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Abstract

This study considers a finite-time robust consumption-investment
problem under a quadratic security market model with stochastic vari-
ances and covariances of asset returns, as well as stochastic interest
rates, market price of risk, and inflation rates. Since the optimal port-
folio is proportional to the inverse of the stochastic variance-covariance
matrix, it becomes unstable when the near-singularity of the variance-
covariance matrix occurs. We propose a regularized consumption-
investment problem in which the near-singularity risk is added to the
variance-covariance matrix as a regularization term. We show that
the optimal regularized portfolio is decomposed into the product of
the “standard deviation,” “correlation,” and “investment control” fac-
tors. As the optimal regularized robust portfolio contains an unknown
function that is a solution to a nonlinear PDE, we derive an approxi-
mate optimal regularized portfolio. Our numerical analysis shows that
the market timing effects in the approximate optimal regularized asset
allocation are significant and nonlinear, and all factors contribute to
these market timing effects.
JEL classification: C61, G11
Keywords: Homothetic robust utility, Inflation-deflation risk, Stochas-
tic variance-covariance, Regularization

1 Introduction

There are stylized facts in security markets that interest rates, market price
of risk, variances and covariances of asset returns, and inflation rates are
stochastic and mean-reverting. The class of quadratic models1 indepen-
dently developed by Ahn, Dittmar, and Gallant (2002) and Leippold and

∗Corresponding author: kusuda@biwako.shiga-u.ac.jp. Shiga University, 1-1-1 Banba,
Hikone, Shiga 522-8522, Japan

1Quadratic models are adopted in security pricing studies (Chen, Filipović, and Poor
(2004), Kim and Singleton (2012), Filipović, Gourier, and Mancini (2016)) and opti-
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Wu (2002) is a generalization of the affine models (Duffie and Kan (1996)).
Batbold et al. (2022) consider a consumption-investment problem for long-
term investors with constant relative risk aversion (CRRA) utility under a
quadratic security market model in which interest rates, market price of risk,
variance-covariance matrix of asset returns, and inflation rates are functions
of a stochastic state process. They derive the optimal portfolio decomposed
into the sum of myopic, intertemporal hedging, and inflation-deflation hedg-
ing demands; they show that all three demands are nonlinear functions of
the state vector. Their numerical analysis shows the nonlinearity and sig-
nificance of the market timing effects. Nonlinearity is attributed to the
stochastic variance-covariance matrix of asset returns, while significance is
attributed to inflation-deflation hedging demand in addition to myopic de-
mand.

The global financial crisis reaffirmed the presence of Knightian uncer-
tainty. Investors with robust utility (Hansen and Sargent (2001)) regard the
“base probability” as the most likely probability; however, they also con-
sider other probabilities because the true probability is unknown. Robust
utility is not homothetic2, unlike CRRA utility. Homothetic robust utility,
proposed by Maenhout (2004) and theoretically justified by Skiadas (2003),
is characterized by relative risk aversion and “relative ambiguity aversion,”
which represents investor’s degree of distrust in the base probability.3 Homo-
thetic robust utility can be interpreted as homothetic robust CRRA utility
because homothetic robust utility converges to CRRA utility as ambigu-
ity aversion approaches zero. In this study, we assume homothetic robust
Epstein-Zin utility introduced by Batbold, Kikuchi, and Kusuda (2023) and
consider a finite-time consumption-investment problem under the quadratic
security market model of Batbold et al. (2022).

Liu (2010) and Batbold et al. (2023) analyze infinite-time consumption-
investment problems and derive the nonlinear nonhomogeneous partial dif-
ferential equation (PDE) for the indirect utility function. Since the nonho-
mogeneous term appearing in the PDE is stable in infinite-time problems,
they apply the loglinear approximation method of Campbell and Viceira
(2002) to derive an approximate solution. Meanwhile, Kikuchi and Kusuda
(2023) consider the finite-time consumption-investment problem with ho-
mothetic robust utility under the quadratic security market model of Bat-
bold et al. (2022) and derive a nonlinear nonhomogeneous PDE. Under a
finite-time setting, the nonhomogeneous term becomes time-dependent and

mal consumption-investment studies (Batbold, Kikuchi, and Kusuda (2022), Kikuchi and
Kusuda (2023)).

2A utility function U is homothetic if, for any consumption plan c and c̃, and any scalar
α > 0, U(αc̃) ≥ U(αc) ⇔ U(c̃) ≥ U(c).

3Homothetic robust utility is applied to robust control studies such as Skiadas (2003),
Maenhout (2006), Liu (2010), Branger, Larsen, and Munk (2013), Munk and Rubtsov
(2014), Yi, Viens, Law, and Li (2015), and Kikuchi and Kusuda (2023).
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unstable. Kikuchi and Kusuda (2023) propose a time-dependent linear ap-
proximation method to derive an approximate solution. Their numerical
analysis confirms that market timing effects are mainly due to inflation-
deflation hedging demand in addition to myopic demand. Strategic asset
allocation (Brennan, Schwartz, and Lagnado (1997), Campbell and Viceira
(2002)) emphasizes the significance of the market timing effects of intertem-
poral hedging demand; however, the debate is ongoing.4 The numerical anal-
yses of Batbold et al. (2022) and Kikuchi and Kusuda (2023) shed new light
on the effectiveness of strategic asset allocation from a different perspective:
the market timing effects of inflation-deflation hedging demand.

In quadratic models, the variance-covariance matrix of asset returns is
stochastic. Since the optimal portfolio is proportional to the inverse of the
variance-covariance matrix, it becomes unstable when the near-singularity
of the variance-covariance matrix occurs, i.e., the minimum eigenvalue of the
variance-covariance matrix is close to zero. Note that such near-singularity
of the variance-covariance matrix does not arise in constant correlation mod-
els such as affine models but rather in stochastic correlation models. The
importance of incorporating stochastic variance-covariance matrix of asset
returns into security market models has been recognized in the context of
option pricing and portfolio choice and actually incorporated into the models
(Buraschi, Porchia, and Trojani (2010), Branger and Muck (2012), Bäuerle
and Li (2013)) based on the Wishart process and the principal component
stochastic volatility (PCSV) model (Escobar, Gotz, Seco, and Zagst (2010),
Escobar and Olivares (2013)). Assuming the models (Buraschi et al. (2010),
Bäuerle and Li (2013)) based on the Wishart process and the PCSV model
(Escobar, Ferrando, Christoph, and Rubtso (2022)), they analyze the portfo-
lio choice problem. However, these studies have not focused on the problem
of he near-singularity of the variance-covariance matrix.

To address this near-singularity of the variance-covariance matrix, Kikuchi
and Kusuda (2023) introduce a regularization term related to the inverse of
the volatility matrix into the loss function to stabilize the optimal portfolio
when estimating a quadratic security market model. Although Kikuchi and
Kusuda (2023) estimate a quadratic security market model and confirm the
nonlinearity and significance of the market timing effects, their estimation
exhibits three problems. First, since the regularization term depends on
the volatility of the optimal portfolio, the estimation results depend on the
choice of underlying securities that make up the portfolio. Second, as the op-
timal portfolio depends on the investor’s homothetic robust utility function,
the estimation results depend on the utility function through the stabiliza-
tion criterion of the optimal portfolio. Third, the regularization term biases

4Some empirical analyses, including Campbell and Viceira (1999, 2000), indicate that
the magnitude of the market timing effects of intertemporal hedging demand is large,
while others (Brandt (1999), Ang and Bekaert (2002)) indicate that it is small.
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the estimation results.
Note that the near-singularity of the variance-covariance matrix of asset

returns can be caused not only by multicollinearity, but also by the near-zero
variance of an asset return. In real securities markets, asset returns can be-
come highly correlated or the variance of an asset return can become close to
zero; however, even in such cases, investors do not make significantly large re-
balances of their portfolios. The main reason is that large portfolio rebalanc-
ing leads to high transaction costs. Since our study ignores transaction costs,
our optimal portfolio deviates from the portfolio observed in reality when
the near-singularity of the variance-covariance matrix of asset retunrs occur.
However, introducing transaction costs into consumption-investment prob-
lems makes the problems difficult to solve. Moreover, the impact of transac-
tion costs on the optimal portfolio is considered insignificant when the near-
singularity of the variance-covariance matrix does not occur. Therefore,
instead of introducing transaction costs into our consumption-investment
problem, we propose a regularized consumption-investment problem. Since
we do not introduce regularization terms for optimal portfolio stabilization
in the loss function, we overcome the three problems mentioned above and
obtain adequate estimation results for the security market model. We con-
sider a finite-time consumption-investment problem assuming the quadratic
security market model of Batbold et al. (2022). The objective of this study
is to derive a regularized robust optimal portfolio and re-examine the market
timing effects of the regularized optimal robust portfolio based on appropri-
ate estimates of the quadratic security market model. The main results of
this study are summarized as follows.

