on S follows from Lebesgue’s dominated conver-
gence theorem.

Step 3 – (2) Boundary condition: Let i ∈ I and α0 ∈ ∆I
+ be such that

α0
i = 0. It suffices to show that ξi(α) tends to −∞ as α ∈ ∆I

+ tends to α0.
Note that there exists A ∈ P such that µ(A) > 0 and eit(ω) > 0 for every
(ω, t) ∈ A since every agent’s endowment process is assumed to be nonzero.
Then it follows that

ξi(α) ≤
1

αi
E

[∫ T †

0
uc(s, es(ω), α) e

∗
i (s, es, α) ds

]
− 1

αi

∫
A
uc(s, es(ω), α) e

i
s(ω)µ(dω × ds)

≤ ∥α− α0∥
αi

KT † max
(t,α′)∈T×∆I

+

{uc(t, δ, α′)} − 1

αi
min

(t,α′)∈T×∆I
+

{uc(t, δ̄, α′)}
∫
A
eis(ω)µ(dω × ds),

which tends to −∞ as α tends to α0.

4.2 Uniqueness of RA Equilibria

To prove the uniqueness of the RA equilibria, I make the following two
assumptions.

Assumption 3. 1. For every i ∈ I, agent i’s relative risk aversion coef-
ficient satisfies

γi(t, x) := −xuicc(t, x)

uic(t, x)
≤ 1 ∀(t, x) ∈ T× R+.

2. Either of the following two conditions is satisfied:

(i) Every agent’s endowment is positive µ-a.e., i.e. ei > 0 µ-a.e. for
every i ∈ I.

11



(ii) Every agent’s utility satisfies the Inada condition, i.e. lim
x↓0

uic(t, x) =

∞ for every i ∈ I.

Then, the excess utility function is strongly gross substitute.

Lemma 4. Under Assumptions 1-3, ξ is strongly gross substitute, i.e.:

1. For every (i, j) such that i ̸= j, ξi(α1, · · · , αj−1, · , αj+1, · · · , αI) is
non-increasing, and for every i, ξi(α1, · · · , αi−1, · , αi+1, · · · , αI) is
non-decreasing.

2. If c∗i (t, et(ω), α) > 0 on some A ∈ P with µ(A) > 0, then, for ev-
ery j ̸= i, ξi(α1, · · · , αj−1, · , αj+1, · · · , αI) is strictly decreasing on a
neighborhood of α.

Proof. See the proof of Theorem 3.1 in Dana [14].

4.3 Local Uniqueness of RA Equilibria

Unfortunately, there is no strong evidence that supports Assumption 3.
Therefore, I show that, under more reasonable assumptions, the local unique-
ness of equilibria, or equivalently the finiteness of the number of equilibria,
is a generic property of the economy E using the Negishi approach given by
Dana [14] for a static economy.

The space of economies is parameterized by keeping agents’ common
subjective probability and information structure (Ω,F ,FW,ν , P ), utilities
(ui)i∈I, and the aggregate endowment e fixed, and varying the distribution
of individual endowments. I impose the following assumptions on utilities
and endowments.

Assumption 4. For every i ∈ I, the vNM utility function satisfies

− uic(t, x)

uicc(t, x)
≤ βi

1x+ βi
2 ∀(t, x) ∈ T× R+

for some (βi
1, β

i
2) ∈ R2

+.

Assumption 5. There exists δ ∈ RI
++ such that eit > δi µ-a.e. on T × Ω

for every i ∈ I.

I introduce the following space of economies wherein each economy is
characterized by the distribution of individual endowments.

Eδ =
{
E = ((Ω,F ,FW,ν , P ), (ui, ei)i∈I)

∣∣∣
(ei)i∈I ∈

∏
i∈I

L∞
+ ,

∑
i∈I

ei = e, and (ei)i∈I satisfies Assumption 5 for δ
}

12



A function ξ̂ : ∆I
+ × Eδ → RI is defined by

ξ̂i(α,E) =
1

αi
E

[∫ T †

0
uc(s, es, α)(c

∗
i (s, es, α)− eis) ds

]
∀i ∈ I.

The continuity of ξ̂ follows from dominated convergence theorem. The dif-
ferentiability of ξ̂ with respect to α and the continuity of the derivative can
also be shown.

Lemma 5. Under Assumptions 1, 2, 4, and 5, ξ̂ is differentiable with respect
to α on ∆I

++ and its derivative is continuous on ∆I
++ × Eδ.

Proof. See Appendix C.2.

