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Abstract

This study assumes homothetic robust Epstein-Zin utility and a
market model in which the state vector follows a general Markovian
diffusion process. The study derives an optimal consumption rule as
a generalized permanent income hypothesis (PIH) and demonstrates
that the marginal propensity to consume out of the total wealth can
be decomposed into five terms, four of which are functions of the state
vector. This indicates that the generalized PIH does not ensure the
stability of consumption as implied by Friedman’s PIH. Additionally,
the study derives the conditional expected growth rate of consumption
and demonstrates that it can be decomposed into four terms. The
first term is the difference between the interest and discount rates.
The second and third terms are both positive and interpreted as the
“effect of precautionary savings on risk” and “effect of precautionary
savings on ambiguity,” respectively. The fourth term is interpreted as
the “effect of timing of resolution of uncertainty.” The stability of the
expected growth rate of consumption is not ensured either, because all
these terms are functions of the state vector.
Keywords: Homothetic robust utility, Permanent income hypothesis,
Growth rate of consumption.

1 Introduction

The permanent income hypothesis (PIH) of Friedman [7] shows that the
optimal consumption is proportional to the total wealth that is the sum
of nonhuman wealth and “human wealth,” the discounted expected value
of future labor income. As Wang [20] critiques, this traditional definition
of human wealth ignores risk. He proposes the concept of “risk-adjusted
human wealth,” utilizing risk-adjusted probability to account for risk. This
study uses this concept and refers to it as human wealth. Wang [20] then

∗Shiga University, 1-1-1 Banba, Hikone, Shiga 522-8522, Japan. email:
kusuda@biwako.shiga-u.ac.jp
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derives an optimal consumption rule, which he calls the “generalized PIH.”
However, Wang [20] assumes CARA utility instead of standard CRRA utility
and models the securities market and labor income in a simplified manner.
In this sense, this optimal consumption rule is far from a generalized PIH.
This study aims to derive the optimal consumption rule as a generalized
PIH under a more appropriate utility and more general market model and
to elucidate the theoretical structure of the marginal propsensity to consume
(MPC) and of the expected growth rate of optimal consumption.

In this study, CRRA utility is generalized in two directions: Epstein-
Zin (EZ) utility (Epstein and Zin [6]) and homothetic robust (HR) utility
(Maenhout [13]). EZ utility separates the coefficients of the relative risk
aversion and elasticity of intertemporal substitution (EIS). Wang, Wang,
and Yang [21] assume EZ utility and derive an optimal consumption rule.
HR utility, in which Knightian uncertainty is considered, is characterized by
the subjective discount rate, relative risk aversion, and relative ambiguity
aversion. HR utility is used in robust portfolio studies, such as Skiadas [18],
Maenhout [13], [14], Liu [12], Branger, Larsen, and Munk [2], Munk and
Rubtsov [15], Yi, Viens, Law, and Li [22], and Kikuchi and Kusuda [9].1

However, human wealth is not considered in these studies. Homothetic
robust Epstein-Zin (HREZ) utility (Maenhout [13]) is a generalization of
EZ and HR utility, and is characterized by the subjective discount rate, EIS
ψ, relative risk aversion γ, and relative ambiguity aversion θ. Skiadas [18]
and Kusuda [11] show that HREZ utility is stochastic differential utility.
Schroder and Skiadas [16] show that if γ > 1 > ψ > 0 or 0 < γ < 1 < ψ
then EZ utility is well defined. Based on the results of many empirical
analyses, this study assumes HREZ utility with γ > 1 > ψ > 0. Note that
the assumed HREZ utility includes HR utility (i.e., γψ = 1), EZ utility
(i.e., θ = 0), and CRRA utility (i.e., γψ = 1, θ = 0) as special cases. This
study also assumes a market model where the state vector follows a general
Markovian diffusion process, and the risk-free rate and volatilities of capital
assets and labor income are functions of the state vector. The main results
are summarized as follows.

First, I derive an expression of the generalized PIH in which the optimal
consumption is the product of the MPC and total wealth and demonstrate
that the MPC out of human wealth coincides with that out of nonhuman
wealth. Friedman [7] conjectures that the MPC out of human wealth is lower
than that out of nonhuman wealth. This conjecture is strongly supported
by various studies, including Hall [8]. I show that the traditional definition-
based human wealth is greater than our human wealth and that the MPC
out of traditional definition-based human wealth is lower than that out of
nonhuman wealth.

1Kikuchi and Kusuda [10] generalize HR utility so that relative ambiguity aversion
depends on age; however, the utility functional is no longer homothetic.
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Second, using the partial differential equation (PDE) for the indirect
utility function derived from the optimality condition of the agent’s con-
sumption/investment problem, I derive an equation that the decomposes
MPC into five terms. The first two terms represent a weighted average of
the discount rate and risk-free rate, where the weight on the discount rate
is the EIS. These terms are presented in previous studies, including Wang
et. al [21]. The third term represents the effect of the total wealth variance.
The fourth and fifth terms represent the intertemporal risk hedging effect
and intertemporal ambiguity hedging effect, respectively. Note that the four
terms, excluding the first term, are functions of the state vector. Given the
possibility of substantial fluctuations in the MPC in response to changes
in the state vector, the generalized PIH does not theoretically ensure the
stability of consumption implied by Friedman’s PIH. Its stability is subject
to empirical analysis.

Third, I derive the conditional expected growth rate of consumption
from the PDE for the indirect utility function and demonstrate that it can
be decomposed into four terms. The first term is proportional to the differ-
ence between the interest and discount rates. The second and third terms
are proportional to the conditional variance of the growth rate of consump-
tion. They are both positive and interpreted as the “effect of precautionary
savings on risk” and “effect of precautionary savings on ambiguity,” respec-
tively. The fourth term is proportional to the conditional variance of total
wealth return. It is negative (resp., positive) if the agent prefers early (resp.,
late) resolution. The fourth term is interpreted as the “effect of timing of
resolution of uncertainty.” The stability of the expected growth rate of con-
sumption is not theoretically ensured either, because all these terms depend
on the state vector.