First, we propose a regularized consumption-investment problem in which
the near-singularity risk of the variance-covariance matrix of asset returns is
introduced into the budget constraint equation. We derive the optimal regu-
larized robust portfolio and show that the maximum eigenvalue of the inverse
of the regularized variance-covariance matrix in the optimal portfolio is con-
trolled below a certain value. We show that the optimal regularized robust
portfolio has two decompositions. One is the sum of myopic, intertempo-
ral hedging, and inflation-deflation hedging demands—this is a regularized
version of the decomposition shown by Batbold et al. (2023). The other is
the product of the standard deviation, correlation, and investment control
factors.

Second, since the optimal regularized robust portfolio contains an un-
known function that is a solution to the nonlinear PDE, we apply the linear
approximation method of Kikuchi and Kusuda (2023) to the nonlinear PDE
and derive an approximate optimal regularized robust portfolio.

Third, we remove the regularization term for portfolio stabilization from
the loss function used in Kikuchi and Kusuda (2023) and estimate the
quadratic security market model. Subsequently, based on the estimated
model, we confirm that an unregularized optimal portfolio becomes unsta-
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ble in the presence of the near-singularity of the variance-covariance matrix
of asset retunrs. Therefore, we set a regularization parameter to stabilize
the optimal portfolio.

Fourth, we examine the market timing effects of the approximate optimal
regularized robust portfolio. We assume a long-term investor who plans to
invest in the S&P 500 and 10-year TIPS, in addition to the money market
account. Our numerical analysis shows that the market timing effects of both
S&P 500 and TIPS are significant and nonlinear. We then decompose the
contribution of each demand to the magnitude of the market timing effects
in the optimal regularized robust asset allocation based on the above sum
decomposition. The results confirm that in addition to myopic demand,
inflation-deflation hedging demand is a significant contributor to market
timing effects; these are consistent with those of Batbold et al. (2022) and
Kikuchi and Kusuda (2023). Finally, we decompose the contribution of
each factor to the magnitude of the market timing effects based on product
decomposition. The results indicate that all factors contribute to the market
timing effects. These results suggest that incorporating stochastic variance-
covariance of asset returns in addition to inflation-deflation risk into security
market models is essential for the analysis of dynamic asset allocation.

The remainder of this paper is organized as follows: In Section 2, we
explain the quadratic security market model. In Section 3, we derive the
optimal control and nonlinear nonhomogeneous PDE. In Section 4, we pro-
pose a regularized consumption-investment problem. In Section 5, we derive
a linear approximate optimal regularized robust portfolio. In Sections 6 and
7, we estimate a quadratic security market model and conduct a numerical
analysis. In Section 8, we conclude this study. The Appendix includes the
proofs of the lemmas and propositions.

2 Quadratic Security Market Model and Budget
Constraint

We introduce the quadratic security market model of Batbold et al. (2022)
and show the no-arbitrage dynamics of security price processes and real
budget constraint.

2.1 Quadratic Security Market Model

We consider frictionless US markets over the period [0, T ∗]. Investors’ com-
mon subjective probability and information structure are modeled by a com-
plete filtered probability space (Ω,F ,F,P), where F = (Ft)t∈[0,∞) is the nat-
ural filtration generated by an N -dimensional standard Brownian motion
Bt. We denote the expectation operator under P by E and the conditional
expectation operator given Ft by Et.
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There are markets for a consumption commodity and securities at every
date t ∈ [0,∞) and the consumer price index pt is observed. The traded
securities are the instantaneously nominal risk-free security called the money
market account, non-bond indices (stock indices, REIT indices, etc.), and a
continuum of zero-coupon bonds and zero-coupon inflation-indexed bonds,
whose maturity dates are (t, t + τ∗]. Each zero-coupon bond has a 1 USD
payoff at maturity, and each zero-coupon inflation-indexed bond has a pT
USD payoff at maturity T .

At every date t, Pt, P
T
t , Q

T
t , and S

j
t denote the USD prices of the money

market account, zero-coupon bond with maturity date T , zero-coupon inflation-
indexed bond with maturity date T , and the j-th index, respectively. Let A′

and I denote the transpose of A and the N×N identity matrix, respectively.
We assume the following quadratic latent factor security market model.

Assumption 1. Let (ρ0, ι0, δ0j , σ0j) and (λ, ρ, ι, λI , δj , σj) denote scalers
and N -dimensional vectors, respectively.

1. State vector process Xt satisfies the following stochastic differential
equation (SDE):

dXt = −KXt dt+ I dBt, (2.1)

where K is an N ×N positive lower triangular matrix.

2. The market price λt of risk and the instantaneous nominal risk-free
rate rt are provided as

λt = λ+ ΛXt, (2.2)

rt = ρ0 + ρ′Xt +
1

2
X ′
tRXt, (2.3)

where Λ is an N×N matrix such that K+Λ is regular, R is a positive-
definite symmetric matrix, and

ρ0 ≥
1

2
ρ′R−1ρ. (2.4)

3. The consumer price index pt satisfies

dpt
pt

= it dt+ (σpt )
′dBt, p0 = 1, (2.5)

where it and σ
p
t are given by

it = ι0 + ι′Xt +
1

2
X ′
tIXt, (2.6)

σpt = σp +ΣpXt. (2.7)

For eq.(2.6), I is a positive-definite symmetric matrix and a matrix R̄
defined by

R̄ = R− I +Σ′
pΛ + Λ′Σp (2.8)

is positive-definite.
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4. The dividend of the l-th index is given by

Dl
t =

(
δ0l + δ′lXt +

1

2
X ′
t∆lXt

)
exp

(
σ0lt+ σ′lXt +

1

2
X ′
tΣlXt

)
,

(2.9)
where (δ0l, δl,∆l) is such that ∆j is a positive definite symmetric ma-
trix and

δ0l ≥
1

2
δ′j∆

−1
l δl. (2.10)

Note that δ0l + δ′lXt +
1

2
X ′
t∆lXt is the instantaneous dividend rate.

5. Markets are complete and arbitrage-free.

2.2 No-arbitrage Dynamics of Security Price Processes

We define the real market price λ̄t of risk and the real instantaneous interest
rate r̄t by

λ̄t = λt − σpt , (2.11)

r̄t = rt − it + λ′tσ
p
t . (2.12)

Note that the real market price of risk is an affine function of Xt and r̄t is
a quadratic function of Xt:

λ̄t = λ̄+ Λ̄Xt, (2.13)

r̄t = ρ̄0 + ρ̄′Xt +
1

2
X ′
tR̄Xt, (2.14)

where R̄ is given by eq.(2.8) and

λ̄ = λ− σp, (2.15)

Λ̄ = Λ− Σp, (2.16)

ρ̄0 = ρ0 − ι0 + λ′σp, (2.17)

ρ̄ = ρ− ι+ Λ′σp +Σ′
pλ. (2.18)

Batbold et al. (2022) show the no-arbitrage security price processes.

