
 
 
 

DISCUSSION PAPER SERIES  E 
 

 

 

 

 

 

 

 

 

 

 

 

 

The Institute for Economic and Business Research 
Faculty of Economics 
SHIGA UNIVERSITY 

 

1-1-1 BANBA, HIKONE,  
SHIGA 522-8522, JAPAN 

 

Discussion Paper No. E-45 
 
 
 
 

 

ITERATIVE SCHEME GENERATING METHOD 
FOR CONTRACTION TYPE MAPPINGS IN 

BANACH SPACES 
 

Atsumasa Kondo 
 

July 2025 
  

 
 
 
 
 
 
 
 



ITERATIVE SCHEME GENERATING METHOD FOR
CONTRACTION TYPE MAPPINGS IN BANACH SPACES

ATSUMASA KONDO

Abstract. We introduce an iterative scheme generating method (ISGM)
for contraction type mappings in Banach spaces. This marks the �rst
time ISGM has been demonstrated in a Banach space setting. Our
main theorem can apply to contraction mappings, Kannan mappings,
etc., enabling to generate in�nitely many iterative schemes for �nding
�xed points. Several corollaries are presented to show a wide variety of
iterative methods which can be generated from the main theorems. We
also introduce an application to a variational inequality problem (VIP),
highlighting how the various iterative schemes covered in this work are
directly useful in optimization techniques.

1. Introduction

A mapping T from a metric space (X; d) into itself is called a contraction
mapping if there exists a 2 (0; 1) such that
(1.1) d (Tx; Ty) � ad (x; y) for all x; y 2 X:
The following result is known as the Banach contraction principle:

Theorem 1.1 ([2]). Let X be a complete metric space and let T : X ! X be
a contraction mapping. Then, T has a unique �xed point p and a sequence
fxng de�ned by
(1.2) xn+1 = Txn for all n 2 N = f1; 2; � � � g
converges to the �xed point p for any initial point x1 2 X.

The iteration procedure (1.2) is called the Picard iterative method. Kan-
nan [13] and Chatterjea [6] each investigated other types of mappings that
satisfy the following conditions:

d (Tx; Ty) � b (d (x; Tx) + d (y; Ty)) for all x; y 2 X;(1.3)

d (Tx; Ty) � c (d (x; Ty) + d (Tx; y)) for all x; y 2 X;(1.4)

where b; c 2
�
0; 12
�
. They proved the same conclusion as Theorem 1.1.

Several studies intended to unify these classes of mappings (1.1), (1.3),
and (1.4). In 1972, Zam�rescu [38] de�ned a class of mappings T : X ! X
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characterized by the following condition: there exist a 2 (0; 1) and b; c 2�
0; 12
�
such that for any x; y 2 X, at least one of the following three condi-

tions holds:

(1.5)
(Z1) d (Tx; Ty) � ad (x; y) ;
(Z2) d (Tx; Ty) � b (d (x; Tx) + d (y; Ty)) ;
(Z3) d (Tx; Ty) � c (d (x; Ty) + d (Tx; y)) :

This class of mappings is called Zam�rescu mappings. In 1973, Hardy and
Rogers [10] considered the following condition: there exist �; �; 
; �; " 2 [0; 1]
such that �+ � + 
 + � + " < 1 and

d (Tx; Ty)(1.6)

� �d (x; y) + �d (x; Tx) + 
d (y; Ty) + �d (x; Ty) + "d (Tx; y)

for all x; y 2 X. If � = " = 0 in (1.6), the mapping T is a Ćiríc-Reich-Rus
type [7, 30, 31]. Each class of Zam�rescu mappings (1.5) and Hardy and
Rogers mappings (1.6) contains contraction mappings (1.1), Kannan map-
pings (1.3), and Chatterjea mappings (1.4) simultaneously. Both Zam�rescu
[38] and Hardy and Rogers [10] obtained the same conclusions as Theorem
1.1. In other words, the mapping T has a unique �xed point and the Picard
iterative scheme is available for �nding the �xed point. For more general
class of mappings, see Ćiríc [8]. Rhoades [33] explored relationships between
these classes of mappings. For more recent results concerning the Banach
contraction principle, see Berinde [5], Rus et al. [32], Agarwal et al. [1],
Karap¬nar and Agarwal [14], Micula and Milovanovíc [26], and Cvetkovíc et
al. [9].
In the literature of �xed point theory on Banach and Hilbert spaces, many

researchers have explored a number of approximation methods more general
than the Picard method (1.2). Berinde [4] demonstrated the following the-
orem:

Theorem 1.2 ([4]). Let C be a nonempty, closed, and convex subset of
a Banach space E and let T be a Zam�rescu mapping from C into it-
self. Let f�ng be a sequence of real numbers in the interval [0; 1] such thatP1
n=1 (1� �n) =1. De�ne a sequence fxng in C by the following rule:

x1 2 C is given,(1.7)

xn+1 = �nxn + (1� �n)Txn

for all n 2 N. Then, fxng converges in norm to a unique �xed point of T .

The iterative scheme (1.7) is called the Mann type [24]. Set �n = 0 for
all n 2 N in (1.7). Then, the condition

P1
n=1 (1� �n) =1 is satis�ed and

the iteration rule (1.7) coincides with the Picard type (1.2). In this sense,
the Mann iterative method is a generalization of the Picard type.
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The following two-step iterative scheme is known as the Ishikawa type
[12]:

x1 2 C is given,(1.8)

zn = �nxn + (1� �n)Txn;
xn+1 = �nxn + (1� �n)Tzn

for all n 2 N, where �n; �n 2 [0; 1] with certain appropriate conditions.
If �n = 1, then the Ishikawa iteration (1.8) coincides with the Mann type
(1.7). Therefore, Ishikawa iterative method is a generalization of the Mann
type. Berinde [3] used the Ishikawa iterative method (1.8) and proved the
convergence theorem that approximates a unique �xed point of a Zam�rescu
mapping in Banach spaces without any restriction on �n 2 [0; 1]. Although
the Ishikawa method is a two-step type, three-step iterative methods have
been studied by Noor [28], Dashputre and Diwan [11], Phuengrattana and
Suantai [29], and Kondo [17].
Let H be a real Hilbert space with the norm k�k induced from an inner

product and let C be a nonempty, closed, and convex subset of H. For a
mapping T : C ! H, we use the notation

F (T ) = fx 2 C : x = Txg
to represent the set of �xed points. A mapping T : C ! H is called
nonexpansive if kTx� Tyk � kx� yk for all x; y 2 C. A mapping T such
that F (T ) 6= ; is called quasi-nonexpansive if
(1.9) kTx� pk � kx� pk for all x 2 C and p 2 F (T ) :
A mapping T is called demiclosed if

(1.10) xn � Txn ! 0 and xn * p =) p 2 F (T ) ;
where xn * p denotes the weak convergence of the sequence fxng to a
point p. It is often said that I � T is demiclosed i¤ (1.10) holds, where I is
the identity mapping. Nonexpansive mappings are quasi-nonexpansive and
demiclosed if they have �xed points. For other types of quasi-nonexpansive
and demiclosed mappings, see Appendix in Kondo [22].
Recently, Kondo [22] proved the following theorem:

Theorem 1.3 ([22]). Let C be a nonempty, closed, and convex subset of
a real Hilbert space H and let S; T : C ! C be quasi-nonexpansive and
demiclosed mappings such that F (S)\F (T ) 6= ;. Denote by PF (S)\F (T ) the
metric projection from H onto F (S) \ F (T ). Let fang, fbng, and fcng be
sequences of real numbers in the interval [0; 1] such that an+ bn+ cn = 1 for
all n 2 N, limn!1anbn > 0, and limn!1ancn > 0. De�ne a sequence fxng
in C by the following rule:

x1 2 C is given,

xn+1 = anyn + bnSzn + cnTwn
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for all n 2 N, where fyng, fzng, and fwng are sequences in C that satisfy
the following conditions:

(1.11) kyn � qk � kxn � qk , kzn � qk � kxn � qk , kwn � qk � kxn � qk
for all q 2 F (S) \ F (T ) and n 2 N,
(1.12) xn � yn ! 0, xn � zn ! 0, and xn � wn ! 0 .