The remainder of this paper is organized as follows. Section 2 introduces
HREZ utility and the market model. Section 3 demonstrates the generalized
PIH. Section 4 derives the conditional expected growth rate of consumption.
Section 5 concludes the study. Appendix presents the proofs of the lemmas
and propositions.

2 Basic Setting

I introduce the environment of economy, HREZ utility, and market model.
Then, I derive the dynamics of the total wealth.

2.1 Environment

I consider an infinitely lived agent and frictionless markets over the time
span [0,∞). The agent’s subjective probability and information structure
are modeled by a complete filtered probability space (Ω,F ,F,P), where
F = (Ft)t∈[0,∞) is the natural filtration generated by an N -dimensional
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standard Brownian motion Bt. I indicate the expectation operator under P
with E and the conditional expectation operator given Ft with Et.

There are markets for consumption goods and financial and nonfinancial
capital assets at every date t ∈ [0,∞), and the consumer price index pt
is observed. The traded assets are the instantaneously nominal risk-free
security called the money market account ; and N−1 types of capital assets.
There is also a labor market in which agents’ human capital is rented to
employers at a wage in each period [t, t + dt]. At every date t, Pt and
Sjt denote the prices of the money market account and j-th capital asset,
respectively. Let A′ and IN denote the transpose of A and theN×N identity
matrix, respectively.

2.2 HREZ utility

First, I consider the following EZ utility.

Vt = Eξt

[∫ ∞

t
f(cs, Vs)ds

]
, (2.1)

where f is the normalized aggregator shown in Duffie and Epstein [4]) of
the form:

f(c, v) = β
c1−ψ

−1

1− ψ−1

(
(1− γ)v

)1− 1−ψ−1

1−γ − β
1− γ

1− ψ−1
v, (2.2)

where β is the subjective discount rate, γ is the relative risk aversion, and
ψ is the EIS. Schroder and Skiadas [16] show that if γ > 1 > ψ > 0, or
0 < γ < 1 < ψ then EZ utility is well defined. Numerous empirical analyses
indicate that γ > 1 and 1 > ψ > 0. Therefore, I assume that γ > 1 > ψ > 0.

U(c) = inf
Pξ∈P

Eξ

[∫ ∞

0

(
f(ct, V

ξ
t ) +

(1− γ)V ξ
t

2θ
|ξt|2

)
dt

]
, (2.3)

where Eξ is the expectation under Pξ, U ξt is the continuation utility process
defined recursively as follows:

V ξ
t = Eξt

[∫ ∞

t

(
f(cs, V

ξ
s ) +

(1− γ)V ξ
s

2θ
|ξs|2

)
ds

]
, (2.4)

Assumption 1. The agent possesses the HREZ utility of the form (2.3)
such that γ > 1 > ψ > 0.

2.3 Market Model

I assume the following market model.
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Assumption 2. 1. State vector process Xt satisfies the following SDE:

dXt = µ(Xt) dt+Σ(Xt) dBt. (2.5)

2. The nominal risk-free rate and market price of risk at t are functions
of Xt and expressed as r(Xt) and λ(Xt), respectively.

3. The volatility of j-th capital asset and the agent’s human capital at t
are functions of Xt and expressed as σj(Xt) and σh(Xt), respectively.

4. The consumer price index pt satisfies

dpt
pt

= i(Xt) dt+ σp(Xt)
′dBt, p0 = 1, (2.6)

5. Markets are complete and arbitrage-free.

Let P∗ and E∗ denote the risk-neutral measure and expectation operator
under P∗, respectively. Let Lt denote the representative agent’s nominal
labor income at time t. Friedman [7] and Hall [8] define human wealth HF

by

HF
t = Et

[∫ ∞

t
exp

(
−
∫ s

t
r(Xu)du

)
Lsds

]
. (2.7)

As Wang [20] points out, this definition of human wealth ignores risk. Fol-
lowing Wang [20], I define nominal human wealth2 by

Ht = E∗
t

[∫ ∞

t
exp

(
−
∫ s

t
r(Xu)du

)
Lsds

]
. (2.8)

The premium on human capital is naturally assumed to be positive. Then,
HF
t > Ht, and Friedman’s definition overestimates the value of human

wealth.
Let (ϑ, (ϑj)) denote a portfolio. Then, nominal nonhuman wealth and

nominal total wealth at t are given by

At = ϑtPt +
N−1∑
j=1

ϑjtS
j
t . (2.9)

Wt = At +Ht. (2.10)

Let Yt denote a nominal value process. Then, the real value process Ȳt is

defind by Ȳt =
Yt
pt
. I define the real market price of risk and real risk-free

rate by

λ̄(Xt) = λ(Xt)− σp(Xt), (2.11)

r̄(Xt) = r(Xt)− i(Xt) + λ(Xt)
′σp(Xt), (2.12)

2Wang [20] refers to as “risk-adjusted human wealth.”
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respectively.

Let Φjt =
ϑjtS

j
t

At
for every j ∈ {1, · · · , N − 1}.

Lemma 1. Under Assumption 2, given a control (c, ς) and W0 ¿ 0, the
agent’s real total wealth process satisfies

dW̄t

W̄t
=

(
r̄(Xt) + ς ′tλ̄(Xt)−

ct
W̄t

)
dt+ ς ′t dBt. (2.13)

where

ςt =
Āt
W̄t

N−1∑
j=1

Φjtσj(Xt) +
H̄t

W̄t
σh(Xt)− σp(Xt). (2.14)

Proof. See Appendix A.1.