Lemma 1. Let τ = T − t denote the time to maturity of bond P Tt or
inflation-indexed bond QTt . Under Assumption 1, the prices of securities
and their return rates satisfy the following:

1. The default-free bond with time τ to maturity:

P Tt = exp

(
σ0(τ) + σ(τ)′Xt +

1

2
X ′
tΣ(τ)Xt

)
, (2.19)
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dP Tt
P Tt

=

(
rt+

(
σ(τ)+Σ(τ)Xt

)′
λt

)
dt+

(
σ(τ)+Σ(τ)Xt

)′
dBt, (2.20)

where

dΣ(τ)

dτ
= Σ(τ)2 − (K + Λ)′Σ(τ)− Σ(τ)(K + Λ)−R, (2.21)

dσ(τ)

dτ
= −(K + Λ− Σ(τ))′σ(τ)− (Σ(τ)λ+ ρ), (2.22)

dσ0(τ)

dτ
= −λ′σ(τ) + 1

2

(
|σ(τ)|2 + tr

[
Σ(τ)

])
− ρ0, (2.23)

with (Σ, σ, σ0)(0) = (0, 0, 0).

2. The default-free inflation-indexed bond with time τ to maturity:

QTt = pt exp

(
σ̄0q(τ) + σ̄q(τ)

′Xt +
1

2
X ′
tΣ̄q(τ)Xt

)
, (2.24)

dQTt
QTt

=

(
rt +

(
σq(τ) + Σq(τ)Xt

)′
λt

)
dt+

(
σq(τ) + Σq(τ)Xt

)′
dBt,

(2.25)
where σq(τ) := σ̄q(τ) + σp,Σq(τ) := Σ̄q(τ) + Σp, and

dΣ̄q(τ)

dτ
= Σ̄q(τ)

2 − (K + Λ̄)′Σ̄q(τ)− Σ̄q(τ)(K + Λ̄)− R̄,(2.26)

dσ̄q(τ)

dτ
= −(K + Λ̄− Σ̄q(τ))

′σ̄q(τ)− (Σ̄q(τ)λ̄+ ρ̄), (2.27)

dσ̄0q(τ)

dτ
= −λ̄′σ̄q(τ) +

1

2

(
|σ̄q(τ)|2 + tr

[
Σ̄q(τ)

])
− ρ̄0, (2.28)

with (Σ̄q, σ̄q, σ̄0q)(0) = (0, 0, 0).

3. The l-th index:

Slt = exp

(
σ0lt+ σ′lXt +

1

2
X ′
tΣlXt

)
, (2.29)

dSlt +Dl
tdt

Slt
=

(
rt + (σl +ΣlXt)

′λt
)
dt+ (σl +ΣlXt)

′ dBt, (2.30)

where
Σ2
l − (K + Λ)′Σl − Σl(K + Λ) +∆l −Rl = 0, (2.31)

σl = (K + Λ− Σl)
′−1(δl − ρ− Σlλ), (2.32)

σ0l = λ′σl −
1

2

(
|σl|2 + tr

[
Σl

])
+ ρ0 − δ0l. (2.33)

Proof. See Appendix A.1 in Batbold et al. (2022).
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2.3 Real Budget Constraint

We assume that the investor invests in Pt(τ1), · · · , Pt(τJ), Qt(τQ1 ), · · · , Qt(τQK),

and S1
t , · · · , SLt where J+K+L = N . Let Φ(τ) and ΦQt (τ

Q) denote the port-
folio weight on a default-free bond with τ -time to maturity and a default-free
inflation-indexed bond with τQ-time to maturity, respectively. Let Φlt de-
note the portfolio weight on the l-th index. Let Φt and Σ(Xt) denote the
portfolio and volatility matrix. Φt and Σ(Xt) are expressed as follows:

Φt =



Φt(τ1)
...

Φt(τJ)

ΦQt (τ
Q
1 )

...

ΦQt (τ
Q
K)

Φ1
t
...
ΦLt


, Σ(Xt) =



(
σ(τ1) + Σ(τ1)Xt

)′
...(

σ(τJ) + Σ(τJ)Xt

)′(
σq(τ

Q
1 ) + Σq(τ

Q
1 )Xt

)′
...(

σq(τ
Q
K) + Σq(τ

Q
K)Xt

)′
(σ1 +Σ1Xt)

′

...
(σL +ΣLXt)

′


. (2.34)

Remark 1. The volatility matrix expressed in eq.(2.34) shows that in the
variance-covariance matrix Σ(Xt)Σ(Xt)

′ of the asset returns, the variances
and covariances are quadratic functions of the mean-reverting state process.
Thus, our quadratic security market model satisfies the stylized fact that
the variance-covariance matrix of security returns is stochastic and mean-
reverting.

Let ct and W̄t denote the consumption rate and real wealth processes,
respectively. Batbold et al. (2022) show the real budget constraint.

Lemma 2. The real budget constraint given (ct, σ̄t) is expressed as

dW̄t

W̄t
=

(
r̄t + σ̄′tλ̄t −

ct
W̄t

)
dt+ σ̄′t dBt, (2.35)

where
σ̄t = Σ(Xt)

′Φt − σpt . (2.36)

Proof. See Appendix A.2 in Batbold et al. (2022).

The real budget constraint equation (2.35) indicates that (ct, σ̄t) is the
control in the optimal consumption-investment problem. Let Xt = (W̄t, X

′
t)
′

and let W̄0 > 0. We refer to the control satisfying the budget constraint
equation (2.35) with the initial state X0 = (W̄0, X

′
0)

′ as the admissible
control and denote the set of admissible controls by B(X0).
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3 Optimal Robust Control and PDE for Indirect
Utility

We introduce our robust consumption-investment problem based on homo-
thetic robust Epstein-Zin utility and derive the optimal control and PDE
for indirect utility.

3.1 Robust Consumption-Investment Problem

The normalized aggregator (Duffie and Epstein (1992)) in Epstein-Zin utility
is given by

f(c, v) =


β

1− ψ−1
c1−ψ

−1(
(1− γ)v

)1− 1−ψ−1

1−γ − β(1− γ)

1− ψ−1
v, if ψ ̸= 1,

β(1− γ)v log c− βv log
(
(1− γ)v

)
, if ψ = 1,

(3.1)
where β > 0 is the subjective discount rate, γ > 1 is the relative risk
aversion, and ψ > 0 is the elasticity of intertemporal substitution.

Batbold et al. (2023) introduce the following homothetic robust Epstein-
Zin (HREZ) utility.

u(c) = inf
Pξ∈P

Eξ

[∫ T ∗

0

(
f(ct, Vt) +

(1− γ)Vt
2θ

|ξt|2
)
dt

]
, (3.2)

where Eξ is the expectation under Pξ, θ is the relative ambiguity aversion,
and Vt is the utility process defined recursively as follows:

Vt = Eξt

[∫ T ∗

t

(
f(ct, Vs) +

(1− γ)Vs
2θ

|ξs|2
)
ds

]
. (3.3)

Assumption 2. The investor’s utility is the HREZ utility (3.2).