Then, the sequence fxng converges weakly to a point bx 2 F (S) \ F (T ),
where bx � limn!1 PF (S)\F (T )xn.
Theorem 1.3 generates in�nite numbers of iterative schemes. For example,

consider the following:

zn = �
0
nxn + �

0
nSxn + �

0
nTxn;(1.13)

yn = �nzn + �nSzn + �nTzn;

xn+1 = anyn + bnSyn + cnTyn;

where an initial point x1 2 C is given arbitrarily. It is required that the
coe¢ cients of convex combinations �n and �

0
n converge to 1. This iterative

scheme (1.13) is a three-step type. It can be veri�ed that fyng in (1.13) sat-
is�es the conditions kyn � qk � kxn � qk and xn � yn ! 0. Consequently,
according to Theorem 1.3, the sequence fxng converges weakly to a com-
mon �xed point of S and T . Many other iterative schemes are generated
from Theorem 1.3; see, e.g., Section 4 in [22]. Thus, we call this method
an iterative scheme generating method (ISGM). This method has been de-
veloped to produce various types of iterative schemes in Hilbert spaces; see
[16, 18, 19, 20, 23]. However, it has not yet been applied to contraction type
mappings in Banach spaces.
In this study, we establish an ISGM for contraction type mappings in-

cluding Zam�rescu mapping (1.5) and Hardy and Rogers type mappings
(2.1) in arbitrary real Banach spaces. Theorem 1.2 is extended by incorpo-
rating the ISGM. It is the �rst attempt to establish the ISGM in Banach
spaces. Although required conditions such as (1.12) are discarded in our
theorems, the types of mappings are restricted to contraction types rather
than nonexpansive types. In the rest of this paper, we prepare some lemmas
in Section 2. Section 3 establishes the main theorems. Our main theorems
apply to contraction mappings (1.1), Kannan mappings (1.3), and Chatter-
jea mappings (1.4). In Section 4, some corollaries are presented to show a
wide variety of iterative schemes generated from the main theorems in this
study. Finally, in Section 5, we introduce an application of this study to a
variational inequality problem (VIP). As VIPs directly connect with opti-
mization problems, various iterative schemes addressed in this work are of
direct utility in optimization techniques.

2. Lemmas

This section prepares three lemmas. The �rst addresses Hardy and Rogers
type mappings:
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Lemma 2.1. Let T be a self-mapping de�ne on a metric space X such that
F (T ) 6= ;. Assume that there exist �; �; �; " 2 [0; 1] such that �+�+�+" < 1
and

d (Tx; Ty)(2.1)

� �d (x; y) + �
�
1

2
d (x; Tx) +

1

2
d (y; Ty)

�
+ �d (x; Ty) + "d (Tx; y)

for all x; y 2 X. Then, there exists � 2 (0; 1) such that

(2.2) d (Tx; p) � �d (x; p) for all x 2 X, where p 2 F (T ) :

Proof. A �xed point of the mapping T with the condition (2.1) is uniquely
determined. Indeed, if p; q 2 F (T ), then it follows from (2.1) that

d (p; q)

= d (Tp; Tq)

� �d (p; q) + �
�
1

2
d (p; Tp) +

1

2
d (q; T q)

�
+ �d (p; Tq) + "d (Tp; q)

= (�+ � + ") d (p; q) :

As �+ � + " < 1, we obtain p = q.
For x 2 X and p 2 F (T ), it holds that

d (Tx; p)

= d (Tx; Tp)

� �d (x; p) + �
�
1

2
d (x; Tx) +

1

2
d (p; Tp)

�
+ �d (x; Tp) + "d (Tx; p)

= �d (x; p) + �

�
1

2
d (x; Tx)

�
+ �d (x; p) + "d (Tx; p)

� �d (x; p) + �
�
1

2
d (x; p) +

1

2
d (p; Tx)

�
+ �d (x; p) + "d (Tx; p) :

From this, �
1� �

2
� "
�
d (Tx; p) �

�
�+

�

2
+ �

�
d (x; p) :

Consequently,

d (Tx; p) �
�+ �

2 + �

1� �
2 � "

d (x; p) :

De�ning

� =
�+ �

2 + �

1� �
2 � "

2 (0; 1) ;

we obtain the desired result. �
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Remark 2.1. Three remarks are provided here:
(1) A mapping with (2:1) satis�es the condition (1:6) for the Hardy and

Rogers mappings and hence, it is a particular case of the Hardy and Rogers
mappings.
(2) Contraction mappings, Kannan mappings, and Chatterjea mappings

satisfy the condition (2:1) and therefore, these types of mappings possess the
property (2:2).
(3) We compare the condition (2:2) with (1:9). The condition (2:2) can be

interpreted as the contraction version of the condition for quasi-nonexpansive
mappings.