Let X′
t = (W̄t, X

′
t). (c, ς) denotes a control. The control that satisfies

Eq. (2.13) with the initial state X0 = (W0, X
′
0)

′ is an admissible control.
Let B(X0) denote the set of admissible controls. I refer to ς as investment
control.

Remark 1. Eq. (2.13) represents the instantaneous real rate of return on
the real total wealth at time t. The conditional expectation and variance of
the real total wealth return are

Et

[
dW̄t

W̄t

]
=
(
r̄(Xt) + ς ′tλ̄(Xt)−

ct
W̄t

)
dt, (2.15)

Vart

[
dW̄t

W̄t

]
= |ςt|2dt, (2.16)

respectively. Increasing investment control can increase the expectation of
total wealth return; however, it also increases its variance.

The agent’s indirect utility function and consumption–investment prob-
lem are recursively defined by

Jξ(Xt) = sup
(c,ς)∈B(Xt)

Eξt

[∫ ∞

t

(
f(cs, J

ξ
s ) +

(1− γ)Jξs
2θ

|ξs|2
)
ds

]
. (2.17)

3 Generalized PIH

I derive the optimal consumption rule as a generalized PIH and demonstrate
that it can be decomposed into five terms.
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3.1 Worst-case Probability

As the standard Brownian motion under Pξ is given by Bξ
t = Bt−

∫ t

0
ξs ds,

the SDE for the state vector under Pξ is expressed as

dXt =

((
W̄t(r̄(Xt) + ς ′tλ̄(Xt))− ct

µ(Xt)

)
+

(
W̄tς

′
t

Σ(Xt)

)
ξt

)
dt+

(
W̄tς

′
t

Σ(Xt)

)
dBξ

t .

(3.1)
Thus, the HJB equation for problem (2.17) is given by

0 = sup
(ĉ,ς̂)∈R+×RN

inf
ξ̂∈RN

{(
w̄
(
r̄(x) + ς̂ ′λ̄(x)

)
− ĉ

µ(x)

)′(
Jw
Jx

)
+ξ̂′

(
w̄ς̂ ′

Σ(x)

)′(
Jw
Jx

)

+
1

2
tr

[(
w̄ς̂ ′

Σ(x)

)(
w̄ς̂ ′

Σ(x)

)′(
Jww Jwx
Jxw Jxx

)]
+ f(ĉ, J) +

(1− γ)J

2θ
|ξ̂|2
}
. (3.2)

It is easy to see that the worst-case probability satisfies

ξ̂∗ = − θ

(1− γ)J

(
w̄ς̂ ′

Σ(x)

)′(
Jw
Jx

)
. (3.3)

Substituting ξ̂∗ into HJB Eq. (3.2) yields

sup
(ĉ,ς̂)∈R+×RN

[(
w̄
(
r̄(x) + ς̂ ′λ̄(x)

)
− ĉ

µ(x)

)′(
Jw
Jx

)
+
1

2
tr

[(
w̄ς̂ ′

Σ(x)

)(
wς̂ ′

Σ(x)

)′(
Jww Jwx
Jxw Jxx

)]

+ f(ĉ, J)− θ

2(1− γ)J

(
Jw
Jx

)′(
w̄ς̂ ′

Σ(x)

)(
w̄ς̂ ′

Σ(x)

)′(
Jw
Jx

)]
= 0. (3.4)

3.2 A First Expression of Generalized PIH

Lemma 2. Under Assumptions 1 and 2, optimal control and optimal total
wealth satisfy Eqs. (3.5)–(3.6) and (3.17), and the indirect utility satisfies
PDE (3.8).

ĉ∗ = βψ
(
(1− γ)J

) 1−γψ
1−γ J−ψ

w , (3.5)

ς̂∗ =
1

Ut

(
λ̄(x) + Σ(x)′

Jxw
Jw

+
θ

γ − 1
Σ(x)′

Jx
J

)
, (3.6)

where Ut is given by

Ut = −W̄
∗
t Jww
Jw

+ θ
W̄ ∗
t Jw

(1− γ)J
, (3.7)
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1

2
tr
[
Σ(x)Σ(x)′Jxx

]
− θ

2(1− γ)J

∣∣Σ(x)′Jx∣∣2 − |πt|2

2w̄∗2
(
Jww − θJ2

w

(1− γ)J

)
+ r̄(x)w̄∗Jw + µ(x)′Jx −

1

1− ψ
ĉ∗Jw − β(1− γ)

1− ψ−1
J = 0, (3.8)

where πt is given by

πt = −UtW̄ ∗
t Jw ς̂

∗ = −W̄ ∗
t Jw

(
λ̄(Xt) + Σ(Xt)

′Jxw
Jw

− θ

1− γ
Σ(Xt)

′Jx
J

)
.

(3.9)

Proof. See Appendix A.2.

From PDE (3.8), I conjecture that the indirect utility function takes the
form

J(Xt) =
W̄ 1−γ
t

1− γ

(
G(Xt)

)− 1−γ
1−ψ . (3.10)

Then, Ut in Eq. (3.7) is expressed as

Ut = γ + θ. (3.11)

The sum of the relative risk aversion and the relative ambiguity aversion is

refered to as the relative uncertainty aversion. Substituting Jw = (1−γ) J
w̄∗

and Ut = γ + θ. into PDE (3.8) leads to the following equation.3

1

2
tr

[
Σ(x)Σ(x)′

Jxx
J

]
+

1− γ

2
(γ + θ)|ς̂∗|2 − θ

2(1− γ)

∣∣∣∣Σ(x)′JxJ
∣∣∣∣2

+ (1− γ)r̄(x) + µ(x)′
Jx
J

− 1− γ

1− ψ

ĉ∗

w̄∗ − β(1− γ)

1− ψ−1
= 0. (3.14)