The investor’s robust consumption-investment problem is given by

sup
(c,σ̄)∈B(X0)

inf
Pξ∈P

V0. (3.4)

3.2 Optimal Control and PDE on Indirect Utility

As the standard Brownian motion under Pξ is given by Bξ
t = Bt−

∫ t

0
ξs ds,

the SDE (2.1) for the state vector under Pξ is rewritten as follows:

dXt =

((
W̄t(r̄t + σ̄′tλ̄t)− ct

−KXt

)
+

(
W̄tσ̄

′
t

I

)
ξt

)
dt+

(
W̄tσ̄

′
t

I

)
dBξ

t . (3.5)
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Let J denote the indirect utility function. The Hamilton-Jacobi-Bellman
(HJB) equation for problem (3.4) is expressed as

sup
(c,σ̄)∈B(X0)

inf
Pξ∈P

{
Jt +

(
W̄t

(
r̄t + σ̄′tλ̄t

)
− ct

−KXt

)′(
JW
JX

)

+
1

2
tr

[(
W̄tσ̄

′
t

I

)(
W̄tσ̄

′
t

I

)′(
JWW JWX

JXW JXX

)]

+ f(ct, J) +
(1− γ)J

2θ
|ξt|2 + ξ′t

(
W̄tσ̄

′
t

I

)′(
JW
JX

)}
= 0, (3.6)

s.t. J(T ∗,XT ∗) = 0.

Let τ = T ∗− t. We obtain the following lemma.

Lemma 3. Under Assumptions 1 and 2, the indirect utility function, opti-
mal wealth, optimal consumption, and optimal investment for problem (3.4)
satisfy eqs.(3.7), (3.8), (3.9), and (3.10), respectively, where G(τ,Xt) is a
solution to the PDE (3.11).

J(t,Xt) =
W̄ 1−γ
t

1− γ

(
G(τ,Xt)

) 1−γ
ψ−1 , (3.7)

W̄ ∗
t =W0 exp

(∫ t

0

(
r̄s + (σ̄∗s)

′λ̄s −
βψ

G(τ, s)
− 1

2
|σ̄∗s |2

)
ds+

∫ t

0
(σ̄∗s)

′ dBs

)
,

(3.8)

c∗t = βψ
W̄ ∗
t

G(τ,Xt)
, (3.9)

σ̄∗t =
1

γ + θ
λ̄t +

(
1− 1

γ + θ

)(
− 1

ψ − 1

GX(τ,Xt)

G(τ,Xt)

)
, (3.10)

Gτ
G

=
1

2
tr

[
GXX
G

]
− ψ − (γ + θ)−1

2(ψ − 1)

∣∣∣∣GXG
∣∣∣∣2

−
(
KXt+

(
1−(γ+θ)−1

)
λ̄t

)′GX
G

+
βψ

G
+

(
(ψ − 1)(γ + θ)−1

2
|λ̄t|2 + (ψ − 1) r̄t − βψ

)
,

G(0, XT ∗) = 0. (3.11)

Proof. See Appendix A.1.
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4 Regularized Problem and Optimal Regularized
Portfolio

First, we explain how the near-singularity of the variance-covariance matrix
of asset returns destabilizes optimal portfolios. Next, we propose a regular-
ized robust consumption-investment problem. Then, we derive the optimal
regularized robust portfolio and show that it is stable even in the presence
of near-singularity of variance-covariance matrix of asset returns. Finally,
we present two decompositions of the optimal regularized robust portfolio.

4.1 Near Singularity of Variance-Covariance Matrix of Asset
Returns

The optimal robust portfolio Φ∗
t follows from eq.(3.10):

Φ∗
t =

(
Σ(Xt)Σ(Xt)

′)−1
Σ(Xt)

{
1

γ + θ

(
λ+ ΛXt

)
+

(
1− 1

γ + θ

)(
− 1

ψ − 1

(
GX(τ,Xt)

G(τ,Xt)

)
+
(
σp +ΣpXt

))}
. (4.1)

Since the variance-covariance matrix Σ(Xt)Σ(Xt)
′ of asset returns is positive-

semidefinite, we have the eigenvalue decomposition Σ(Xt)Σ(Xt)
′ = U(Xt)D(Xt)U(Xt)

′

where
D(x) = diag

(
d1(x), · · · , dN (x)

)
, (4.2)

where d1(x), · · · , dN (x) ≥ 0.
Let dmin(x) = min

n∈{1,··· ,N}
dn(x). We say that the near-singularity of

Σ(Xt)Σ(Xt)
′ occurs if and only if dmin(Xt) is close to zero. When the near-

singularity of Σ(Xt)Σ(Xt)
′ occurs, the maximum eigenvalue d−1

min(Xt) of the

inverse matrix
(
Σ(Xt)Σ(Xt)

′)−1
diverges and the optimal robust portfo-

lio becomes unstable. Note that the near-singularity of Σ(Xt)Σ(Xt)
′ can be

caused not only by multicollinearity, but also by the near-zero variance of an
asset return. In real securities markets, asset returns can become highly cor-
related or the variance of an asset return can become close to zero; however,
even in such cases, investors do not rebalance their portfolios significantly.
This is because the near-singularity of the variance-covariance matrix of
asset returns is only a temporary problem, and considering the high trans-
action costs of portfolio rebalancing, it is reasonable not to rebalance the
portfolio significantly.

Since our study ignores transaction costs, our optimal portfolio devi-
ates from the portfolio observed in reality when the near-singularity of
Σ(Xt)Σ(Xt)

′ occurs. However, introducing transaction costs into consumption-
investment problems makes the problems difficult to solve. Moreover, the

12



impact of transaction costs on the optimal portfolio is considered insignifi-
cant when the near-singularity of Σ(Xt)Σ(Xt)

′ does not occur. Therefore,
instead of introducing transaction costs into our consumption-investment
problem, we propose a regularized consumption-investment problem.

4.2 Regularized Consumption-Investment Problem

It follows from eq.(2.36) that the real budget constraint equation (2.35)
given (ct, σ̄t) is rewritten as

dW̄t

W̄t
=

(
r̄t +

(
Σ(Xt)

′Φt − σpt

)′
λ̄t −

ct
W̄t

)
dt+

(
Σ(Xt)

′Φt−σpt
)′
dBt. (4.3)

The budget constraint equation shows that the investor views the volatility
Σ(Xt) of asset returns as the risk per unit of portfolio Φt. For investors,
the near-singularity of Σ(Xt)Σ(Xt)

′ is an additional risk that leads to high
transaction costs due to significant portfolio rebalancing.

We assume that the investor judges that the near-singularity of Σ(Xt)Σ(Xt)
′

occurs when dmin(Xt) < ε0 for some ε0 > 0. We define the investor’s sub-
jective volatility Σε(Xt) of asset returns by

Σε(Xt) =
(
I + ε(Xt)

(
Σ(Xt)Σ(Xt)

′)−1
)
Σ(Xt), (4.4)

where
ε(x) = max

{
ε0 − dmin(x), 0

}
. (4.5)

Remark 2. The investor’s subjective variance-covariance matrix of asset
returns is expressed as

Σε(Xt)Σε(Xt)
′ = Σ(Xt)Σ(Xt)

′ + 2ε(Xt)I + ε2(Xt)
(
Σ(Xt)Σ(Xt)

′)−1

= U(Xt) diag
(
dε1(Xt), · · · , dεN (Xt)

)
U(Xt)

′,
(4.6)

where

dεn(x) =
(√

dn(x) + ε(x)

√
d−1
n (x)

)2
. (4.7)

Since dεn(Xt) > dn(Xt) when ε0 > dmin(Xt), Σε(Xt)Σε(Xt)
′ is interpreted

as a regularized variance-covariance matrix of asset returns.

The regularized real budget constraint equation is defined as

dW̄t

W̄t
=

(
r̄t + ς̄ ′tλ̄t −

ct
W̄t

)
dt+ ς̄ ′t dBt, (4.8)

where
ς̄t = Σε(Xt)

′Φt − σpt . (4.9)

13



We call ς̄t the regularized investment control. Let Bε(X0) denote the set of
admissible controls satisfying the regularized real budget constraint equation
(4.8).