Since
∑

i∈I ξ̂i(α,E) = 0 for every α ∈ ∆I
+, it follows that rankDαξ̂(α,E) ≤

I − 1. I say that the economy E is regular if and only if ξ̂(α̂,E) = 0 implies
rankDαξ̂(α,E) = I − 1. Let Rδ denote the set of all regular economies
in Rδ. It is well known that any regular economy can only have a finite
number of equilibria (see Proposition 17.D.1 in Mas-Collel, Whinston, and
Green [35]). Thus, to see that the number of equilibria is generically finite,
it is enough to show that the set of regular economies Rδ is open and dense
in Eδ. In order to do so, a correspondence {α̂}(E) : Eδ → ∆I

+ is defined by

{α̂}(E) = {α ∈ ∆I
+ : ξ̂(α,E) = 0 },

I show the following lemma. For upper hemicontinuity, see Definition 3.AA.1
in Mas-Collel et al. [35].

Lemma 6. Under Assumptions 1, 2, 4, and 5, it follows that:

1. The correspondence {α̂} is upper hemicontinuous (u.h.c.), and for ev-
ery E ∈ Eδ, {α̂}(E) is compact.

2. If E is regular then {α̂}(E) is finite.

Proof. Proof of 1 immediately follows from the continuity of ξ̂. Let E be a
regular economy. Suppose {α̂}(E) is infinite. Then, since {α̂}(E) is com-
pact, it has an accumulation point α̂ ∈ {α̂}(E). This implies that α̂ is not
locally unique. This is a contradiction.

4.4 Existence, Uniqueness, and Local Uniqueness of Equi-
libria

Now I prove the existence, uniqueness, and local uniqueness of ASM equi-
libria.

Theorem 2. Under Assumptions 1 and 2, it follows that, for every B ∈ B̄.

13



1. There exists an ASM equilibrium ((ĉi)i∈I, p,B) for E. In particular, if
the mark set Z is finite, then ((ĉi)i∈I, p,B) is a security market equi-
librium for E. The equilibrium ((ĉi)i∈I, p,B) is characterized by the
corresponding representative agent equilibrium α̂ for E, i.e. ((ĉi)i∈I, p)
satisfies

(ĉit(ω))i∈I = c∗(t, et(ω), α̂),

pt(ω) =
Bt(ω)

ΛB
t (ω)

uc(t, et(ω), α̂) > 0
(4.1)

for almost every (ω, t) ∈ Ω × T. Moreover, the allocation (ĉi)i∈I is
Pareto optimal.

2. Under Assumption 3, the ASM equilibrium is unique.

3. Under Assumptions 4 and 5, the set of regular economies Rδ is open
and dense in Eδ.

Proof. 1: It follows from Lemma 3 and Kakutani’s fixed-point theorem that
there exists an α̂ ∈ ∆I

++ such that ξ(α̂) = 0, i.e. there exists an RA
equilibrium α̂ for E (see the proof of Proposition 17.C. 1 in Mas-Collel et
al. [35]). Define (ĉi)i∈I and p by (ĉit(ω))i∈I = c∗(t, et(ω), α̂) and pt(ω) =
(Λ̃B

t (ω))
−1uc(t, et(ω), α̂) for every (ω, t) ∈ Ω × T, respectively. Then, by

Proposition 1.1 and Theorem 1.1, ((ĉi)i∈I, p,B) is an ASM equilibrium for
E, and (ĉi)i∈I is a Pareto optimal allocation. Suppose that the mark set Z
is finite. It then follows from Theorem 1.2 that ((ĉi)i∈I, p,B) constitutes a
security market equilibrium for E.

2: By Theorem 1 and Proposition 1, it is sufficient to show that the
RA equilibrium is unique. I use the proof of Dana [14]. Assume that there
exist two non-collinear solutions for ξ(α) = 0 and let them be α̂ and α̌.
Since E is homogeneous of degree zero by Lemma 3, let w.l.o.g. α̂ < α̌ with
α̂i = α̌i for some i ∈ I. As α̌ is a solution for ξ(α) = 0, c∗i (t, et(ω), α̌) ̸= 0
for every j. Therefore, ξi is strictly increasing at α̌. Let α̂ < α < α̌. Then,
0 = ξi(α̂) < ξi(α) < ξi(α̌) = 0, which is a contradiction.

3: See Appendix C.3.

5 Future Research Direction

This study, in conjunction with Kusuda [32], analyzes ASM equiribria in an
approximately complete security market economy assuming time-additive
utility. The class of stochastic differential utilities includes various promis-
ing utilities, such as robust utility (Hansen and Sargent [25]), homothetic
robust utility (Maenhout [34]), and age-dependent robust utility (Kikuchi
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and Kusuda [31]). I thus analyze ASM equiribira assuming stochastic dif-
ferential utility.