Then, optimal consumption is expressed as

ĉ∗ = m(Xt)W̄
∗
t = m(Xt)(Ā

∗
t + H̄t), (3.15)

where

m(x) = ψβ + (1− ψ) r̄(x) +m1(x) +m2(x) +m3(x), (3.16)

W̄ ∗
t = exp

(∫ t

0

(
r̄(Xs) + (ς̂∗)′λ̄(Xs)−m(Xs)−

1

2
|ς̂∗|2

)
dt+ (ς∗s )

′ dBs

)
,

(3.17)

3Here, I use the following results.

|πt|2 = (γ − 1)2(γ + θ)2|ς̂∗|2, (3.12)

w̄∗2
(
Jww − θJ2

w

(1− γ)J

)
= (γ − 1)(γ + θ). (3.13)
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with

m1(x) =
1

2
(1− ψ) (γ + θ)|ς̂∗|2, (3.18)

m2(x) = −1− ψ

γ − 1

(
µ(x)′

Jx
J

+
1

2
tr

[
Σ(x)Σ(x)′

Jxx
J

])
, (3.19)

m3(x) = − (1− ψ)θ

2(γ − 1)2

∣∣∣∣Σ(x)′JxJ
∣∣∣∣2 . (3.20)

Remark 2. Eq. (3.15) shows a generalized PIH under HREZ utility. Fol-
lowing Wang et. al [21], I refer to m(x) as the MPC. Eq. (3.15) shows that
the MPC out of human wealth coincides with that out of nonhuman wealth.
Friedman [7] conjectures that the MPC out of human wealth is lower than
that out of nonhuman wealth. This conjecture is strongly supported by var-
ious studies, including Hall [8]. However, Eq. (3.15) shows that the MPC
out of human wealth is equivalent to that out of nonhuman wealth. This is
interpreted as follows. First, Friedman’s definition of human wealth over-

estimates its value, i.e., H̄F
t > H̄t. Let αt =

H̄t

H̄F
t

. Then, Eq. (3.15) is

rewritten as

ĉ∗ = m(Xt)(Ā
∗
t + H̄t) = m(Xt)Ā

∗
t +m(Xt)αtH̄

F
t . (3.21)

As αt < 1, the “MPC m(Xt)αt out of human wealth” is lower than the MPC
m(Xt) out of nonhuman wealth. The empirical support for Friedman’s mis-
guided conjecture stems from an overvaluation of human wealth. Eq. (3.15)
is a generalization of (25) in Wang [20] and of (17) in Wang et al. [21].

Remark 3. The MPC m(Xt) is decomposed into five terms. The first two
terms represent a weighted average of the discount rate and the risk-free rate,
where the weight on the discount rate is the EIS. These terms are presented
in previous studies, including Wang et. al [21]. The third term represents
the effect of total wealth variance. The fourth and fifth terms are inter-
preted to represent the intertemporal risk hedging effect and intertemporal
ambiguity hedging effect, respectively. Note that the four terms, excluding
the first term, are functions of the state vector. Consequently, the MPC
may exhibit significant fluctuations in response to changes in the state vec-
tor. This means that the generalized PIH does not guarantee the stability of
consumption implied by Friedman’s PIH, leaving its validation to empirical
analysis.

Remark 4. Note that it is assumed that γ > 1 > ψ > 0. The third term
regarding the total wealth variance effect is positive and decreasing in the
EIS and increasing in the relative uncertainty aversion. The fifth term re-
garding intertemporal ambiguity hedging effect is negative and decreasing in
the relative ambiguity aversion. The sign of the fourth term with respect to
the intertemporal risk hedging effect is indeterminate.
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3.3 A Second Expression of Generalized PIH

By inserting Eq. (3.6) and the partial derivatives of J into the PDE (3.8),
we obtain the following proposition.

Proposition 1. Under Assumptions 1 and 2, the indirect utility function,
optimal consumption, and optimal investment for problem (2.17) satisfy
Eqs. (3.10), (3.22) and (3.23), respectively. Function G constituting the
indirect utility function is a solution to PDE (3.25).

ĉ∗ =
βψ

G(Xt)
W̄ ∗
t , (3.22)

ς̂∗ =
1

γ + θ
λ̄(Xt) +

(
1− 1

γ + θ

)
1

1− ψ
Σ(Xt)

′Gx(Xt)

G(Xt)
, (3.23)

where W̄ ∗
t is given by

W̄ ∗
t = exp

(∫ t

0

(
r̄(Xs) + (ς̂∗)′λ̄(Xs)−

βψ

G(Xt)
− 1

2
|ς̂∗|2

)
dt+ (ς∗s )

′ dBs

)
,

(3.24)

1

2
tr

[
Σ(x)Σ(x)′

Gxx
G

]
+

(γ + θ)ψ − 1

2(γ + θ)(1− ψ)

∣∣∣∣Σ(x)′GxG
∣∣∣∣2+(µ(x)− γ + θ − 1

γ + θ
Σ(x)λ̄(x)

)′ Gx
G

+
βψ

G
− 1− ψ

2(γ + θ)
|λ̄(x)|2 − (1− ψ)r̄(x)− βψ = 0. (3.25)

Proof. See Appendix A.3.

It follows from Eq. (3.22) that the optimal consumption is expressed as

ĉ∗ = βψG−1(x)W̄ ∗
t = m(x)(Ā∗

t + H̄t), (3.26)

where the term m1(x) is given by Eq. (3.18) and the terms m2(x) and m3(x)
are rewritten as

m2(x) = −(1− ψ)γ

γ − 1

{
µ(x)′

Gx
G

− 1

2

γ − 1

1− ψ

(
γ − ψ

1− ψ

∣∣∣∣Σ(x)′GxG
∣∣∣∣2 + tr

[
Σ(x)Σ(x)′

Gxx
G

])}
,

m3(x) = −(1− ψ)γ2θ

2(γ − 1)2

∣∣∣∣Σ(x)′GxG
∣∣∣∣2 .