Next lemma shows that Zam�rescu mappings (1.5) also ful�ll the condi-
tion (2.2):

Lemma 2.2. Let T : X ! X be a Zam�rescu mapping with a �xed point
p 2 F (T ), where X is a metric space. Then, there exists � 2 (0; 1) that
satis�es the condition (2:2).

Proof. As T is a Zam�rescu mapping (1.5), there are a 2 (0; 1) and b; c 2�
0; 12
�
such that either of the three conditions (Z1)�(Z3) holds. De�ne

� = max

�
a;

b

1� b ;
c

1� c

�
2 (0; 1) :

Choose x 2 X arbitrarily. First, assume that (Z1) holds for x 2 X and the
unique �xed point p of T . Then, (2.2) can be ascertained as follows:

d (Tx; p) = d (Tx; Tp) � ad (x; p) � �d (x; p) :
Next, assume that (Z2) holds for x 2 X and p 2 F (T ). Then, from the
condition (Z2), it follows that

d (Tx; p) = d (Tx; Tp)

� b (d (x; Tx) + d (p; Tp)) = bd (x; Tx) � b (d (x; p) + d (p; Tx)) :
Consequently, we have

d (Tx; p) � b

1� bd (x; p) � �d (x; p) :

Finally, assume that (Z3) holds for x 2 X and p 2 F (T ). Using the
condition (Z3) yields

d (Tx; p) = d (Tx; Tp)

� c (d (x; Tp) + d (Tx; p)) = c (d (x; p) + d (Tx; p)) :
Thus,

d (Tx; p) � c

1� cd (x; p) � �d (x; p) :

This completes the proof. �
The next lemma is known in the literature; see, e.g., Lemma 2.3 in Kondo

[17]. However, we provide a proof for completeness.
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Lemma 2.3. Let � > 0 and let f�ng be a sequence of real numbers in the
interval [0; 1]. Suppose that

P1
n=1 (1� �n) = 1 and � (1� �n) < 1 for all

n 2 N. Then,
Q1
n=1 (1� � (1� �n)) = 0.

Proof. De�ne Pn =
Qn
i=1 (1� � (1� �i)). As � (1� �i) < 1, it holds that

Pn > 0. We aim to show that Pn ! 0. Note that the following in-
equality holds in general: log (1� x) � �x for all x < 1. Using this for
x = �(1� �i) (< 1) yields

logPn =

nX
i=1

log (1� � (1� �i))

�
nX
i=1

f�� (1� �i)g = ��
nX
i=1

(1� �i) :

Therefore, we have 0 < Pn � exp (��
Pn
i=1 (1� �i)). From the hypothesesP1

i=1 (1� �i) = 1 and � > 0, we obtain exp (��
Pn
i=1 (1� �i)) ! 0 as

n ! 1. Consequently, we obtain Pn ! 0 as n ! 1. This completes the
proof. �

3. Main result

In this section, we prove convergence theorems for contraction type map-
pings with the condition (2.2). One result in this section generalizes The-
orem 1.2; see Remark 3.2. The Picard iterative method (1.2) in Theorem
1.1 is generalized. Also, main theorems in this section complement Theorem
1.3, which is a result for nonexpansive type mappings in the setup of Hilbert
spaces.

Theorem 3.1. Let C be a nonempty, closed, and convex subset of a real
Banach space E. Let T be a self-mapping de�ned on C such that F (T ) =
fpg. Suppose that the mapping T satis�es the condition (2:2) with � 2
(0; 1). Let f�ng be a sequence of real numbers in the interval [0; 1] such thatP1
n=1 (1� �n) =1. De�ne a sequence fxng in C by the following rule:

x1 2 C is given,

xn+1 = �nyn + (1� �n)Tzn

for all n 2 N, where fyng and fzng are sequences in C that satisfy

(3.1) kyn � pk � kxn � pk and kzn � pk � kxn � pk

for all n 2 N. Then, fxng converges in norm to the unique �xed point
p 2 F (T ).