Various studies consider consumption–investment problems with com-
plete security market models under duffusion infrmation; some, including
Batbold, Kikuchi and Kusuda [6], derive analytical expressions of the opti-
mal control. In future, I seek to consider the consumption–investment prob-
lem with the approximately complete security market model under jump-
diffusion information and derive the optimal control.

A Basics of Probability Theory

Let Ln denote the set of real-valued P-measurable process X satisfying

the integrability condition

∫ T †

0
|Xs|n ds < ∞ P-almost surely. Also, let

Ln(λt(dz) × dt) denote the set of real-valued P ⊗ Z-measurable process

H satisfying the integrability condition

∫ T †

0

∫
Z
|Hs(z)|n λs(dz) ds < ∞ P-a.s.

A.1 Marked Point Process

I consider a double sequence (sn, Zn)n∈N, where sn is the occurrence time of
an nth jump and Zn is a random variable taking its values on a measurable
space (Z,Z) at time sn. Define a random counting measure ν(dt× dz) by

ν([0, t]×A) =
∑
n∈N

1{sn≤t, Zn∈A} ∀(t, A) ∈ [0, T †]×Z.

This counting measure ν(dt× dz) is called the Z-marked point process. Let
λ be such that

1. For every (ω, t) ∈ Ω× (0, T †], the set function λt(ω, · ) is a finite Borel
measure on Z.

2. For every A ∈ Z, the process λ(A) is P-measurable and satisfies
λ(A) ∈ L1.

The marked point process ν(dt× dz) is said to have the P -intensity kernel
λt(dz) if and only if

E

[∫ T †

0
Ys ν(ds×A)

]
= E

[∫ T †

0
Ysλs(A) ds

]
∀A ∈ Z

holds for any nonnegative P-measurable process Y . Then, the marked point
process ν(dt× dz) is said to have the P -intensity kernel λt(dz).

Let ν(dt× dz) be a Z-marked point process with the P -intensity kernel
λt(dz). Let H be a P ⊗ Z-measurable function. It follows that:
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1. If the following integrability condition

E

[∫ T †

0

∫
Z
|Hs(z)|λs(z) ds

]
< ∞

holds, then the process

∫ t

0

∫
Z
Hs(z){ ν(ds × dz) − λs(dz) ds } is a P -

martingale.

2. If H ∈ L1(λt(dz) × dt), then the process

∫ t

0

∫
Z
Hs(z){ ν(ds × dz) −

λs(dz) ds } is a local P -martingale.

Proof. See p. 235 in Brémaud [12].

A.2 Ito’s Formula

Let X = (X1, ..., Xd)′ be a d-dimensional semimartingale, and g be a real-
valued C2 function on Rd. Then, g(X) is a semimartingale of the form:

g(Xt) = g(X0)+
d∑

i=1

∫ t

0

∂

∂xi
g(Xs−) dX

i
s+

1

2

d∑
i=1

d∑
j=1

∫ t

0

∂2

∂xi∂xj
g(Xs−) d⟨Xic, Xjc⟩

+
∑

0≤s≤t

{
g(Xs)− g(Xs−)−

d∑
i=1

∂

∂xi
g(Xs−)∆Xi

s

}
(A.1)

where Xic is the continuous part of Xic and ⟨Xic, Xjc⟩ is the quadratic
covariation of Xic and Xjc.

A.3 Girsanov’s Theorem

1. Let v ∈
∏d

j=1 L2 and H ∈ L1(λt(dz)× dt). Define a process Λ by

dΛt

Λt−
= −vt · dWt −

∫
Z
Ht(z) { ν(dt× dz)− λt(dz) dt} ∀t ∈ [0, T †)

with Λ0 = 1 and E [ΛT † ] = 1. Then, there exists a probability measure
P̃ on (Ω,F ,F) defined by10

Et

(
dP̃

dP

)
= Λt, (A.2)

such that:

10Here,
dP̃

dP
is the Radon-Nikodym derivative of P̃ with respect to P , and Λt is the

density process for P̃ .
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(i) The measure P̃ is equivalent to P .

(ii) The process given by

W̃t = Wt +

∫ t

0
vs ds ∀t ∈ T

is a P̃ -Wiener process.

(iii) The marked point process ν(dt × dz) has the P̃ -intensity kernel
such that

λ̃t(dz) = (1−Ht(z))λt(dz) ∀(t, z) ∈ T× Z.

