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WEAKLY ITERATIVE METHOD FOR SOLVING COMMON
FIXED POINT AND SPLIT COMMON FIXED POINT

PROBLEMS IN HILBERT SPACES

ATSUMASA KONDO AND WATARU TAKAHASHI

Abstract. We investigate iterative methods for addressing common �xed
point and split common �xed point problems in Hilbert spaces employing
demimetric mappings. This class of mappings encompasses strict pseudo-
contractions and generalized hybrid mappings as speci�cal instances and closely
connects to inverse strongly monotone mappings. We initially establish a weak
convergence theorem capable of resolving common �xed point and split com-
mon �xed point problems. Building upon this fundamental result, we derive
a sequence of weak convergence theorems pertinent to common �xed point
problems combined with split common �xed point problems, split feasibility
problems, split common null point problems, and equilibrium problems.

1. Introduction

Throughout this study, we utilized the notations h�; �i and k�k to denote an inner
product and the induced norm in Hilbert spaces, respectively. Let C be a nonempty
subset of a Hilbert space H and let T be a mapping from C into H. The set of
�xed points of T is denoted by

F (T ) = fx 2 C : Tx = xg :

A mapping T is termed nonexpansive if kTx� Tyk � kx� yk for all x; y 2 C. The
identity and zero mappings are denoted by I and O, respectively.
Let H1 and H2 be real Hilbert spaces and let A : H1 ! H2 be a bounded linear

operator such that A 6= O with A� denoting the adjoint operator of A. Let D and
Q be nonempty, closed, and convex subsets of H1 and H2, respectively. The split
feasibility problem [6] is de�ned as follows:

(1.1) Find an element x 2 D \A�1Q:

The split common null point problem [5] has also garnered attention from numerous
researchers. Let B : H1 ! 2H1 and G : H2 ! 2H2 be multi-valued mappings on
H1 and H2, respectively. The sets of null points of these mappings are denoted by
B�10 and G�10, respectively. A simpli�ed version of the split common null point
problem is formulated as follows:

(1.2) Find an element x 2
�
B�10

�
\A�1

�
G�10

�
:
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Key words and phrases. Common �xed point, generalized hybrid mapping, demimetric map-

ping, split common �xed point problem.
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Given nonlinear mappings S : H1 ! H1 and T : H2 ! H2, the split common �xed
point problem [7, 21] is stated as:

(1.3) Find an element x 2 F (S) \A�1F (T ):
Let PD be the metric projection from H1 onto D and let PQ be the metric

projection from H2 onto Q. If D \A�1Q is nonempty, then it holds that
D \A�1Q = F (PD (I � �A� (I � PQ)A))

for all � > 0. Moreover, if � is su¢ ciently close to 0, the mapping PD(I �
�A� (I � PQ)A) is nonexpansive. These observations have spurred substantial in-
terest among researchers in addressing split feasibility, split common null point,
and split common �xed point problems; notable references include [1, 7, 21, 29].
Let T be a nonexpansive mapping from C into itself, where C is a nonempty

subset of a real Hilbert space H. Various approximation methods have been ex-
plored extensively to �nd �xed points of nonexpansive mappings. Reich [22] used
the following iterative method:

(1.4) xn+1 = anxn + (1� an)Txn for all n 2 N;
where x1 2 C is given, fang � [0; 1], and N represents the set of positive integers.
It was established that the sequence fxng converges weakly to a �xed point of T
within the context of a Banach space. The iterative method, de�ned as (1.4), is
commonly referred to as Mann type [18].
The generalization of the class of mappings has also received attention. In 2010,

Kocourek et al. [11] introduced a broad class of nonlinear mappings: A mapping
T : C ! H is termed generalized hybrid if there exist �; � 2 R such that
(1.5) � kTx� Tyk2 + (1� �) kx� Tyk2 � � kTx� yk2 + (1� �) kx� yk2

for all x; y 2 C. Setting (�; �) = (1; 0), we observe that T is nonexpansive. When
(�; �) = (2; 1), T is categorized as nonspreading [12]:

2 kTx� Tyk2 � kTx� yk2 + kx� Tyk2

for all x; y 2 C. If (�; �) =
�
3
2 ;

1
2

�
, then T is classi�ed as a hybrid mapping [23]:

3 kTx� Tyk2 � kx� yk2 + kTx� yk2 + kx� Tyk2

for all x; y 2 C. According to Igarashi et al. [9], nonspreading and hybrid mappings
are not necessarily continuous; see also [13, 29]. Kocourek et al. established weak
convergence theorems of Baillon type [2] and Mann type [18] for �nding �xed points
of generalized hybrid mappings.
In 2017, Takahashi [24] introduced a class of nonlinear mappings encompassing

generalized hybrid mappings. For a real number � < 1, a mapping T : C ! H with
F (T ) 6= ; is called �-demimetric [24] if for any x 2 C and q 2 F (T ),

(1.6)
1� �
2
kx� Txk2 � hx� q; x� Txi:

As will be pointed out in Example 2.1 in Section 2, this type of mappings in-
cludes generalized hybrid mappings as special cases, in addition to strict pseudo-
contractions. The following theorem is a simpli�ed version of Theorem 3.1 in Taka-
hashi [25], which solves a split common �xed point problem by using the Mann
type iterative method (1.4). In [25], H2 is a smooth, strictly convex, and re�exive
Banach space.
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Theorem 1.1 ([25]). Let H1 and H2 be real Hilbert spaces, let A : H1 ! H2 be a
bounded linear operator with A 6= O, and let A� be the adjoint operator of A. Let
U : H1 ! H1 be a nonexpansive mapping and let T : H2 ! H2 be an �-demimetric
and demiclosed mapping, where � < 1 is a real number. Suppose that


 � F (U) \A�1F (T ) 6= ;:

Let � 2
�
0; 1��

kAk2

�
. Let a; b 2 (0; 1) with a � b and let f�ng be a sequence of real

numbers that satis�es 0 < a � �n � b < 1 for all n 2 N. De�ne a sequence fxng
in C as follows:

x1 2 H1 : given,
xn+1 = �nxn + (1� �n)U (I � �A� (I � T )A)xn 2 H1

for all n 2 N. Then, the sequence fxng converges weakly to a point x 2 
, where
x = limk!1 P
xk and P
 is the metric projection from H1 onto 
.

Let S1; S2 : C ! C be nonlinear mappings. In 2019, Kondo and Takahashi
[16] investigated common �xed point problems by employing the following iterative
method:

(1.7) xn+1 = anxn + bnS1xn + cnS2xn for all n 2 N;

where x1 2 C is given, an; bn; cn 2 (0; 1) with an+bn+cn = 1, and S1; S2 belong to
a broader class than the generalized hybrid mappings. This is an extended version
of the Mann type iterative method (1.4). A sequence generated by the rule (1.7)
converges weakly to a common �xed point of S1 and S2. For additional results,
refer to, for instance, [14, 15, 20, 28].
This study introduces an approximation method to concurrently solve common

�xed point and split common �xed point problems. This class of problem is formu-
lated as follows:

(1.8) Find an element x 2 F (S1) \ F (S2) \ F (U) \A�1F (T ):

In addressing this type of problem, we establish a weak convergence theorem using
mappings S1, S2, U , and T . The mappings S1, S2, U in (1.8) are in more general
class than those in [16] and Theorem 1.1. We utilize a demimetric mapping as T , a
class encompassing strict pseudo-contractions and generalized hybrid mappings as
special cases. Additionally, demimetric mappings exhibit a close relationship with
inverse strongly monotone mappings. Initially, we prove a weak convergence theo-
rem employing an extended version of the Mann type iterative method, as described
in (1.7). Building upon the main result, we derive a series of theorems about split
common �xed point problems, split feasibility problems, split common null point
problems, and equilibrium problems in real Hilbert spaces. These problems will be
studied combined with common �xed point problems.

2. Preliminaries

This section provides preliminary information. Let fxng be a sequence in a real
Hilbert space H and let x be a point of H. Strong and weak convergence of fxng
to x are represented by xn ! x and xn * x, respectively. It is known that xn * x
if and only if for any subsequence fxnig of fxng, there is a subsequence

�
xnj
	
of

fxnig such that xnj * x. If xn * x and yn ! y, then hxn; yni ! hx; yi.
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Let a; b; c; d 2 R with a+ b+ c+ d = 1. For x; y; z; w 2 H, it holds that

kax+ by + cz + dwk2 = a kxk2 + b kyk2 + c kzk2 + d kwk2(2.1)

�ab kx� yk2 � ac kx� zk2 � ad kx� wk2

�bc ky � zk2 � bd ky � wk2 � cd kz � wk2 ;

see [20, 31]. Note that the conditions a; b; c; d 2 [0; 1] are unnecessary.
A mapping T : C ! H is termed inverse strongly monotone if there exists a

positive real number � > 0 such that

(2.2) � kTx� Tyk2 � hx� y; Tx� Tyi

for all x; y 2 C; refer to Liu and Nashed [17]. An inverse strongly monotone
mapping T : C ! H with � = 1 is �rmly nonexpansive:

kTx� Tyk2 � hx� y; Tx� Tyi

for all x; y 2 C. A �rmly nonexpansive mapping is nonexpansive.
Let P
 be the metric projection from H onto 
, where 
 be a nonempty, closed,

and convex subset of H. This implies that kx� P
xk = infv2
 kx� vk for all
x 2 H. For the metric projection P
 from H onto 
, it holds that F (P
) = 
 and

(2.3) hx� P
x; P
x� vi � 0

for all x 2 H and v 2 
. The metric projection is �rmly nonexpansive and therefore,
it is nonexpansive.
The following lemma is necessary to prove Theorem 3.1:

Lemma 2.1 ([26]). Let 
 be a nonempty, closed, and convex subset of H, let P

be the metric projection from H onto 
, and let fxng be a sequence in H. Assume
that

(2.4) kxn+1 � qk � kxn � qk for all q 2 
 and n 2 N:

Then, fP
xng is convergent in 
.