Proof. As fzng is a sequence in C and T : C ! C, it holds that Tzn 2 C.
As fyng � C and C is convex, fxng is properly de�ned as a sequence in C.
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From (2.2) and (3.1), it follows that

kxn+1 � pk
= k�nyn + (1� �n)Tzn � pk
� �n kyn � pk+ (1� �n) kTzn � pk
� �n kyn � pk+ (1� �n) � kzn � pk
� �n kxn � pk+ (1� �n) � kxn � pk
= f�n + (1� �n) �g kxn � pk
= f�n + 1� 1 + (1� �n) �g kxn � pk
= f1� (1� �) (1� �n)g kxn � pk
� f1� (1� �) (1� �n)g f1� (1� �) (1� �n�1)g kxn�1 � pk
� � � �

�
 

nY
i=1

f1� (1� �) (1� �i)g
!
kx1 � pk

As
P1
i=1 (1� �i) =1 is assumed, we can apply Lemma 2.3 for � = 1�� >

0. Thus, it holds that
nY
i=1

(1� (1� �) (1� �i))! 0 as n!1

and we obtain xn ! p. The proof is completed. �

Remark 3.1. Compare the condition (3:1) in Theorem 3:1 with (1:11) and
(1:12) in Theorem 1:3. In Theorem 3:1, conditions such as (1:12) are dis-
pensable, whereas the mapping T must be a contraction type that satis�es
the condition (2:2).

According to Lemmas 2.1 and 2.2, Theorem 3.1 applies to Hardy and
Rogers type mappings (2.1) and Zam�rescu mappings (1.5):

Theorem 3.2. Let C be a nonempty, closed, and convex subset of a real
Banach space E. Let T : C ! C be a Hardy and Rogers type mapping
characterized by the condition (2:1) such that F (T ) = fpg. Let f�ng be a
sequence of real numbers in the interval [0; 1] such that

P1
n=1 (1� �n) =1.

De�ne a sequence fxng in C by the following rule:

x1 2 C is given,

xn+1 = �nyn + (1� �n)Tzn
for all n 2 N, where fyng and fzng are sequences in C that satisfy

kyn � pk � kxn � pk and kzn � pk � kxn � pk

for all n 2 N. Then, fxng converges in norm to the unique �xed point p.
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Theorem 3.3. Let C be a nonempty, closed, and convex subset of a real
Banach space E. Let T : C ! C be a Zam�rescu mapping such that F (T ) =
fpg. Let f�ng be a sequence of real numbers in the interval [0; 1] such thatP1
n=1 (1� �n) =1. De�ne a sequence fxng in C by the following rule:

x1 2 C is given,

xn+1 = �nyn + (1� �n)Tzn

for all n 2 N, where fyng and fzng are sequences in C that satisfy

kyn � pk � kxn � pk and kzn � pk � kxn � pk

for all n 2 N. Then, fxng converges in norm to the unique �xed point p.

Remark 3.2. Set yn = zn = xn for all n 2 N in Theorem 3:3. Then,
Theorem 1:2 is derived.

4. Corollaries

Each theorem from the previous section generates various iterative schemes.
In this section, to save space, we will focus exclusively on Theorem 3.3 and
its derived variations.
First, set �n = 0 for all n 2 N in Theorem 3.3. The required conditionP1
n=1 (1� �n) =1 is then ful�lled, yielding the following result:

Corollary 4.1. Let C be a nonempty, closed, and convex subset of a real
Banach space E. Let T : C ! C be a Zam�rescu mapping such that F (T ) =
fpg. De�ne a sequence fxng in C by the following rule:

xn+1 = Tzn for all n 2 N;

where x1 2 C is given and fzng is a sequence in C that satis�es

kzn � pk � kxn � pk

for all n 2 N. Then, fxng converges in norm to the unique �xed point p.

As in the case of Theorems 3.1�3.3, Corollary 4.1 also generates in�nitely
many iterative schemes. One variation is as follows:

Corollary 4.2. Let C be a nonempty, closed, and convex subset of a real
Banach space E. Let T : C ! C be a Zam�rescu mapping such that F (T ) =
fpg. Let f�ng be a sequence of real numbers in the interval [0; 1]. De�ne a
sequence fxng in C by the following rule:

x1 2 C is given,

zn = �nxn + (1� �n)Txn;
xn+1 = Tzn;

for all n 2 N. Then, fxng converges in norm to the unique �xed point p.
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Corollary 4.2 presents a two-step iterative method. Its proof is straight-
forward since the sequence fzng satis�es the condition kzn � pk � kxn � pk.
For illustration purposes, however, we provide a proof that does not rely on
Theorem 3.3:

Proof. We �rst observe that

kzn � pk � kxn � pk for all n 2 N.