2. Every probability measure equivalent to P has the structure above.

B Definitions on Approximately Complete Secu-
rity Markets

I review the notion of approximately complete markets given by Björk et
al. [10, 11], and introduce a class of families of bond prices such that, for ev-
ery family of bond prices in this class, an ASM equilibrium can be identified
with an Arrow–Debreu equilibrium.

B.1 Regular Bond Price Family

A bond price family B is regular if and only if the following conditions hold:

1. For every T ∈ (0, T †], the dynamics of nominal bond price process
BT satisfies the following stochastic differential–difference equation
(SDDE)

dBT
t

BT
t−

= rTt dt+vTt ·dWt+

∫
Z
HT

t (z) { ν(dt×dz)−λt(dz) dt } ∀t ∈ [0, T )

(B.1)
with BT

T = 1 and BT
t = 0 for every t ∈ (T, T †] for some rT ∈ L1,

vT ∈ L2, and HT ∈ L1(λt(dz)× dt). Moreover, it follows that:

(i) For every (ω, t) ∈ Ω×T, r ·
t (ω), v

·
t (ω) ∈ C1((t, T †]) and for every

(ω, t, z) ∈ Ω×T× Z, H ·
t (ω, z) ∈ C1((t, T †]).

(ii) For every T ∈ (0, T †], HT
t (ω, z) is bounded.

(iii) The processes (BT )T∈T are regular enough to allow for differ-
entiation under the integral sign and interchange of integration
order.11

11For the integrals of the marked point process, the ordinary Fubini theorem can be
applied, and for the interchange of integration with respect to dWt and dt, the stochastic
Fubini theorem holds (see Protter [42]).
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2. The dynamics of nominal money market account price process B sat-
isfies the following SDDE

dBt

Bt
= rBt dt ∀t ∈ T (B.2)

with B0 = 1, where rBt = −∂ lnBT
t

∂T

∣∣∣∣
T=t

.

B.2 Feasible Portfolio

Let B ∈ B. A portfolio ϑ is a feasible portfolio at B if and only if it follows
that∫ T †

t
|BT

t | |ϑ1
t (dT )| < ∞ P-a.s. ∀t ∈ T,

Btr
B
t ϑ

0
t ,

∫ T †

t
|BT

t r
T
t | |ϑ1

t (dT )| ∈ L1,

∫ T †

t
∥BT

t v
T
t ∥|ϑ1

t (dT )| ∈ L2,∫ T †

t
|BT

t H
T
t (z)| |ϑ1

t (dT )| ∈ L1(λt(dz)× dt).

(B.3)

B.3 Contingent Claim and Replicable Claim

Let B ∈ B.

1. For every T ∈ (0, T †], a contingent T -claim at B is a FT -measurable
random variable XT such that X̃T ∈ L∞

+ (Ω,FT ), where L∞(Ω,FT ) is
the space of almost surely bounded FT -measurable random variables.

2. A contingent T -claim XT is replicable at B if and only if there exists
an admissible self-financing portfolio ϑ ∈ Θ(B̃) such that its value
process satisfies VB

T (ϑ) = XT .

C Proofs

C.1 Proof of Proposition 1

Proof of 1. Let α̂ be an RA equilibrium for E. Define ((ĉi)i∈I, π) by
(ĉit(ω))i∈I = c∗(t, et(ω), α̂) and πt = uc(t, et(ω), α̂) for every (ω, t) ∈ Ω ×T.

Then, ĉi ∈ L∞
+ for every i ∈ I and π ∈ L∞

++. It also follows that
∑
i∈I

ĉi =∑
i∈I

ei by definition of c∗ and that ĉit satisfies the necessary and sufficient

condition for every agent’s optimality uic(t, ĉ
i
t) =

1

α̂i
πt for every i ∈ I.
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Proof of 2. Let ((ĉi)i∈I, π) be an Arrow–Debreu equilibrium for E. Since
(ui)i∈I are strictly increasing by Assumption 1, the allocation (ĉi)i∈I is
Pareto optimal by first welfare theorem (see Mas-Collel and Zame [36]).
Thus, by Lemma 2, there exists α̂ ∈ ∆I

++ such that

c∗(t, et(ω), α̂) = (ĉit(ω))i∈I µ-a.e. (C.1)

Combining (3.2) with (C.1) yields

uc(t, et(ω), α̂) = α̂iu
i
c(t, ĉ

i
t(ω)) µ-a.e. (C.2)

for every i ∈ I. The optimality of consumption plans implies that there

exists a rescaled Lagrange multiplier α̂− ∈ {α− ∈ R++ |
∑
i∈I

1

α−
i

= 1} such

that, for every i ∈ I and

uic(t, ĉ
i
t) = α̂−

i πt µ-a.e. (C.3)

Comparing (C.2) with (C.3) yields uc(t, et(ω), α̂) = πt(ω), which implies
ξ(α̂) = 0.