(3.27)

Remark 5. By specifying the market model as either an affine model (Duffie
and Kan [5]) or a quadratic model (Batbold, Kikuchi, and Kusuda [1]), the
model can be estimated if time series data on human capital is available.
Then, a loglinear approximate solution (Campbell and Viceira [3]) of the
PDE (3.25) is obtained, and m1(Xt),m2(Xt), and m3(Xt) are computed.
However, because time series data on human capital are unavailable, they
must be estimated.
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4 Conditional Expected Growth Rate of Consump-
tion

I derive the conditional expected growth rate of consumption and demon-
strate that it can be decomposed into four terms.

4.1 Expression of Consumption Growth Rate

The optimal consumption process is governed by the following SDE.

dĉ∗

ĉ∗
=
dW̄ ∗

t

W̄ ∗
t

− dG(Xt)

G(Xt)
+

∣∣∣∣dG(Xt)

G(Xt)

∣∣∣∣2 − dW̄ ∗
t

W̄ ∗
t

dG(Xt)

G(Xt)

=

(
r̄(Xt) + (ς̂∗)′λ̄(Xt)−

βψ

G
− µ(Xt)

′Gx
G

− 1

2
tr

[
Σ(Xt)Σ(Xt)

′Gxx
G

]
+

∣∣∣∣Σ(Xt)
′Gx
G

∣∣∣∣2 − (ς̂∗)′Σ(Xt)
′Gx
G

)
dt+ (σct )

′dBt. (4.1)

where

σct = ς̂∗ − Σ(Xt)
′Gx
G
. (4.2)

It follows from Eq. (3.23) that the volatility of optimal consumption is rewrit-
ten as

σct = ς̂∗ − Σ(Xt)
′Gx
G

=
1

γ + θ
λ̄(Xt) +

(γ + θ)ψ − 1

(γ + θ)(1− ψ)
Σ(Xt)

′Gx
G
. (4.3)

Thus, the real market price of risk is expressed as

λ̄(Xt) = (γ + θ)σct −
(γ + θ)ψ − 1

1− ψ
Σ(Xt)

′Gx
G

= (γ + θ)σct −
(γ + θ)ψ − 1

1− ψ

(
ς̂∗ − σct

)
=

1

1− ψ

(
(γ + θ − 1)σct −

(
(γ + θ)ψ − 1

)
ς̂∗
)
.

(4.4)

Proposition 2. Under Assumptions 1 and 2, the conditional expected growth
rate of consumption is expressed as

Et

[
dĉ∗

ĉ∗

]
= ψ(r̄(Xt)− β) dt+

γ + θ − ψ

2(1− ψ)
Vart

[
dĉ∗

ĉ∗

]
−
ψ
(
(γ + θ)ψ − 1

)
2(1− ψ)

Vart

[
dW̄ ∗

t

W̄ ∗
t

]
. (4.5)

Proof. See Appendix A.4.
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Remark 6. From Eqs. (4.2) and (2.13), the following equations are ob-
tained.

Vart

[
dĉ∗

ĉ∗

]
=

(
ς̂∗ − Σ(Xt)

′Gx(Xt)

G(Xt)

)
dt, (4.6)

Vart

[
dW̄ ∗

t

W̄ ∗
t

]
= ς̂∗dt. (4.7)

Thus, all three terms in Eq. (4.5) are functions of the state vector. There-
fore, the stability of the expected growth rate of consumption is not guaran-
teed.

4.2 Decomposition of Consumption Growth Rate

Eq. (4.5) shows that the conditional expected growth rate of consumption
is decomposed into three terms. The first term is the difference between the
interest and discount rates. The second and third terms are the conditional
variances of the growth rates of consumption and total wealth, respectively.
In the following, I demonstrate that the conditional expected growth rate of
consumption can be decomposed into four terms and analyze the effect of
each term through the analysis in the case of CRRA utility and EZ utility.

In the case of CRRA utility (γψ = 1, θ = 0), Eq. (4.5) is simplified as
the following familiar expression.

Et

[
dĉ∗

ĉ∗

]
=

1

γ
(r̄t − β) dt+

1

2
(γ + 1)Vart

[
dĉ∗

ĉ∗

]
. (4.8)

The conditional expected growth rate of consumption is increasing in the
conditional variance of the consumption growth rate and is proportional
to the relative prudence γ + 1. This term is interpreted as the effect of
precautionary savings. Eq. (4.8) shows that the consumption growth rate
is independent of the variance of the wealth growth rate. However, this
interpretation is misleading and is only valid in the case where utility is
CRRA utility.

In the case of EZ utility (γψ ̸= 1, θ = 0), Eq. (4.5) is simplified as

Et

[
dĉ∗

ĉ∗

]
= ψ(r̄t − β) dt+

γ − ψ

2(1− ψ)
Vart

[
dĉ∗

ĉ∗

]
− ψ(γψ − 1)

2(1− ψ)
Vart

[
dW̄ ∗

t

W̄ ∗
t

]
.

(4.9)
The second term is positive and interpreted as the “effect of precautionary
savings on risk.” Skiadas [17] shows that EZ utility is information seeking
(resp., averse), if γ > ψ−1 (resp., γ < ψ−1). Thus, the coefficient of the third
term is negative (positive) when the agent is information seeking (resp.,
averse), as demonstrated in the following equation.