According to Lemma 2.2, the Zam�rescu mapping T satis�es condition (2.2).
Consequently, we can derive the following:

kzn � pk = k�nxn + (1� �n)Txn � pk
� �n kxn � pk+ (1� �n) kTxn � pk
� �n kxn � pk+ (1� �n) � kxn � pk
� �n kxn � pk+ (1� �n) kxn � pk
= kxn � pk ;

which con�rms our initial assertion. Applying this, we obtain

kxn+1 � pk = kTzn � pk � � kzn � pk � � kxn � pk :

Iterating this inequality, we �nd

kxn+1 � pk � � kxn � pk � �2 kxn�1 � pk � � � � � �n kx1 � pk ! 0

as n!1. Thus, we can conclude that fxng converges to the unique �xed
point p. �

The next corollary is a three-step and split type, which is derived from
Theorem 3.3:

Corollary 4.3. Let C be a nonempty, closed, and convex subset of a real
Banach space E and let T : C ! C be a Zam�rescu mapping such that
F (T ) = fpg. Let f�ng be a sequence of real numbers in the interval [0; 1]
such that

P1
n=1 (1� �n) =1. Let f�ng, f�0ng, f�ng, and f� 0ng be sequences

of real numbers in [0; 1]. De�ne a sequence fxng in C by the following rule:

x1 2 C is given,(4.1)

y0n = �
0
nxn +

�
1� �0n

�
Txn;

yn = �ny
0
n + (1� �n)Ty0n;

z0n = �
0
nxn +

�
1� � 0n

�
Txn;

zn = �nz
0
n + (1� �n)Tz0n;

xn+1 = �nyn + (1� �n)Tzn

for all n 2 N. Then, fxng converges in norm to the unique �xed point
p 2 F (T ).
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Proof. As E is complete and C is closed in E, C is also complete. As
T : C ! C is a Zam�rescu mapping, it has a unique �xed point p. Accord-
ing to Theorem 3.3, it is su¢ cient to show that kyn � pk � kxn � pk and
kzn � pk � kxn � pk for all n 2 N. From Lemma 2.2, we can employ the
condition (2.2) with � 2 (0; 1). Consequently, it holds that

y0n � p

 = 

�0nxn + �1� �0n�Txn � p



� �0n kxn � pk+
�
1� �0n

�
kTxn � pk

� �0n kxn � pk+
�
1� �0n

�
� kxn � pk

� �0n kxn � pk+
�
1� �0n

�
kxn � pk

= kxn � pk :

Using this yields kyn � pk � kxn � pk. Indeed,

kyn � pk =


�ny0n + (1� �n)Ty0n � p



� �n


y0n � p

+ (1� �n)

Ty0n � p



� �n


y0n � p

+ (1� �n)

y0n � p



� �n kxn � pk+ (1� �n) kxn � pk
= kxn � pk :

Similarly, we can verify that kzn � pk � kxn � pk for all n 2 N. Thus, we
obtain the desired result. �

The iterative scheme in Corollary 4.3 is a three-step and split version. The
construction of xn+1 is split into �y-part�and �z-part.�Setting �0n = �

0
n = 1

in (4.1), we obtain y0n = z0n = xn. Then, the following two-step and split
type iterative scheme is deduced:

yn = �nxn + (1� �n)Txn;(4.2)

zn = �nxn + (1� �n)Txn;
xn+1 = �nyn + (1� �n)Tzn

for all n 2 N, where x1 2 C is given arbitrarily. Furthermore, substituting
�n = 1 in (4.2), we have the Ishikawa iterative method (1.8).
We can also derive the following corollary, which is also a three-step type:

Corollary 4.4. Let C be a nonempty, closed, and convex subset of a real
Banach space E and let T : C ! C be a Zam�rescu mapping such that
F (T ) = fpg. Let f�ng be a sequence of real numbers in the interval [0; 1]
such that

P1
n=1 (1� �n) = 1. Let f�ng, f�ng, f�ng, f�ng, and f�ng be

sequences of real numbers in [0; 1]. De�ne a sequence fxng in C by the
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following rule:

x1 2 C is given,

zn = �nxn + �nTxn + �nT
2xn + (1� �n � �n � �n)T 3xn;

yn = �nzn + �nTzn + (1� �n � �n)T 2zn;
xn+1 = �nyn + (1� �n)Tyn

for all n 2 N. Then, fxng converges in norm to the unique �xed point
p 2 F (T ).