A mapping T : C ! H with F (T ) 6= ; is termed quasi-nonexpansive if

(2.5) kTx� qk � kx� qk for all x 2 C and q 2 F (T );

where C is a nonempty subset of H. Assume that C is closed and convex in H.
Itoh and Takahashi [10] proved that the set of �xed points of a quasi-nonexpansive
mapping is closed and convex. A mapping T : C ! H is called demiclosed if for a
sequence fxng in C, the following holds:

(2.6) xn � Txn ! 0 and xn * v =) v 2 F (T ) :

According to Kocourek et al. [11], a generalized hybrid mapping (1.5) is quasi-
nonexpansive and demiclosed when it possesses a �xed point. More precisely, the
following lemma holds:

Lemma 2.2 ([11, 30]). Let C be a nonempty subset of H and let T : C ! H be a
generalized hybrid mapping. Then, the following assertions hold:
(a) The mapping T is quasi-nonexpansive if F (T ) is not empty;
(b) The mapping T is demiclosed if C is closed and convex.
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As a nonexpansive mapping belongs to the class of generalized hybrid mappings,
it is quasi-nonexpansive and demiclosed when it possesses a �xed point and its
domain is closed and convex.
Let k be a real number with 0 � k < 1. A mapping T : C ! H is termed a

k-strict pseudo-contraction [4] if

(2.7) kTx� Tyk2 � kx� yk2 + kk (I � T )x� (I � T ) yk2

for all x; y 2 C. A strict pseudo-contraction with k = 0 is nonexpansive. A strict
pseudo-contraction mapping is demiclosed:

Lemma 2.3 ([19, 27]). Let C be a nonempty, closed, and convex subset of H.
Let T : C ! H be a k-strict pseudo-contraction, where 0 � k < 1. Then, T is
demiclosed.

Let B : H ! 2H be a multi-valued mapping de�ned on H, also denoted by
B � H �H. Its e¤ective domain is represented by D (B) = fx 2 H : Bx 6= ;g. A
multi-valued mapping B � H �H is termed monotone if hx� y; u� vi � 0 for all
x; y 2 D (B), u 2 Bx, and v 2 By. For a monotone multi-valued mapping B on H
and r > 0, we de�ne

Jr � (I + rB)�1 ;
known as the resolvent of B for r > 0. The resolvent is single-valued and �rmly
nonexpansive. Furthermore, F (Jr) = B�10 for all r > 0, where B�10 is the set of
null points of B, that is, B�10 = fx 2 H : 0 2 Bxg.
A monotone mapping is maximal if any other monotone mappings on H do

not adequately contain its graph. For a maximal monotone multi-valued mapping
B � H � H, its null point set B�10 is a closed and convex subset of its e¤ective
domain D (B). If a multi-valued mapping B is maximal monotone, its resolvent Jr
is de�ned over the entire domain of H.
Some examples of �-demimetric mappings, which is de�ned as (1.6), were pro-

vided by Takahashi [24, 25]:

Example 2.1. (demimetric mappings)
(1) Let T : C ! H be a generalized hybrid mapping (1:5) with F (T ) 6= ;. Then,

T is 0-demimetric; see [25]. Consequently, a nonexpansive mapping with F (T ) 6= ;
is 0-demimetric, as it is a special case of a generalized hybrid mapping.
(2) Let PC be the metric projection of H onto C. Then, PC is (�1)-demimetric;

see [24].
(3) Let T be a k-strict pseudo-contraction (2:7) with F (T ) 6= ;. Then, T is

k-demimetric; see [24].
(4) Let B be a maximal monotone mapping with B�10 6= ; and let r > 0. Then,

the resolvent Jr of B for r is (�1)-demimetric; see [24]. Note that B�10 = F (Jr).
(5) Let V : C ! H be an �-inverse strongly monotone mapping (2:2) such that

V �10 6= ;, where � > 0. Then, I � V is (1 � 2�)-demimetric; see [24]. Note that
V �10 = F (I � V ).