−ψ(γψ − 1)

2(1− ψ)

{
< 0, if γ > ψ−1,

> 0, if γ < ψ−1.
(4.10)
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Remark 7. Eq. (2.13) shows that the agent’s decision to increase (resp., de-
crease) consumption and decrease (resp., increase) savings/investment leads
to a decrease (resp., an increase) in the conditional expectation of total
wealth, but to a decrease (resp., an increase) in its conditional variance.
Thus, the agent’s decision to increase (resp., decrease) consumption and
decrease (resp., increase) savings/investment reduces (resp., increaes) risk.
Therefore, if an agent is information seeking and prefers early resolution
then the agent prefers consumption to saving/investment. Conversely, if an
agent is information averse and prefers late resolution then the agent prefers
saving/investment to consumption. The third term can thus be interpreted
as the “effect of timing of resolution of risk.”

In the case of HREZ utility, Eq. (4.5) is rewritten as

Et

[
dĉ∗

ĉ∗

]
= ψ(r̄t − β) dt+

γ − ψ

2(1− ψ)
Vart

[
dĉ∗

ĉ∗

]
+

θ

2(1− ψ)
Vart

[
dĉ∗

ĉ∗

]
−
ψ
(
(γ + θ)ψ − 1

)
2(1− ψ)

Vart

[
dW̄ ∗

t

W̄ ∗
t

]
. (4.11)

Remark 8. The third term is positive and interpreted as the “effect of
precautionary savings on ambiguity.” The sign of the coefficient of the fourth
term is evaluated as follows.

−
ψ
(
(γ + θ)ψ − 1

)
2(1− ψ)

{
< 0, if γ + θ > ψ−1,

> 0, if γ + θ < ψ−1.
(4.12)

Kusuda [11] shows that HREZ utility is interpreted as information seeking
(resp., averse) and prefers early (resp., late) resolution of uncertainty if
γ+ θ > ψ−1 (resp., γ+ θ < ψ−1).4 Thus, the fourth term can be interpreted
as the “effect of timing of resolution of uncertainty.”

Furthermore, Vart

[
dW̄ ∗

t

W̄ ∗
t

]
in Eq. (4.11) is decomposed into the following

three terms.

Vart

[
dW̄ ∗

t

W̄ ∗
t

]
=

(
Ā∗
t

W̄ ∗
t

)2

Vart

[
dĀ∗

t

Ā∗
t

]
+

(
H̄t

W̄ ∗
t

)2

Vart

[
dH̄t

H̄t

]
+ 2

Ā∗
t

W̄ ∗
t

H̄t

W̄ ∗
t

Covt

(
dĀ∗

t

Ā∗
t

,
dH̄t

H̄t

)
. (4.13)

5 Conclusion

I assumed HREZ utility with γ > 1 > ψ > 0, and a market model in
which the state vector process is a general Markovian diffusion process,

4For details, see Kusuda [11].
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and the risk-free rate and volatilities of capital assets and labor income are
functions of the state vector. First, I derived an expression of generalized
PIH in which the optimal consumption is the product of the MPC and total
wealth and demonstrated that the MPC out of human wealth coincides with
that out of nonhuman wealth. I showed that traditional definition-based
human wealth is greater than Wang’s definition of human wealth and that
the MPC out of traditional definition-based human wealth is lower than that
out of nonhuman wealth, as conjectured by Friedman [7]. Second, I showed
that the MPC can be decomposed into five terms. The first two terms
represent the weighted average of the discount rate and the risk-free rate,
where the weight on the discount rate is the EIS. These terms were presented
in previous studies, including Wang et. al [21]. The third term represents
the effect of the total wealth variance. The fourth and fifth terms represent
the intertemporal risk hedging effect and intertemporal ambiguity hedging
effect, respectively. Given that the four terms, excluding the first term,
are functions of the state vector, the generalized PIH does not theoretically
guarantee the stability of consumption implied by Friedman’s PIH. Rather,
its stability is subject to empirical analysis.

Finally, I derived the conditional expected growth rate of consumption
and demonstrated that it can be decomposed into four terms. The first term
is the difference between the interest and discount rates. The second and
third terms are both positive and interpreted as the “effect of precautionary
savings on risk” and “effect of precautionary savings on ambiguity,” respec-
tively. The fourth term is negative (resp., positive) if the agent prefers early
(resp., late) resolution and is interpreted as the “effect of timing of reso-
lution of uncertainty.” Given that all of these terms are functions of the
state vector, the stability of the expected growth rate of consumption is not
theoretically guaranteed.

As explained in Remark 5, by specifying the market model as an affine
model or a quadratic model, the model can be estimated if time series data
on human capital is available and numerical analysis of the stability of the
MPC and expected growth rate of consumption can be performed. However,
because time series data on human capital are unavailable, they must be
estimated. Estimating human capital and conducting numerical analysis of
the stability of the MPC and expected growth rate of consumption is a topic
for future research.
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A Proofs

A.1 Proof of Lemma 1

Let Dj denote the income process arising from the holdings of the j-th
capital asset. Then, the agent’s nominal total wealth process satisfies

dWt

Wt
=

1

Wt

{
ϑtdPt +

N−1∑
j=1

ϑjt

(
dSjt +Dj

tdt
)
+ dHt + Ltdt− ptctdt

}

=
At
Wt

{
ϑtPt
At

dPt
Pt

+
N−1∑
j=1

ϑjtS
j
t

At

dSjt +Dj
tdt

Sjt

}
+
Ht

Wt

dHt + Ltdt

Ht
− ct
W̄t

dt

=
Āt
W̄t

(
1−

N−1∑
j=1

Φjt

)
dPt
Pt

+

N−1∑
j=1

Φjt
dSjt +Dj

tdt

Sjt

}
+
H̄t

W̄t

dHt + Ltdt

Ht
− ct
W̄t

dt.