Proof. As C is complete, the Zam�rescu mapping T : C ! C has a unique
�xed point p. First, observe that kzn � pk � kxn � pk for all n 2 N. From
Lemma 2.2, T satis�es (2.2). Thus, we have

kzn � pk
=



�nxn + �nTxn + �nT 2xn + (1� �n � �n � �n)T 3xn � p


� �n kxn � pk+ �n kTxn � pk+ �n



T 2xn � p


+(1� �n � �n � �n)



T 3xn � p


� kxn � pk :

Using this, we can obtain kyn � pk � kxn � pk for all n 2 N. Therefore,
from Theorem 3.3, the desired result holds. �

Approximation methods involving terms such as T 2zn have been used by
Maruyama et al. [25] to deal with a general class of mappings; see also
Kondo [15] and papers cited therein. The following corollary also follows
from Theorem 3.3, where other mappings appear in the statements. Recall
the condition of quasi-nonexpansive mappings (1.9).

Corollary 4.5. Let C be a nonempty, closed, and convex subset of a real
Banach space E. Let T : C ! C be a Zam�rescu mapping such that F (T ) =
fpg. Let U; V : C ! C be qusi-nonexpansive mappings such that p 2 F (U)\
F (V ). Let f�ng be a sequence of real numbers in the interval [0; 1] such
that

P1
n=1 (1� �n) = 1. Let f�ng and f�ng be sequences of real numbers

in [0; 1]. De�ne a sequence fxng in C by the following rule:

x1 2 C is given,

yn = �nxn + �nUxn + (1� �n � �n)V xn;
xn+1 = �nxn + (1� �n)Tyn

for all n 2 N. Then, fxng converges in norm to the unique �xed point p of
T .
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Proof. As p 2 F (U) \ F (V ) and U and V : C ! C are qusi-nonexpansive
(1.9), it follows that

kyn � pk
= k�nxn + �nUxn + (1� �n � �n)V xn � pk
� �n kxn � pk+ �n kUxn � pk+ (1� �n � �n) kV xn � pk
� �n kxn � pk+ �n kxn � pk+ (1� �n � �n) kxn � pk
= kxn � pk :

Consequently, from Theorem 3.3, we obtain the desired result. �

It is not yet known what kind of quasi-nonexpansive mappings U and V
should be used to increase the convergence speed.

5. Application

In this section, we consider a variational inequality problem (VIP) and
show that the outcomes of this study can be applied to optimization tech-
niques. For VIPs, see Noor [27], Yamada [37], Xu and Kim [36], and Truong
et al. [35].
Let H be a real Hilbert space with an inner product h�; �i and the induced

norm k�k and let C be a nonempty subset of H. For a mapping A : C ! H,
we denote by

V I (C;A) = fx 2 C : hy � x; Axi � 0 for all y 2 Cg
the set of solutions of the VIP. The following types of mappings are fre-
quently used in the literature:
(i) A mapping A : C ! H is called K-Lipschitz continuous if there exists

K > 0 such that

(5.1) kAx�Ayk � K kx� yk for all x; y 2 C:
If K < 1, A is a contraction mapping. If K = 1, A is a nonexpansive
mapping. Let A;B : C ! C. If A is K-Lipschitz continuous and B is
L-Lipschitz continuous, then the composite mapping A �B is KL-Lipschitz
continuous. The composite mapping A � B is simply written as AB when
no ambiguity arises.
(ii) A mapping A : C ! H is termed �-strongly monotone if there exists

� > 0 such that

(5.2) � kx� yk2 � hx� y; Ax�Ayi for all x; y 2 C:
(iii) Let C be a nonempty, closed, and convex subset of H. For x 2 H,

there exists a unique element u 2 C such that
kx� uk � kx� yk for all y 2 C.