The subsequent lemma plays a crucial role in establishing Theorem 3.1:

Lemma 2.4 ([24]). Let C be a nonempty, closed, and convex subset of H. Suppose
� is a real number with � < 1 and let T be an �-demimetric mapping of C into H
with F (T ) 6= ;. Then, F (T ) is closed and convex.
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3. Main theorem

In this section, we establish a weak convergence theorem employing a Mann type
iterative method such as (1.7). The theorem addresses the simultaneous resolution
of common �xed point and split common �xed point problems (1.8) in two real
Hilbert spaces:

Theorem 3.1. Let H1 and H2 be real Hilbert spaces, let A : H1 ! H2 be a bounded
linear operator with A 6= O, and let A� be the adjoint operator of A. Let C be a
nonempty, closed, and convex subset of H1, let S1 and S2 be quasi-nonexpansive
and demiclosed mappings from C into itself, and let U be a quasi-nonexpansive and
demiclosed mapping from H1 into C. Let T be an �-demimetric and demiclosed
mapping from H2 into itself, where � < 1 is a real number. Suppose that


 � F (S1) \ F (S2) \ F (U) \A�1F (T ) 6= ;:

Let �; � 2
�
0; 1��

kAk2

�
with � � � and let f�ng be a sequence of real numbers such

that 0 < � � �n � � < 1��
kAk2 for all n 2 N. Let a; b 2 (0; 1) with a � b and

let fang, fbng, fcng, and fdng be sequences of real numbers that satisfy 0 < a �
an; bn; cn; dn � b < 1 and an + bn + cn + dn = 1 for all n 2 N. De�ne a sequence
fxng in C as follows:

x1 2 C : given,
xn+1 = anxn + bnS1xn + cnS2xn + dnU (I � �nA� (I � T )A)xn 2 C

for all n 2 N. Then, the sequence fxng converges weakly to a point x 2 
, where
x = limk!1 P
xk and P
 is the metric projection from H1 onto 
.

Proof. First, note that fxng is a sequence in C as U : H1 ! C and C is convex.
The set 
 = F (S1)\F (S2)\F (U)\A�1F (T ) (� C) is closed and convex. Indeed,
as S1, S2, and U are quasi-nonexpansive (2.5), F (S1), F (S2), and F (U) are closed
and convex subsets of C. As T is �-demimetric (1.6), it follows from Lemma 2.4
that F (T ) (� H2) is closed and convex. As A is linear and continuous, the inverse
image A�1F (T ) (� H1) of F (T ) is also closed and convex. Therefore, 
 is closed
and convex, as claimed. As 
 6= ; is assumed, the metric projection P
 from H1
onto 
 exists.
De�ne

yn = (I � �nA� (I � T )A)xn(3.1)

= xn � �nA� (Axn � TAxn) 2 H1

for each n 2 N. Then, we can simply write

xn+1 = anxn + bnS1xn + cnS2xn + dnUyn 2 C:

Observe that

(3.2) kUyn � qk � kxn � qk for all q 2 
 and n 2 N:
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Let q 2 
 � F (U) \ A�1F (T ) and n 2 N. As q 2 A�1F (T ), it holds that
Aq 2 F (T ). Furthermore, recalling that U is quasi-nonexpansive (2.5), T is �-
demimetric (1.6), and 0 < �n <

1��
kAk2 , we can utilize these facts to obtain

kUyn � qk2

� kyn � qk2

= kxn � �nA�(Axn � TAxn)� qk2

= kxn � qk2 � 2�nhxn � q; A�(Axn � TAxn)i+ k�nA�(Axn � TAxn)k2

= kxn � qk2 � 2�nhAxn �Aq; Axn � TAxni+ k�nA�(Axn � TAxn)k2

� kxn � qk2 � �n(1� �)kAxn � TAxnk2 + (�n)2kAk2kAxn � TAxnk2

= kxn � qk2 � �n
�
1� � � �nkAk2

�
kAxn � TAxnk2(3.3)

� kxn � qk2:
This demonstrates that (3.2) holds, as asserted.
Using (3.2), we can show that

(3.4) kxn+1 � qk � kxn � qk for all q 2 
 and n 2 N:
Indeed, as S1 and S2 are quasi-nonexpansive and q 2 
, it holds that

kxn+1 � qk
= kanxn + bnS1xn + cnS2xn + dnUyn � qk
= kan (xn � q) + bn (S1xn � q) + cn (S2xn � q) + dn (Uyn � q)k
� an kxn � qk+ bn kS1xn � qk+ cn kS2xn � qk+ dn kUyn � qk
� an kxn � qk+ bn kxn � qk+ cn kxn � qk+ dn kxn � qk
= kxn � qk :

This shows that (3.4) holds true, as described above. Thus, the following conse-
quences emerge: (i) fkxn � qkg is convergent for all q 2 
; (ii) fxng is bounded;
(iii) From Lemma 2.1, fP
xng is convergent in 
, implying that x = limn!1 P
xn
exists.
We show that

(3.5) Axn � TAxn ! 0:

Using (3.3) yields

kxn+1 � qk2

= kan (xn � q) + bn (S1xn � q) + cn (S2xn � q) + dn (Uyn � q) k2

� ankxn � qk2 + bnkS1xn � qk2 + cnkS2xn � qk2 + dnkUyn � qk2

� ankxn � qk2 + bnkxn � qk2 + cnkxn � qk2

+dn
�
kxn � qk2 � �n(1� � � �nkAk2)kAxn � TAxnk2

	
= kxn � qk2 � dn�n(1� � � �nkAk2)kAxn � TAxnk2:

Consequently,

dn�n(1� � � �nkAk2)kAxn � TAxnk2 � kxn � qk2 � kxn+1 � qk2

for all q 2 
 and n 2 N. As
n
kxn � qk2

o
is convergent, based on the assumptions

regarding dn and �n, we obtain (3.5).
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Observe that

(3.6) xn � yn ! 0:

Indeed, from (3.1) and (3.5), it holds that

kxn � ynk = k�nA�(Axn � TAxn)k
� � kA�k kAxn � TAxnk ! 0:

This con�rms that (3.6) holds true, as claimed.
Next, we verify that

xn � S1xn ! 0; xn � S2xn ! 0;(3.7)

xn � Uyn ! 0(3.8)

as n!1. Indeed, using (2.1) and (3.2) results in
kxn+1 � qk2

= kan (xn � q) + bn (S1xn � q) + cn (S2xn � q) + dn (Uyn � q)k2

= an kxn � qk2 + bn kS1xn � qk2 + cn kS2xn � qk2 + dn kUyn � qk2

�anbn kxn � S1xnk2 � ancn kxn � S2xnk2 � andn kxn � Uynk2

�bncn kS1xn � S2xnk2 � bndn kS1xn � Uynk2 � cndn kS2xn � Uynk2

� an kxn � qk2 + bn kxn � qk2 + cn kxn � qk2 + dn kxn � qk2

�anbn kxn � S1xnk2 � ancn kxn � S2xnk2 � andn kxn � Uynk2

� kxn � qk2

�anbn kxn � S1xnk2 � ancn kxn � S2xnk2 � andn kxn � Uynk2 :
This implies that

anbn kxn � S1xnk2 + ancn kxn � S2xnk2 + andn kxn � Uynk2(3.9)

� kxn � qk2 � kxn+1 � qk2

for all q 2 
 and n 2 N. As the sequence
n
kxn � qk2

o
is convergent, we obtain

(3.7) and (3.8), as stated. From (3.6) and (3.8), we have

(3.10) yn � Uyn ! 0:

Our objective is to prove that xn * x (= limk!1 P
xk). Let fxnig be a sub-
sequence of fxng. According to (ii), fxnig is bounded. Hence, there exist a sub-
sequence

�
xnj
	
of fxnig and v 2 H1 such that xnj * v. Our task is to demon-

strate that v 2 
. As S1 and S2 are demiclosed (2.6), according to (3.7), we have
v 2 F (S1) \ F (S2). As A is bounded and linear, from xnj * v, it follows that
Axnj * Av. As T is demiclosed, from (3.5), we conclude that Av 2 F (T ), indicat-
ing that v 2 A�1F (T ). Moreover, from xnj * v and (3.6), it follows that yn * v.
As U is demiclosed, v 2 F (U) also holds from (3.10). Therefore, v 2 
, as asserted.
Consequently, from (2.3), 


xnj � P
xnj ; P
xnj � v
�
� 0

for all j 2 N. As xnj * v and P
xn ! x, we obtain hv � x; x� vi � 0. This
implies that v = x. Therefore, we can conclude that xn * x. The proof is
completed. �
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4. Applications

In this section, leveraging Theorem 3.1, we derive weak convergence theorems
concerning split common �xed point problems, split feasibility problems, split com-
mon null point problems, and equilibrium problems. These problems will be ana-
lyzed in conjunction with common �xed point problems. Recall the following facts:
(i) metric projections and resolvents are �rmly nonexpansive and (�1)-demimetric;
(ii) a �rmly nonexpansive mapping is nonexpansive; (iii) a nonexpansive mapping
is a speci�c case of a generalized hybrid mapping (1.5); (iv) a generalized hybrid
mapping with a �xed point is 0-demimetric and demiclosed. Refer to Section 2 for
more details.

4.1. Common �xed point and split common �xed point problems. The
following theorem solves common �xed point problems for generalized hybrid map-
pings with the iterative scheme (1.7):

Theorem 4.1 ([16]). Let C be a nonempty, closed, and convex subset of a real
Hilbert space H and let S1; S2 : C ! C be generalized hybrid mappings such that


 � F (S1) \ F (S2) 6= ;:
Let a; b 2 (0; 1) with a � b and let f�ng, f�ng, and fng be sequences of real
numbers such that 0 < a � �n; �n; n � b < 1 and �n + �n + n = 1 for all n 2 N.
De�ne a sequence fxng in C as follows:

x1 2 C : given,
xn+1 = �nxn + �nS1xn + nS2xn 2 C

for all n 2 N. Then, the sequence fxng converges weakly to a point x 2 
, where
x = limk!1 P
xk and P
 is the metric projection from H onto 
.