The investor’s regularized robust consumption-investment problem is
given by

sup
(c,ς̄)∈Bε(X0)

inf
Pξ∈P

V0. (4.10)

Remark 3. In the context of machine learning, regularization is a pa-
rameter estimation method used to reduce the variance of generalization
errors. In contrast, our regularization can be interpreted as a regulariza-
tion method similar to the Tikhonov regularization method (Tikhonov and
Arsenin (1977)) for ill-posed problems, since the unregularized consumption-
investment problem beomes a kind of ill-conditioned problem when dmin(Xt)
is close to zero.

4.3 Optimal Regularized Robust Portfolio

In the regularized problem (4.10), investment control σ̄t in the original prob-
lem (3.4) is merely replaced by regularized investment control ς̄. Thus, we
immediately obtain Proposition 1 from Lemma 3 for the original problem.

Proposition 1. Under Assumptions 1 and 2, the indirect utility function,
optimal wealth, optimal consumption, and optimal investment for problem
(4.10) satisfy eqs.(3.7), (4.11), (4.12), and (4.13), respectively. G(τ,Xt) is
a solution to the PDE (3.11).

W̄ ∗
t =W0 exp

(∫ t

0

(
r̄s + (ς̄∗s )

′λ̄s −
βψ

G(τ, s)
− 1

2
|ς̄∗s |2

)
ds+

∫ t

0
(ς̄∗s )

′ dBs

)
,

(4.11)

c∗t = βψ
W̄ ∗
t

G(τ,Xt)
, (4.12)

ς̄∗t =
1

γ + θ
λ̄t +

(
1− 1

γ + θ

)(
− 1

ψ − 1

GX(τ,Xt)

G(τ,Xt)

)
. (4.13)

The optimal regularized portfolio Φ∗
ε(Xt) := Σε(Xt)

′−1(ς̄∗t + σpt ) satisfies

Φ∗
ε(Xt) = Σε(Xt)

′−1

{
1

γ + θ

(
λ+ ΛXt

)
+

(
1− 1

γ + θ

)(
− 1

ψ − 1

GX(τ,Xt)

G(τ,Xt)
+
(
σp +ΣpXt

))}
, (4.14)

Furthermore, Σε(Xt)
′−1 is expressed as

Σε(Xt)
′−1 =

(
Σ(Xt)Σ(Xt)

′ + ε(Xt)I
)−1

Σ(Xt). (4.15)
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Proof. See Appendix A.2.

Remark 4.
(
Σ(Xt)Σ(Xt)

′ + ε(Xt)I
)−1

in eq.(4.15) is expressed as(
Σ(Xt)Σ(Xt)

′ + ε(Xt)I
)−1

= U(Xt) diag
(
eε1(Xt), · · · , eεN (Xt)

)
U(Xt)

′,

(4.16)

where eεn(x) =
(
dn(x)+ε(x)

)−1
. Thus, the optimal regularized robust portfo-

lio can be stable even in the presence of the near-singularity of Σ(Xt)Σ(Xt)
′

because

max
n∈{1,··· ,N}

eεn(Xt) = max
n∈{1,··· ,N}

(
dn(Xt) + ε(Xt)

)−1 ≤ 1

ε0
. (4.17)

Consequently, the investor does not need to rebalance the portfolio signifi-
cantly and can maintain low transaction costs. This justifies our method of
introducing the near-singularity risk of Σ(Xt)Σ(Xt)

′ instead of transaction
costs into the budget constraint equation.

4.4 Two Decompositions of the Optimal Portfolio

We show two decomposions of the optimal regularized robust portfolio.

4.4.1 Sum Decomposition

It immediately follows from eq.(4.14) that the optimal regularized robust
portfolio is decomposed into the sum of myopic, intertemporal hedging, and
inflation-deflation hedging demands.

Φ∗
ε(Xt) =

1

γ + θ
Σε(Xt)

′−1λt+

(
1− 1

γ + θ

)
Σε(Xt)

′−1

(
− 1

ψ − 1

GX(τ,Xt)

G(τ,Xt)

)
+

(
1− 1

γ + θ

)
Σε(Xt)

′−1σpt . (4.18)

The sum decomposition shown above is a regularized version of the decom-
position shown in Batbold et al. (2023).

4.4.2 Product Decomposition

The regularized variance-covariance matrix of the asset returns is decom-
posed as Σε(Xt)Σε(Xt)

′ = Dε(Xt)Rε(Xt)Dε(Xt) where Dε(Xt) is the diag-
onal matrix of the standard deviations and Rε(Xt) is the correlation matrix.
Let ς∗(Xt) = ς̄∗t +σ

p
t and call it the “optimal regularized nominal investment

control.” Then, the optimal regularized portfolio is decomposed as

Φ∗
ε(Xt) = Σε(Xt)

′−1ς∗(Xt) = Dε(Xt)
−1

√
Rε(Xt)

′−1
ς∗(Xt), (4.19)

where
√
Rε(Xt) = Dε(Xt)

−1Σε(Xt).
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Remark 5. The third term ς∗(Xt) in eq.(4.19) is expressed as

ς∗(Xt) =
1

γ + θ
λt +

(
1− 1

γ + θ

)(
− 1

ψ − 1

GX(τ,Xt)

G(τ,Xt)

)
+

(
1− 1

γ + θ

)
σpt .

(4.20)
The first and third terms are independent of the variance-covariance matrix
of asset returns. The PDE (3.11) shows that the second term is also inde-
pendent of the variance-covariance matrix of asset returns. Thus, ς∗(Xt) is
independent of the variance-covariance matrix of asset returns. We refer to

Dε(Xt)
−1,

√
Rε(Xt)

′−1
, and ς∗(Xt) as the “standard deviation factor,” the

“correlation factor,” and the “investment control factor,” respectively.

5 Approximate Optimal Regularized Robust Port-
folio

Following Kikuchi and Kusuda (2023), we derive a linear approximate opti-
mal regularized robust portfolio.

5.1 Linear Approximation for the PDE

The PDE (3.11) is rewritten as

Gτ =
1

2
tr [GXX ]−

1

2(ψ − 1)

G′
X

G

(
ψ − (γ + θ)−1

)
GX

−
(
KXt+

(
1−(γ+θ)−1

)
λ̄t

)′
GX+

(
(ψ − 1)(γ + θ)−1

2
|λ̄t|2 + (ψ − 1) r̄t − βψ

)
G+βψ.

(5.1)

Let G̃ denote a time-dependent linear approximate solution of the PDE

(5.1). Kikuchi and Kusuda (2023) approximate
GX
G

in the nonlinear term

of the PDE (5.1) by a linear function of Xt.

GX
G

≈ G̃X

G̃
:= a(τ) +A(τ)Xt, (5.2)

where (a(τ), A(τ)) is specified at the end of this subsection.
Then, we obtain the following approximate nonhomogeneous linear PDE:

G̃τ = LG̃+ βψ, G̃(0, X) = 0. (5.3)
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where L is the linear differential operator defined by

LG̃ =
1

2
tr
[
G̃XX

]
−
(
ψ − (γ + θ)−1

2(ψ − 1)

(
a(τ) +A(τ)Xt

)
+KXt +

(
1− (γ + θ)−1

) (
λ̄+ Λ̄Xt

))′
G̃X

+

{
(ψ − 1)

2(γ + θ)
|λ̄+ Λ̄Xt|2 + (ψ − 1)

(
ρ̄0 + ρ̄′Xt +

1

2
X ′
tR̄Xt

)
− βψ

}
G̃.