(A.1)

From the no arbitrage condition, the dynamics of Pt, S
j
t , and Ht are given

by

dPt
Pt

= r(Xt)dt, (A.2)

dSjt +Dj
tdt

Sjt
=
(
r(Xt) + σj(Xt)

′λ(Xt)
)
dt+ σj(Xt)

′dBt, (A.3)

dHt + Ltdt

Ht
=
(
r(Xt) + σh(Xt)

′λ(Xt)
)
dt+ σh(Xt)

′dBt. (A.4)

Substituting Eqs. (A.2)-(A.4) into the above equation and using the invest-
ment control ςt yields

dWt

Wt
=

(
r(Xt) + λ(Xt)

′(ςt + σp(Xt))−
ct
W̄t

)
dt+(ςt+σp(Xt))

′ dBt. (A.5)

Noting that
dWt

Wt
=
d(ptW̄t)

ptW̄t
=
dW̄t

W̄t
+
dpt
pt

+
dW̄t

W̄t

dpt
pt
,

and the volatility of W̄t is equal to ςt, we have

dW̄t

W̄t
=
dWt

Wt
− i(Xt)dt− σp(Xt)

′dBt − ς ′tσp(Xt) dt.

By inserting Eq. (A.5) into the equation above and using Eqs. (2.11) and
(2.12), I obtain Eq. (2.13).
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A.2 Proof of Lemma 2

It is clear that the optimal control û∗ = (ĉ∗, ς̂∗) in HJB Eq. (3.4) satisfies
Eqs. (3.5) and (3.6) . Substituting the optimal control (ĉ∗, ς̂∗) into HJB
Eq. (3.4), I have

(
w̄∗(r̄(x)+λ̄(x)′ς∗)−ĉ∗

)
Jw+µ(x)

′Jx+
1

2
tr

[(
w̄∗(ς̂∗)′

Σ(x)

)(
w̄∗(ς̂∗)′

Σ(x)

)′(
Jww Jwx
Jxw Jxx

)]

+ f(ĉ∗, J)− θ

2(1− γ)J

(
Jw
Jx

)′(
w̄∗(ς̂∗)′

Σ(x)

)(
w̄∗(ς̂∗)′

Σ(x)

)′(
Jw
Jx

)
= 0. (A.6)

The investment-related terms in HJB Eq. (A.6) are organized as:

w̄∗Jwλ̄(x)
′ς̂∗ +

1

2
tr

[(
W̄ ∗
t (ς̂

∗)′

Σ(x)

)(
w̄∗(ς̂∗)′

Σ(x)

)′(
Jww Jwx
Jxw Jxx

)]

− θ

2(1− γ)J

(
Jw
Jx

)′(
w̄∗(ς̂∗)′

Σ(x)

)(
w̄∗(ς̂∗)′

Σ(x)

)′(
Jw
Jx

)
=

1

2
tr
[
Σ(x)Σ(x)′Jxx

]
− θ

2(1− γ)J

∣∣Σ(x)′Jx∣∣2− |πt|2

2w̄∗2
(
Jww − θJ2

w

(1− γ)J

) .
(A.7)

The consumption-related terms in HJB Eq. (A.6) are computed as

−ĉ∗Jw + f(ĉ∗, J) = −ĉ∗Jw +
1

1− ψ−1
ĉ∗Jw − β(1− γ)

1− ψ−1
J

= − 1

1− ψ
ĉ∗Jw − β(1− γ)

1− ψ−1
J.

(A.8)

By substituting Eqs. (A.7) and (A.8) into HJB Eq. (A.6), the PDE (3.8) for
J is obtained:

A.3 Proof of Proposition 1

First, the optimal consumption control (3.22) is obtained as follows:

ĉ∗ = βψ
(
(1−γ)J

)(1− 1−ψ−1

1−γ

)
ψ
(
(1− γ)J

w̄∗

)−ψ
= βψw̄∗ψ

(
w̄∗1−γG

− 1−γ
1−ψ
) 1−ψ

1−γ
= βψ

w̄∗

G
.

(A.9)
Second, the derivatives of J are given by

w̄∗Jw = (1− γ)J, Jx =
γ − 1

1− ψ
J
Gx
G
, w̄∗2Jww = γ(γ − 1)J,

w̄∗Jxw = −(γ − 1)2

1− ψ
J
Gx
G
, Jxx =

γ − 1

1− ψ
J

{(
γ − 1

1− ψ
− 1

)
Gx
G

G′
x

G
+
Gxx
G

}
.

(A.10)
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Then, Ut in Eq. (3.7) is expressed as Eq. (3.11), and πt in Eq. (3.9) is
calculated as

πt = (γ − 1)J

(
λ̄(x) +

γ + θ − 1

1− ψ
Σ(x)′

Gx
G

)
, (A.11)

I also obtain

w̄2Jww − θw̄2J2
w

(1− γ)J
= γ(γ − 1)J − (1− γ)θJ = (γ − 1)(γ + θ)J. (A.12)

Therefore, by inserting Eq. (3.11) into Eq. (3.6), I obtain the optimal in-
vestment control (3.23). From Eq. (A.11), the first to third terms in PDE
(3.8) are calculated as