Proof. In Theorem 3.1, set H1 = H2 = H and A = U = T = I. Then, we have

F (S1) \ F (S2) \ F (U) \A�1F (T ) = F (S1) \ F (S2) :
As S1 and S2 are generalized hybrid mappings (1.5) from C into itself with non-
empty �xed point sets F (S1) and F (S2), they are quasi-nonexpansive and demi-
closed according to Lemma 2.2. Furthermore, set an + dn = �n, bn = �n, and
cn = n. Then, it holds that

xn+1 = anxn + bnS1xn + cnS2xn + dnU (I � �nA� (I � T )A)xn
= anxn + bnS1xn + cnS2xn + dnxn

= �nxn + �nS1xn + nS2xn:

Therefore, we obtain the desired result. �
We address weak convergence theorems that solve split common �xed point

problems. First, note that Theorem 1.1 is derived from Theorem 3.1 by setting
S1 = S2 = I, an + bn + cn = �n, and �n = � as a nonexpansive mapping U is
quasi-nonexpansive and demiclosed if it has a �xed point.
The following theorem is also derived from Theorem 3.1:

Theorem 4.2. Let H1 and H2 be real Hilbert spaces, let A : H1 ! H2 be a bounded
linear operator with A 6= O, and let A� be the adjoint operator of A. Let C be a
nonempty, closed, and convex subset of H1 and let PC be the metric projection from
H1 onto C. Let S1 and S2 be generalized hybrid mappings from C into itself. Let
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T be a k-strict pseudo-contraction from H2 into itself, where 0 � k < 1. Suppose
that


 � F (S1) \ F (S2) \A�1F (T ) 6= ;:
Let �; � 2

�
0; 1�k

kAk2

�
with � � � and let f�ng be a sequence of real numbers such

that 0 < � � �n � � < 1�k
kAk2 for all n 2 N. Let a; b 2 (0; 1) with a � b and

let fang, fbng, fcng, and fdng be sequences of real numbers that satisfy 0 < a �
an; bn; cn; dn � b < 1 and an + bn + cn + dn = 1 for all n 2 N. De�ne a sequence
fxng in C as follows:

x1 2 C : given,
xn+1 = anxn + bnS1xn + cnS2xn + dnPC (I � �nA� (I � T )A)xn 2 C

for all n 2 N. Then, the sequence fxng converges weakly to a point x 2 
, where
x = limk!1 P
xk and P
 is the metric projection of H1 onto 
.

Proof. The generalized hybrid mappings S1 and S2 with �xed points are quasi-
nonexpansive and demiclosed. Let U = PC . As U : H1 ! C is �rmly nonexpansive
and F (U) = C 6= ;, by Lemma 2.2, U is also quasi-nonexpansive and demiclosed.
From Lemma 2.3, the k-strict pseudo-contraction T : H2 ! H2 is demiclosed.
Additionally, from (3) in Example 2.1, the mapping T is k-demimetric. Therefore,
the desired result follows from Theorem 3.1. �
If S is a nonexpansive mapping, then S2 is also nonexpansive. Furthermore, it

holds that F (S) \ F
�
S2
�
= F (S). Based on these observations, we obtain the

following theorem from Theorem 3.1:

Theorem 4.3. Let H1 and H2 be real Hilbert spaces, let A : H1 ! H2 be a bounded
linear operator with A 6= O, and let A� be the adjoint operator of A. Let C be a
nonempty, closed, and convex subset of H1. Let S be a nonexpansive mapping from
C into itself, let U be a nonexpansive mapping from H1 into C, and let T be a
nonexpansive mapping from H2 into itself. Suppose that


 � F (S) \ F (U) \A�1F (T ) 6= ;:

Let �; � 2
�
0; 1

kAk2

�
with � � � and let f�ng be a sequence of real numbers such

that 0 < � � �n � � < 1
kAk2 for all n 2 N. Let a; b 2 (0; 1) with a � b and

let fang, fbng, fcng, and fdng be sequences of real numbers that satisfy 0 < a �
an; bn; cn; dn � b < 1 and an + bn + cn + dn = 1 for all n 2 N. De�ne a sequence
fxng in C as follows:

x1 2 C : given,(4.1)

xn+1 = anxn + bnSxn + cnS
2xn + dnU (I � �nA� (I � T )A)xn 2 C

for all n 2 N. Then, the sequence fxng converges weakly to a point x 2 
, where
x = limk!1 P
xk and P
 is the metric projection from H1 onto 
.

Proof. As S and S2 are nonexpansive mappings from C into itself with F (S) and
F
�
S2
�
being nonempty, from Lemma 2.2, they are quasi-nonexpansive and demi-

closed. Similarly, as U : H1 ! C is nonexpansive with F (U) 6= ;, it is also quasi-
nonexpansive and demiclosed. Additionally, according to Lemma 2.2 and Example
2.1, a nonexpansive mapping T : H2 ! H2 is demiclosed and 0-demimetric. Hence,
we obtain the desired result from Theorem 3.1. �
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For iterative methods such as (4.1), see [14, 15, 16, 20].