(5.4)

To solve the nonhomogeneous linear PDE (5.3), we first consider the follow-
ing homogeneous linear PDE:

∂

∂τ
g̃(τ,X) = Lg̃(τ,X), g̃(0, X) = 1. (5.5)

An analytical solution of the PDE (5.5) is expressed as

g̃(τ,X) = exp

(
b0(τ) + b(τ)′X +

1

2
X ′B(τ)X

)
, (b0, b, B)(0) = 0, (5.6)

where B(τ) is a symmetric matrix. Then, a semi-analytical solution to the
PDE (5.3) is expressed as

G̃(τ,Xt) =

∫ τ

0
g̃(s,Xt) ds. (5.7)

Define b̃(τ,Xt) and B̃(τ,Xt) by

b̃(τ,Xt) =
1

G̃(τ,Xt)

∫ τ

0
g̃(s,Xt)b(s) ds,

B̃(τ,Xt) =
1

G̃(τ,Xt)

∫ τ

0
g̃(s,Xt)B(s) ds.

(5.8)

In eq.(5.2), we set (a(τ), A(τ)) = (b̃(τ, 0), B̃(τ, 0)), that is,

G̃X

G̃
= b̃(τ, 0) + B̃(τ, 0)Xt. (5.9)

5.2 Approximate Optimal Regularized Robust Portfolio

Define functions m2,m1, and m0 by

m2(B) = B2 −
(
K +

(
1− (γ + θ)−1

)
Λ̄
)′
B −B

(
K +

(
1− (γ + θ)−1

)
Λ̄
)

+ (ψ − 1)
(
(γ + θ)−1Λ̄′Λ̄ + R̄

)
,

(5.10)
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m1(B, b) =

(
B −

(
K +

(
1− (γ + θ)−1

)
Λ̄
)′
)
b

−
(
1− (γ + θ)−1

)
Bλ̄+ (ψ − 1)

(
(γ + θ)−1Λ̄′λ̄+ ρ̄

)
,

(5.11)

m0(B, b) =
1

2

(
tr[B]+|b|2

)
−λ̄′

(
1−(γ+θ)−1

)
b+(ψ−1)

(
1

2
(γ + θ)−1|λ̄|2 + ρ̄0

)
−βψ.

(5.12)
When the solution to the PDE (5.1) is approximated by the solution to
the approximate PDE (5.3), the optimal wealth and control are called the
approximate optimal regularized wealth and control, and are denoted by W̃ ∗

t

and (c̃∗t , ς̃
∗
t ). We obtain Proposition 2.

Proposition 2. Under Assumptions 1 and 2, the approximate optimal wealth,
optimal consumption, and optimal investment for problem (3.4) satisfy eqs.(5.13),
(5.14), and (5.15).

W̃ ∗
t =W0 exp

(∫ t

0

(
r̄s + (ς̃∗s )

′λ̄s −
βψ

G̃(τ, s)
− 1

2
|ς̃∗s |2

)
ds+

∫ t

0
(ς̃∗s )

′ dBs

)
,

(5.13)

c̃∗t =
βψW̃ ∗

t

G̃(τ, t)
, (5.14)

where G̃ is given by eqs.(5.6) and (5.7), and

ς̃∗t =
1

γ + θ

(
λ̄+ Λ̄Xt

)
+

(
1− 1

γ + θ

)(
− 1

ψ − 1

(
b̃(τ,Xt) + B̃(τ,Xt)Xt

))
,

(5.15)
where (b̃, B̃) is given by eq.(5.8), while (B, b, b0) is a solution to the ODEs:

dB

dτ
= m2(B)− ψ − (γ + θ)−1

ψ − 1
B̃(τ, 0)′B(τ),

db

dτ
= m1(B, b)−

ψ − (γ + θ)−1

2(ψ − 1)

(
B̃(τ, 0)′b(τ) +B(τ)′b̃(τ, 0)

)
,

db0
dτ

= m0(B, b)−
ψ − (γ + θ)−1

2(ψ − 1)
b̃(τ, 0)′b(τ),

(5.16)

with (B, b, b0)(0) = (0, 0, 0), where m2,m1, and m0 are given by eqs.(5.10)–
(5.12).

Proof. See Appendix A.3.

6 Estimation of the Quadratic Model

In this section, we introduce the estimation methods of our quadratic model
and present the estimation results.
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6.1 Estimation Methods

In the next section, we quantitatively analyze the market timing effects in
the optimal regularized robust asset allocations for an investor who plans to
invest in the 10-year TIPS Q10

t and S&P 500 St, in addition to the money
market account. Thus, we estimate a two-factor quadratic security market
model. To estimate the model, we use the 6-month and 5-year treasury spot
rate, 10-year TIPS real spot rates s̄Qt (10), and dividend Dt/St of S&P 500.
We use the following notations:

Yt =


st(0.5)
st(5)

s̄Qt (10)
Dt/St

 , H2(Xt) =
1

2


−0.5−1X ′

tΣ(0.5)Xt

−5−1X ′
tΣ(5)Xt

−10−1X ′
tΣ̄q(10)Xt

X ′
t∆Xt

 ,

H1 =


−0.5−1σ(0.5)′

−5−1σ(5)′

−10−1σ̄q(10)
′

δ′

 , H0 =


−0.5−1σ0(0.5)
−5−1σ0(5)

−10−1σ̄0q(10)
δ0

 ,

(6.1)

where st(τ) is the treasury spot rates with time τ to maturity at time t;
(Σ(τ), σ(τ), σ0(τ)) and (Σ̄q(τ), σ̄q(τ), σ̄0q) are solutions to eqs.(2.21)-(2.23)
and (2.26)-(2.28); and (∆, δ, δ0) is given by eq.(2.9). Assume that we have
M observables: Y0, Yh, · · · , Ynh, · · · , Y(M−1)h where h is the observation time
interval. We use the following notations:(

xn
yn

)
=

(
Xnh

Ynh

)
, F = e−hK, wn =

∫ h

0
e(s−h)K dBs,

Ωw =

∫ h

0
e(s−h)K

(
e(s−h)K

)′
ds = (K +K′)−1

(
I2 − e−h(K+K′)

)
,

Ωε = diag(ω1, ω2, ω3, ω4).

(6.2)

Batbold et al. (2022) derive the following nonlinear Gaussian state-space
model representation of the quadratic security market model.5

xn+1 = F xn + wn, wn
i.i.d.∼ N(0,Ωw), (6.3)

yn = H2(xn) +H1xn +H0 + εn, εn
i.i.d.∼ N(0,Ωε), (6.4)

where wn and εn are independent of each other.
Since the state-space model shown above is not a general state-space

model but a nonlinear Gaussian state-space model, and since the state equa-
tion is linear, we judged that local approximation methods, such as extended
Kalman filter, would be more efficient than global approximation methods,
such as particle filters. Among the local approximation methods, we use

5For the derivation of the state-space model representation, see Appendix B.1.
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the unscented Kalman filter (Julier, Uhlmann, and Durrant-Whyte (2000)),
which is considered to perform better than the extended Kalman filter (Julier
and Uhlmann (2004)).

In the above state-space model, the state process can be interpreted as
time-varying coefficients. Thus, the parameter set becomes large, which may
cause overtraining. To address this overtraining, we introduce a regulariza-
tion term in the loss function. Since eq.(2.1) is transformed into d

(
etKXt

)
=

etK dBt, Xt is solved asXt = e−tKX0+

∫ t

0
e(s−t)K dBs. Hence, the stationary

distribution of Xt is given by N(0, (K+K′)−1). Let CC′ = (K+K′)−1 be the
Cholesky decomposition and define Z = C−1X. Then, since Z ∼ N(0, I),
we call Z the standardized state vector. Let L denote the likelihood. To
avoid overtraining, we introduce the following regularization term into the
loss function, expressed as

− logL+ ν
M−1∑
n=0

|zn|2, (6.5)

where zn = C−1xn.
In addition to the above regularization term, Kikuchi and Kusuda (2023)

introduce a regularization term in the loss function to stabilize the optimal
portfolio, which distorts the estimation efficiency. We obtain appropriate
estimates with the above loss function by removing the regularization term
for portfolio stabilization from their loss function.