This correspondence from x to u is called the metric projection from H
onto C and denoted by PC . It is known that a metric projection PC is
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nonexpansive and satis�es

hx� PCx; PCx� yi � 0 for all y 2 C:
Conversely, if u 2 C and hx� u; u� yi � 0 for all y 2 C, then u = PCx.
For these points, see Lemma 2.1 in Kondo [21].
To solve VIPs via the �xed point theory, the following two lemmas are

crucial. Although they are known in the literature (see, for instance, Lem-
mas 4.1 and 4.2 in Kondo [17]), we provide proofs for self-completeness.
Denote by I the identity mapping de�ned on C.

Lemma 5.1. Let C be a nonempty, closed, and convex subset of a real
Hilbert space H, let PC be the metric projection from H onto C, and let A be
a mapping from C into H. Then, it holds that V I (C;A) = F (PC (I � �A))
for all � > 0.

Proof. The desired result is veri�ed as follows:

x 2 F (PC (I � �A))
() x = PC (x� �Ax)
() h(x� �Ax)� x; x� yi � 0 for all y 2 C
() hAx; x� yi � 0 for all y 2 C
() x 2 V I (C;A) :

This concludes the proof. �
Lemma 5.2. Let A : C ! H be an �-strongly monotone and K-Lipschitz
continuous mapping, where C is a nonempty subset of H and 0 < � < K.

Then, for � 2
�
0; 2�

K2

�
, I � �A is a contraction mapping from C into H.

Proof. Let x; y 2 C. As A is �-strongly monotone and K-Lipschitz contin-
uous, from (5.2) and (5.1), it holds that

k(I � �A)x� (I � �A) yk2

= kx� y � � (Ax�Ay)k2

= kx� yk2 � 2� hx� y; Ax�Ayi+ �2 kAx�Ayk2

� kx� yk2 � 2�� kx� yk2 + �2K2 kx� yk2

=
�
1� �

�
2� � �K2

�	
kx� yk2 :

Using the conditions 0 < � < 2�=K2 and 0 < � < K, we can prove that

0 < 1� �
�
2� � �k2

�
< 1:

This indicates that I � �A is a contraction mapping. �
As a metric projection is nonexpansive, the self-mapping PC (I � �A)

on C is a contraction mapping in the situation of Lemma 5.2. Further-
more, according to Lemma 5.1, it holds that V I (C;A) = F (PC (I � �A)).
Therefore, from the Banach contraction principle (Theorem 1.1), the set
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V I (C;A) (= F (PC (I � �A))) consists of only one element and Picard iter-
ative method is e¤ective to approximate the unique element of V I (C;A).
More general types of iterative schemes introduced in this study are also
available. Here, we present a two-step and split version as an application of
Corollary 4.3 with (4.2):

Theorem 5.1. Let C be a nonempty, closed, and convex subset of a real
Hilbert space H. Denote by PC the metric projection from H onto C. Let
A : C ! H be an �-strongly monotone and K-Lipschitz continuous mapping,

where 0 < � < K. Let � 2
�
0; 2�

K2

�
and let f�ng be a sequence of real

numbers in the interval [0; 1] such that
P1
n=1 (1� �n) = 1. Let f�ng and

f�ng be sequences of real numbers in [0; 1]. De�ne a sequence fxng in C by
the following rule:

x1 2 C is given,(5.3)

yn = �nxn + (1� �n)PC (I � �A)xn;
zn = �nxn + (1� �n)PC (I � �A)xn;

xn+1 = �nyn + (1� �n)PC (I � �A) zn
for all n 2 N, where I is the identity mapping de�ned on C. Then, fxng
converges in norm to a unique element of V I(C;A).

Proof. From Lemma 5.2, I � �A is a contraction mapping from C into
H. As the metric projection PC is nonexpansive, the composite mapping
PC (I � �A) is also a contraction mapping from C into itself and conse-
quently, it has a unique �xed point p 2 F (PC (I � �A)). From Lemma 5.1,
p 2 F (PC (I � �A)) = V I(C;A). As

P1
n=1 (1� �n) = 1 is assumed,

from Corollary 4.3 with (4.2), the sequence fxng converges in norm to
p 2 F (PC (I � �A)) = V I(C;A). This completes the proof. �
Setting �n = �n = 1 and �n = 0 in (5.3), the Picard iterative method

is deduced. Therefore, the iterative scheme (5.3) is more general than the
Picard method.
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