4.2. Common �xed point and split feasibility problems. Next, we derive a
weak convergence theorem that simultaneously solves common �xed point and split
feasibility problems:

Theorem 4.4. Let H1 and H2 be real Hilbert spaces, let A : H1 ! H2 be a bounded
linear operator with A 6= O, and let A� be the adjoint operator of A. Let C (� H1),
D (� C � H1), and Q (� H2) be nonempty, closed, and convex sets. Let PD be the
metric projection from H1 onto D and let PQ be the metric projection from H2 onto
Q. Let S1 and S2 be generalized hybrid mappings from C into itself. Suppose that


 � F (S1) \ F (S2) \D \A�1Q 6= ;:

Let �; � 2
�
0; 2

kAk2

�
with � � � and let f�ng be a sequence of real numbers such

that 0 < � � �n � � < 2
kAk2 for all n 2 N. Let a; b 2 (0; 1) with a � b and

let fang, fbng, fcng, and fdng be sequences of real numbers that satisfy 0 < a �
an; bn; cn; dn � b < 1 and an + bn + cn + dn = 1 for all n 2 N. De�ne a sequence
fxng in C as follows:

x1 2 C : given,
xn+1 � anxn + bnS1xn + cnS2xn + dnPD (I � �nA� (I � PQ)A)xn 2 C

for all n 2 N. Then, the sequence fxng converges weakly to a point x 2 
, where
x = limk!1 P
xk and P
 is the metric projection from H1 onto 
.

Proof. The generalized hybrid mappings S1; S2 : C ! C are quasi-nonexpansive
and and demiclosed as F (S1) and F (S2) are nonempty. As PD is �rmly nonex-
pansive with F (PD) = D 6= ;, according to Lemma 2.2, it is a quasi-nonexpansive
and demiclosed. Similarly, as PQ is �rmly nonexpansive, it is demiclosed. Further-
more, as F (PQ) (= Q) is nonempty, from (2) in Example 2.1, it is (�1)-demimetric.
Therefore, setting U = PD and T = PQ in Theorem 3.1, we obtain the desired re-
sult. �
4.3. Common �xed point and split common null point problems. The
subsequent two theorems are pertinent for addressing common �xed point and split
common null point problems. According to (5) in Example 2.1, if V is an �-inverse
strongly monotone mapping with V �10 6= ;, then I � V is (1 � 2�)-demimetric,
where � > 0. Therefore, the following theorem is obtained:

Theorem 4.5. Let H1 and H2 be real Hilbert spaces, let A : H1 ! H2 be a
bounded linear operator with A 6= O, and let A� be the adjoint operator of A.
Let C be a nonempty, closed, and convex subset of H1. Let B � H1 � H1 be a
maximal monotone mapping such that its e¤ective domain is included in C and let
JBr = (I + rB)

�1 be the resolvent of B for r > 0. Let S1 and S2 be generalized
hybrid mappings from C into itself. Let V be an �-inverse strongly monotone
mapping from H2 into itself, where � > 0. Suppose that


 � F (S1) \ F (S2) \B�10 \A�1
�
V �10

�
6= ;:

Let �; � 2
�
0; 2�

kAk2

�
with � � � and let f�ng be a sequence of real numbers such

that 0 < � � �n � � < 2�
kAk2 for all n 2 N. Let a; b 2 (0; 1) with a � b and

let fang, fbng, fcng, and fdng be sequences of real numbers that satisfy 0 < a �
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an; bn; cn; dn � b < 1 and an + bn + cn + dn = 1 for all n 2 N. De�ne a sequence
fxng in C as follows:

x1 2 C : given,
xn+1 = anxn + bnS1xn + cnS2xn + dnJ

B
r (I � �nA�V A)xn 2 C

for all n 2 N. Then, the sequence fxng converges weakly to a point x 2 
, where
x = limk!1 P
xk and P
 is the metric projection of H1 onto 
.

Proof. From Lemma 2.2, the generalized hybrid mappings S1; S2 : C ! C are
quasi-nonexpansive and demiclosed. As the e¤ective domain of B is included in C,
the range of JBr is contained in C, that is, JBr : H1 ! C. Moreover, as JBr is �rmly
nonexpansive with F

�
JBr
�
= B�10 6= ;, from Lemma 2.2, it is quasi-nonexpansive

and demiclosed. From (5) in Example 2.1, I�V is (1�2�)-demimetric as V �10 6= ;.
Setting U = JBr and T = I � V in Theorem 3.1, we have the desired result. �

Theorem 4.6. Let H1 and H2 be real Hilbert spaces, let A : H1 ! H2 be a
bounded linear operator with A 6= O, and let A� be the adjoint operator of A.
Let C be a nonempty, closed, and convex subset of H1. Let B � H1 � H1 be a
maximal monotone mapping such that its e¤ective domain is included in C and let
JBr = (I + rB)

�1 be the resolvent of B for r > 0. Let G � H2 �H2 be a maximal
monotone mapping and let JGs = (I + sG)

�1 be the resolvent of G for s > 0. Let
S1 and S2 be generalized hybrid mappings from C into itself. Suppose that