1

2
tr
[
Σ(x)Σ(x)′Jxx

]
− θ

2(1− γ)J

∣∣Σ(x)′Jx∣∣2 − |πt|2

2w̄∗2
(
Jww − θJ2

w

(1− γ)J

)
=

γ − 1

2(1− ψ)
J tr

[
Σ(x)Σ(x)′

(
γ + ψ − 2

1− ψ

Gx
G

G′
x

G
+
Gxx
G

)]
+

(γ − 1)θ

2(1− ψ)2

∣∣∣∣Σ(x)′GxG
∣∣∣∣2

− γ − 1

2(γ + θ)
J

∣∣∣∣λ̄(x) + γ + θ − 1

1− ψ
Σ(x)′

Gx
G

∣∣∣∣2
=(γ − 1)J

{
1

2(1− ψ)
tr

[
Σ(x)Σ(x)′

Gxx
G

]
− 1

2(γ + θ)
|λ̄(x)|2 − γ + θ − 1

(γ + θ)(1− ψ)
λ̄(x)′Σ(x)′

Gx
G

+
1

2(γ + θ)(1− ψ)2

{
(γ + θ)(γ − 2 + ψ) + (γ + θ)θ − (γ + θ − 1)2

} ∣∣∣∣Σ(x)′GxG
∣∣∣∣2}

=(γ − 1)J

{
1

2(1− ψ)
tr

[
Σ(x)Σ(x)′

Gxx
G

]
− 1

2(γ + θ)
|λ̄(x)|2

− γ + θ − 1

(γ + θ)(1− ψ)
λ̄(x)′Σ(x)′

Gx
G

+
(γ + θ)ψ − 1

2(γ + θ)(1− ψ)2

∣∣∣∣Σ(x)′GxG
∣∣∣∣2}.

(A.13)

From Eq. (A.9), the sixth term in PDE (3.8) is calculated as

− 1

1− ψ
ĉ∗Jw =

βψ(γ − 1)

1− ψ

J

G
, (A.14)

Substituting Eqs. (A.13) and (A.14) into Eq. (3.8) and dividing by
γ − 1

1− ψ
J

yields PDE (3.25).
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A.4 Proof of Proposition 2

Let r̄t = r̄(Xt) and λ̄t = λ̄(Xt). Substituting Eq. (3.23) into the conditional
expectation of Eq. (4.1) yields

Et

[
dĉ∗

ĉ∗

]
=

(
r̄(Xt) + (ς̂∗)′λ̄(Xt)−

βψ

G
− µ(Xt)

′Gx
G

− 1

2
tr

[
Σ(Xt)Σ(Xt)

′Gxx
G

]
+

∣∣∣∣Σ(Xt)
′Gx
G

∣∣∣∣2 − (ς̂∗)′Σ(Xt)
′Gx
G

)
dt

=

{
r̄t +

1

γ + θ

(
λ̄t +

γ + θ − 1

1− ψ
Σ(Xt)

′Gx
G

)′(
λ̄t − Σ(Xt)

′Gx
G

)
+

∣∣∣∣Σ(Xt)
′Gx
G

∣∣∣∣2
− 1

2
tr

[
Σ(Xt)Σ(Xt)

′Gxx
G

]
− µ(x)′

Gx
G

− βψ

G

}
dt

=

{
r̄t +

1

γ + θ
|λ̄t|2 −

(γ + θ)ψ − 1

(γ + θ)(1− ψ)

∣∣∣∣Σ(Xt)
′Gx
G

∣∣∣∣2 + 1

γ + θ

(
γ + θ − 1

1− ψ
− 1

)
λ̄′tΣ(Xt)

′Gx
G

−
(
1

2
tr

[
Σ(Xt)Σ(Xt)

′Gxx
G

]
+ µ(x)′

Gx
G

+
βψ

G

)}
dt.

(A.15)

Expanding the above equation using PDE (3.25) results in the following
equation.

Et

[
dĉ∗

ĉ∗

]
=

{
r̄t +

1

γ + θ
|λ̄t|2 −

(γ + θ)ψ − 1

(γ + θ)(1− ψ)

∣∣∣∣Σ(Xt)
′Gx
G

∣∣∣∣2 + 1

γ + θ

(
γ + θ − 1

1− ψ
− 1

)
λ̄′tΣ(Xt)

′Gx
G

+
(γ + θ)ψ − 1

2(γ + θ)(1− ψ)

∣∣∣∣Σ(Xt)
′Gx
G

∣∣∣∣2 − (γ + θ − 1

γ + θ
Σ(Xt)λ̄t

)′ Gx
G

− 1− ψ

2(γ + θ)
|λ̄t|2 − (1− ψ)r̄t − βψ

=

{
ψ(r̄t − β) +

1 + ψ

2(γ + θ)
|λ̄t|2 −

(γ + θ)ψ − 1

2(γ + θ)(1− ψ)

∣∣∣∣Σ(Xt)
′Gx
G

∣∣∣∣2 + (γ + θ)ψ − 1

(γ + θ)(1− ψ)
λ̄′tΣ(Xt)

′Gx
G

}
dt

=

{
ψ(r̄t − β) +

1

2(γ + θ)

{
(1 + ψ)|λ̄t|2 −

(γ + θ)ψ − 1

1− ψ

(∣∣∣∣Σ(Xt)
′Gx
G

∣∣∣∣2 − 2λ̄′tΣ(Xt)
′Gx
G

)}}
dt

(A.16)
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Substituting Eqs. (4.2) and (4.4) into the above equation, I have

Et

[
dĉ∗

ĉ∗

]
=

{
ψ(r̄t − β) +

1

2(γ + θ)

{
1 + ψ

(1− ψ)2
∣∣(γ + θ − 1)σct −

(
(γ + θ)ψ − 1

)
ς̂∗
∣∣2

− (γ + θ)ψ − 1

1− ψ

(
|σct − ς̂∗|2 + 2

1− ψ

(
(γ + θ − 1)σct −

(
(γ + θ)ψ − 1

)
ς̂∗
)′
(σct − ς̂∗)

)}}
dt

=

{
ψ(r̄t − β) +

1

2(γ + θ)

{
(γ + θ)

γ + θ − ψ

1− ψ
|σct |2 −

ψ
(
(γ + θ)− ψ

)
(γ + θ)

1− ψ
|ς̂∗|2

}}
dt

=

{
ψ(r̄t − β)−

ψ
(
(γ + θ)ψ − 1

)
2(1− ψ)

|ς̂∗|2 + γ + θ − ψ

2(1− ψ)
|σct |2

}
dt.

(A.17)

Therefore, I obtain Eq. (4.5).
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