6.2 Estimation Results

Using 291 month-end data observed in U.S. securities markets from January
1999 through March 2023, we estimated the two-factor quadratic security
market model by minimizing the above loss function. The time-series data
used for the estimation are 6-month and 5-year treasury spot rates6 and
10-year TIPS real spot rates7, and the dividends of the S&P 5008.

To reduce the estimation burden, we assume that the second-order term
of the instantaneous expected inflation rate is zero; that is, I = 0. We set
the hyperparameter ν in eq.(6.5) after trial and error, albeit arbitrarily, to:
ν = 1. We obtained the parameter estimates as shown in Appendix B.2.

6These spot rates data are available on the Federal Reserve Board (FRB) website.
They are computed based on the estimation method by Gürkaynak, Sack, and Wright
Gürkaynak, Sack, and Wright (2007).

7These TIPS real spot rate data are available on the FRB website. They are computed
based on the estimation method by Gürkaynak, Sack, and Wright Gürkaynak, Sack, and
Wright (2010).

8These data are available on the website of Robert Shiller.
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7 Numerical Analysis

We quantitatively analyze the market timing effects in optimal regularized
robust asset allocations. We consider a long-term investor who plans to
invest in the S&P 500 and 10-year TIPS in addition to the money mar-
ket account over 35 years. We assume (β, γ, θ) = (0.04, 2.5, 1.5) following
Kikuchi and Kusuda (2023). We also assume ψ = 1.5 following Bansal and
Yaron (2004).

To analyze the variation in the optimal robust portfolio allocations due
to the change in the state vector, we assume, based on the results of the
analysis shown above, that the state vector X = CZ changes, as shown in
the following equation:

z = j

(
cos

πk

4
, sin

πk

4

)′
, (7.1)

where j = −2.50,−2.25,−2.00, · · · , 2.25, 2.50 and k = 0, 1, 2, 3.

7.1 Determination of the Regularization Parameter

In our optimal regularized portfolio, the near-singularity of Σ(Xt)Σ(Xt)
′ is

judged to occur when dmin(Xt) is less than the regularization parameter
ε0 in eq.(4.5). Suppose that the regularization parameter is set to define
the region where the unregularized optimal portfolio is unstable. Then, the
regularization parameter may not be large enough to stabilize the optimal
portfolio. Therefore, the regularization parameter that defines the unstable
region of the unregularized optimal portfolio is set as the lower bound of
the candidate regularization parameters, and the appropriate regularization
parameter that stabilizes the optimal portfolio is determined among the
candidate regularization parameters that are greater than or equal to the
lower bound.

First, we examined the relationship between the minimum eigenvalues
of the variance-covariance matrix and the optimal unregularized allocations
to the S&P 500 and TIPS when the standardized state vector moves in the
above region (Table 1). The minimum eigenvalues are less than 0.0025 in
cells with a red background, 0.0025–0.0050 in orange cells, 0.0050–0.0075 in
yellow cells, 0.0075–0.0100 in green cells, and greater than or equal to 0.0100
in the remaining cells.
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Table 1: The relationship between minimum eigenvalues of the variance-
covariance matrix and the optimal unregularized allocations (%) to S&P
500 and the TIPS.

The optimal unregularized portfolio destabilizes when the minimum eigen-
values are less than 0.002. For ease of analysis, we evaluate the relationship
between the minimum eigenvalue and the optimal unregularized portfolio as
follows: less than 0.0025, unstable; 0.0025–0.0075, locally unstable; 0.0075–
0.0100, generally stable; greater than or equal to 0.0100, stable. We then
compared the optimal regularized allocations to the S&P 500 (Table 2) and
TIPS (Table 3) for ε0 = 0.0025, 0.0050, 0.0075, 0.0100, and 0.0125, respec-
tively. Note that ε0 = 0.0000 in the figure shows the optimal unregularized
allocations for comparison.
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Table 2: The optimal regularized allocations (%) to S&P 500 for ε0 =
0.0025, 0.0050, 0.0075, 0.0100, and 0.0125.
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Table 3: The optimal regularized allocations (%) to the TIPS for ε0 =
0.0025, 0.0050, 0.0075, 0.0100, and 0.0125.
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As the regularization parameter increases, the stability of the optimal
regularized portfolio increases. However, the marginal stabilizing effect de-
creases; meanwhile, when the regularization parameter exceeds 0.0075, the
regularization appears as a distortion in the generally stabilized regions
(yellow-green and green cells), that is, regions that do not require modi-
fication. We judge that at 0.0100, the distortion is small, and the disadvan-
tage of the distortion is smaller than the benefit of the stabilization effect,
whereas at 0.0125, the distortion becomes larger, and the disadvantage of
the distortion exceeds the benefit of the stabilization effect. Therefore, we
set the regularization parameter to ε0 = 0.0100.

7.2 Market Timing Effects

The estimated optimal allocations to the S&P 500, TIPS, and money market
account are plotted against the state vector in Figs.1-3. Markers in Figs.1-3
indicate the optimal asset allocations which the regularization is applied to.
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Figure 1: Optimal allocation (%) to S&P 500 plotted against the state
vector.
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Figure 2: Optimal allocation (%) to the TIPS plotted against the state
vector.
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Figure 3: Optimal allocation (%) to the money market account plotted
against the state vector.

The optimal allocations to both the S&P 500 and TIPS respond sig-
nificantly and nonlinearly to changes in the state vector, suggesting that
market timing effects are significant and nonlinear. In particular, even af-
ter stabilization by regularization, market timing effects are significant and
nonlinear where the near-singularity of Σ(Xt)Σ(Xt)

′ occurs.

7.3 Factor Decomposition

We first analyze the contribution of each type of demand to the magni-
tude of market timing effects in optimal regularized robust asset allocation.
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Then, we analyze the contribution of asset return standard deviations and
correlations, as well as the optimal investment control, to the magnitude of
market timing effects.

7.3.1 By Demand Type

First, we analyze the contribution of each demand to the magnitude of
the market timing effects in optimal asset allocation by breaking down the
market timing effects by demand factor. It follows from eqs.(4.9) and (5.15)
that the sum decomposition of the approximate optimal regularized robust
asset allocation Φ̃∗

ε(Xt) is given by

Φ̃∗
ε(Xt) =

1

γ + θ
Σε(Xt)

′−1
(
λ+ ΛXt

)
+

(
1− 1

γ + θ

)
Σε(Xt)

′−1

(
− 1

ψ − 1

(
b̃(τ,Xt) + B̃(τ,Xt)Xt

))
+

(
1− 1

γ + θ

)
Σε(Xt)

′−1
(
σp +ΣpXt

)
. (7.2)

Figs.4 and 5 show the factor decomposition of optimal allocation to S&P
500 plotted against the state vector.
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Figure 4: Factor decomposition of optimal allocation (%) to S&P 500 plotted
against the state vector by demand type (k = 0, 1).
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Figure 5: Factor decomposition of optimal allocation (%) to S&P 500 plotted
against the state vector by demand type (k = 2, 3).

As the state vector changes, myopic demand changes the most, but in-
tertemporal hedging demand and inflation-deflation hedging demand also
change considerably. Figs.6 and 7 illustrate the factor decomposition of
optimal allocation to the TIPS plotted against the state vector.
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Figure 6: Factor decomposition of optimal allocation (%) to the TIPS plot-
ted against the state vector by demand type (k = 0, 1).
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Figure 7: Factor decomposition of optimal allocation (%) to the TIPS plot-
ted against the state vector (k = 2, 3).

As the state vector changes, all types of demand change significantly.