 � F (S1) \ F (S2) \B�10 \A�1
�
G�10

�
6= ;:

Let �; � 2
�
0; 2

kAk2

�
with � � � and let f�ng be a sequence of real numbers such

that 0 < � � �n � � < 2�
kAk2 for all n 2 N. Let a; b 2 (0; 1) with a � b and

let fang, fbng, fcng, and fdng be sequences of real numbers that satisfy 0 < a �
an; bn; cn; dn � b < 1 and an + bn + cn + dn = 1 for all n 2 N. De�ne a sequence
fxng in C as follows:

x1 2 C : given,
xn+1 = anxn + bnS1xn + cnS2xn + dnJ

B
r

�
I � �nA�

�
I � JGs

�
A
�
xn 2 C

for all n 2 N. Then, the sequence fxng converges weakly to a point x 2 
, where
x = limk!1 P
xk and P
 is the metric projection of H1 onto 
.

Proof. First, note that the generalized hybrid mappings S1; S2 : C ! C with �xed
points are quasi-nonexpansive and demiclosed. Set U = JBr and T = J

G
s in Theorem

3.1. Then, JBr : H1 ! C is �rmly nonexpansive and thus, it is quasi-nonexpansive
and demiclosed. Furthermore, JGs is demiclosed and (�1)-demimetric. Thus, we
have the desired result. �

4.4. common �xed point and equilibrium problems. Finally, we address
common �xed point and equilibrium problems. Let C be a nonempty, closed, and
convex subset of a real Hilbert space H and let f be a bifunction from C � C into
R. The equilibrium problem is as follows:

Find an element x 2 C such that f (x; y) � 0 for all y 2 C:
The set of solutions is denoted by

EP (f) = fz 2 C : f (z; y) � 0 for all y 2 Cg :
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Following the established literature, we make the following assumptions:

(A1) f (x; x) = 0 for all x 2 C;
(A2) f is monotone, that is, f (x; y) + f (y; x) � 0 for all x; y 2 C;
(A3) f (x; �) : C ! R is convex and lower semi-continuous for all x 2 C;
(A4) lim supt#0 f (tz + (1� t)x; y) � f (x; y) for all x; y; z 2 C.
We are aware of the following results:

Lemma 4.1 ([3]). Let C be a nonempty, closed, and convex subset of H and let
f : C � C ! R be a bifunction satisfying the assumptions (A1)�(A4). Let r > 0
and x 2 H. Then, there exists z 2 C such that

f (z; y) +
1

r
hy � z; z � xi � 0

for all y 2 C.

Lemma 4.2 ([8]). Let C be a nonempty, closed, and convex subset of H and let
f : C � C ! R be a bifunction satisfying the assumptions (A1)�(A4). For r > 0,
de�ne the resolvent Tr : H ! C of f for r > 0 as follows:

(4.2) Trx =

�
z 2 C : f (z; y) + 1

r
hy � z; z � xi � 0 for all y 2 C

�
for all x 2 H. Then, the following assertions hold:
(a) Tr is single-valued;
(b) Tr is �rmly nonexpansive;
(c) F (Tr) = EP (f) for all r > 0;
(d) EP (f) is closed and convex.

Utilizing these lemmas and Theorem 3.1, we derive the subsequent weak conver-
gence theorem, which e¤ectively tackles both common �xed point and equilibrium
problems:

Theorem 4.7. Let C be a nonempty, closed, and convex subset of a real Hilbert
space H. Let f : C �C ! R be a bifunction satisfying (A1)�(A4). Let Tr : H ! C
be the resolvent (de�ned as (4:2)) of f for r > 0. Let S1 and S2 be generalized
hybrid mappings from C into itself. Suppose that


 � F (S1) \ F (S2) \ EP (f) 6= ;:
Let a; b 2 (0; 1) with a � b and let fang, fbng, fcng, and fdng be sequences of real
numbers that satisfy 0 < a � an; bn; cn; dn � b < 1 and an + bn + cn + dn = 1 for
all n 2 N. De�ne a sequence fxng in C as follows:

x1 2 C : given,
xn+1 = anxn + bnS1xn + cnS2xn + dnTrxn 2 C

for all n 2 N. Then, the sequence fxng converges weakly to a point x 2 
, where
x = limk!1 P
xk and P
 is the metric projection from H1 onto 
. .

Proof. In Theorem 3.1, set H1 = H2 = H and A = T = I. Then, it follows that
I � �nA� (I � T )A = I for all n 2 N. Set U = Tr. Then, it holds from Lemma 4.2
that U : H ! C is �rmly nonexpansive with F (U) (= EP (f)) 6= ;. Consequently,
from Lemma 2.2, U (= Tr) is quasi-nonexpansive and demiclosed. Furthermore, it
holds that F (S1) \ F (S2) \ F (U) \ A�1F (T ) = F (S1) \ F (S2) \ EP (f) = 
.
Therefore, we obtain the desired result. �
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