C.2 Proof of Lemma 5

The proof of Dana [14] is exploited. Let S be a compact subset of ∆I
+

bounded away from the boundary. It suffices to prove the differentiability
of ξ̂ with respect to α on S. Define a function ζ : T× R+ × S → RI by

ζi(t, et, α) =
1

αi
uc(t, et, α)(c

∗
i (t, et, α)− eit).

Partially differentiating ζ with respect to αj yields

∂ζi
∂αj

(t, et, α) =
1

αi

∂c∗i
∂αj

(t, et, α){uicc(t, c∗i )(c∗i (t, et, α)− eit)+uic(t, c
∗
i )}. (C.4)

Meanwhile, it follows from (3.3) that

∂c∗i
∂αj

(t, et, α)u
i
cc(t, c

∗
i ) ≤

1

αi
ujc(t, c

∗
j ) =

1

αiαj
uc(t, et, α). (C.5)

It follows from (C.4),(C.5), and Assumptions 4 and 5 that∣∣∣∣ ∂ζi∂αj
(t, et, α)

∣∣∣∣ ≤ 1

αiαj
max

(α′)∈∆I
[uc(t, et(ω), α

′)]{(βi
1 + 2)et + βi

2}. (C.6)

Thus, by Lebesgue’s dominated convergence theorem, ξ̂ is differentiable with
respect to α on S, and its derivative is

∂ξ̂i
∂αj

(α,E) = E

[∫ T †

0

∂c∗i
∂αj

(s, es, α)
{
uicc(s, c

∗
i (s, es, α)(c

∗
i (s, es, α)−eis)+uic(t, c

∗
i (s, es, α)

}
ds

]
.
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Since e is fixed,

∣∣∣∣∂Fi

∂αj

∣∣∣∣ are bounded independently of (α,E) on S. Therefore,

∂ξ̂i
∂αj

is continuous on ∆I
++ × Eδ.

C.3 Proof of Theorem 2.3

The proof of Dana [14] is generalized. First, the openness of Rδ is shown.
Let E0 ∈ Rδ. Then, for any α0 ∈ δI such that ξ̂(α0,E0) = 0, and that rank
Dαξ̂(α0,E0) = I−1. Since {α̂}(E) is compact and Dαξ̂ is continuous, there
exists neighborhoods V ⊂ Eδ of E0 and V ⊂ ∆I

+ of α0 such that Dαξ̂(α,E) =
I − 1 for every (α,E) ∈ V ×V. Since {α̂} is u.h.c., there exists V ′ ⊂ V such
that {α̂}(V ′) ⊂ V. Thus, if E ∈ V ′, then rank Dαξ̂(α0,E0) = I − 1 for
every α ∈ {α̂}(E). Therefore, V ′ ⊂ Rδ and Rδ is open in Eδ. Next, the
denseness of Rδ is proven. Let E ∈ Eδ and let ε > 0 such that ei − ε >
δi µ-a.e. for every i ∈ {1, 2, · · · , I − 1}. Moreover, let (Xε

i )i∈{1,2,··· ,I−1}
such that max{∥Xi∥L∞ , ∥Xi∥L∞} ≤ ε ∀i ∈ {1, 2, · · · , I − 1}, and let A =
{(ai)i∈{1,2,··· ,I−1} ∈ RI−1 : 0 ≤ ai ≤ 1 ∀i ∈ {1, 2, · · · , I − 1}}. Define a

function h : ∆I ×A → RI by

hi(α, a) = E

[∫ T †

0
uc(s, es, α)(c

∗
i (s, es, α)−eis−aiX

ε
is) ds

]
∀i ∈ {1, 2, · · · , I−1},

and

hI(α, a) = E

[∫ T †

0
uc(s, es, α)(c

∗
I(s, es, α)− eIs +

I−1∑
i=1

aiX
ε
is) ds

]
.

One can easily check that rankDag(α, a) = I−1. By transversality theorem,
there exists a ∈ A such that 0 is a regular value of h( · a) that is 0 is a regular
value of the economy in E , (e1+a1X

ε
1 , e

2+a2X
ε
2 , · · · , eI−1+aI−1X

ε
I−1, e

I −∑I−1
i=1 aiX

ε
i ), arbitrarily close to E, since ε can be chosen arbitrarily close to

zero.
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