7.3.2 Standard Deviations and Correlations of Asset Returns and
Investment Control

Next, we measure the contribution of asset return standard deviations and
correlations, as well as the optimal investment control, to the magnitude
of the market timing effects in the optimal asset allocation. Let ς̂∗(Xt) =
ς̃∗t + σpt where ς̃∗t is given by eq.(5.15). It follows from eq.(4.19) that the
product decomposition of Φ̃∗

ε(Xt) is given by

Φ̃∗
ε(Xt) = Σε(Xt)

′−1ς̂∗(Xt) = Dε(Xt)
−1

√
Rε(Xt)

′−1
ς̂∗(Xt). (7.3)
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Let ∆g(x) = g(x)− g(0). We use the following notations.

∆1Φ̃
∗
ε(Xt) = ∆Dε(Xt)

−1
√
Rε(0)

′−1
ς̂∗(0)

+
1

2

(
∆Dε(Xt)

−1∆
√
Rε(Xt)

′−1
ς̂∗(0) + ∆Dε(Xt)

−1
√
Rε(0)

′−1
∆ς̂∗(Xt)

)
,

∆2Φ̃
∗
ε(Xt) = Dε(0)

′−1∆
√
Rε(Xt)

′−1
ς̂∗(0)

+
1

2

(
∆Dε(Xt)

−1∆
√
Rε(Xt)

′−1
ς̂∗(0) +Dε(0)

−1∆
√
Rε(Xt)

′−1
∆ς̂∗(Xt)

)
,

∆3Φ̃
∗
ε(Xt) = Dε(0)

′−1
√
Rε(0)

′−1
∆ς̂∗(Xt)

+
1

2

(
∆Dε(Xt)

−1
√
Rε(0)

′−1
∆ς̂∗(Xt) +Dε(0)

−1∆
√
Rε(Xt)

′−1
∆ς̂∗(Xt)

)
,

∆4Φ̃
∗
ε(Xt) = ∆Dε(Xt)

−1∆
√
Rε(Xt)

′−1
∆ς̂∗(Xt).

Then, the approximate optimal asset allocation is decomposed as

Φ̃∗
ε(Xt) = Φ̃∗

ε(0) +
4∑
i=1

∆iΦ̃
∗
ε(Xt), (7.4)

where ∆1Φ̃
∗
ε(Xt) represents the contribution of the standard deviation factor

to market timing effects in optimal asset allocation, ∆2Φ̃
∗
ε(Xt) represents the

contribution of the correlation factor, ∆3Φ̃
∗
ε(Xt) represents the contribution

of the investment control factor, and ∆4Φ̃
∗
ε(Xt) represents the contribution

of the compound factor.
Figs.8 and 9 show the factor decomposition of optimal allocation to S&P

500 plotted against the state vector based on the product decomposition.
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Figure 8: Factor decomposition of optimal allocation (%) to S&P 500 plotted
against the state vector based on the product decomposition (k = 0, 1).
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Figure 9: Factor decomposition of optimal allocation (%) to S&P 500 plotted
against the state vector based on the product decomposition (k = 2, 3).

As the state vector changes, all factors change significantly. Figs. 10 and
11 show the factor decomposition of optimal allocation to the TIPS plotted
against the state vector.
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Figure 10: Factor decomposition of optimal allocation (%) to the TIPS
plotted against the state vector based on the product decomposition (k =
0, 1).
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Figure 11: Factor decomposition of optimal allocation (%) to the TIPS
plotted against the state vector based on the product decomposition (k =
2, 3).

As the state vector changes, the correlation factor changes the most,
followed by the investment control factor.

8 Conclusion

We considered a finite-time consumption-investment problem for investors
with homothetic robust Epstein-Zin utility under a quadratic security mar-
ket model in which interest rates, market price of risk, variances and covari-
ances of asset returns, and inflation rates are stochastic and mean-reverting.
First, we showed that since the optimal robust portfolio is proportional to
the inverse of the stochastic variance-covariance matrix, it becomes unsta-
ble as the near-singularity of Σ(Xt)Σ(Xt)

′ occurs. Therefore, we proposed a
regularized consumption-investment problem in which the near-singularity
risk is added as a regularization term to the volatility of the asset returns.
We derived the optimal regularized robust portfolio and showed that the
maximum eigenvalue of the inverse of the regularized variance-covariance
matrix in the optimal portfolio is controlled below a certain value, which
ensures portfolio stability, even in the presence of the near-singularity of
Σ(Xt)Σ(Xt)

′. Subsequently, we decomposed the optimal portfolio into the
product of the standard deviation, correlation, and investment control fac-
tors. Since the optimal regularized robust portfolio contains an unknown
function that is a solution of a nonlinear nonhomogeneous PDE, we applied
the linear approximation method of Kikuchi and Kusuda (2023) to the PDE
and derived an approximate optimal regularized robust portfolio.

31



Subsequently, we removed the regularization term for portfolio stabiliza-
tion from the loss function of Kikuchi and Kusuda (2023) and re-estimated
the quadratic security market model. Using the re-estimated security market
model, we examined the market timing effects in the regularized approxi-
mate optimal robust portfolio. Our numerical analysis showed that the
market timing effects were nonlinear and significant. Then, we analyzed the
contribution of each demand to the magnitude of the market timing effects
based on the sum decomposition. The results confirmed that in addition to
myopic demand, inflation-deflation hedging demand is a significant contrib-
utor to market timing effects, thereby consistent with the results shown by
Batbold et al. (2022) and Kikuchi and Kusuda (2023). Finally, we analyzed
the contribution of each factor to the magnitude of the market timing effects
based on the above product decomposition. The results indicated that all
factors contributed to the magnitude of the market timing effects. These
results suggest that incorporating stochastic variance-covariance of asset re-
turns in addition to stochastic inflation-deflation risk into security market
models is essential for the analysis of dynamic asset allocation.

A Proofs

A.1 Proof of Lemma 3

It is clear that the worst-case probability Pξ
∗
is obtained as follows:

ξ∗t = − θ

(1− γ)J

(
W̄tσ̄

′
t

I

)′ (
JW
JX

)
. (A.1)

Substituting ξ∗ into the HJB eq.(3.6) yields

sup
(c,σ̄)∈B(X0)

[
Jt +

(
W̄t

(
r̄t + σ̄′

tλ̄t
)
− ct

−KXt

)′ (
JW
JX

)

+
1

2
tr

[(
W̄tσ̄

′
t

I

)(
W̄tσ̄

′
t

I

)′ (
JWW JWX

JXW JXX

)]

+ f(ct, J)−
θ

2(1− γ)J

∣∣∣∣∣
(
W̄tσ̄

′
t

I

)′ (
JW
JX

)∣∣∣∣∣
2]

= 0. (A.2)

It is easy to see that optimal control u∗t = (c∗t , σ̄
∗
t ) in the HJB equation (A.2)

satisfies

c∗t = βψJ−ψ
W

(
(1− γ)J

) γψ−1
γ−1 , (A.3)

σ̄∗
t = Tt

(
λ̄t +

JXW
JW

+
θ

γ − 1

JX
J

)
, (A.4)

where Tt is given by

Tt =
(
−W̄

∗
t JWW

JW
+ θ

W̄ ∗
t JW

(1− γ)J

)−1

. (A.5)
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The consumption-related terms in the HJB eq.(A.2) are computed as

−c∗tJW+f(c∗t , J) = c∗t

(
−JW +

1

1− ψ−1
JW

)
−β(1− γ)

1− ψ−1
J =

1

ψ − 1
c∗tJW−β(1− γ)

1− ψ−1
J.

(A.6)
The investment-related terms in the HJB eq.(A.2) are computed as

W̄ ∗
t JW λ̄

′
tσ̄

∗
t +

1

2
tr

[(
W̄ ∗
t (σ̄

∗
t )

′

I

)(
W̄ ∗
t (σ̄

∗
t )

′

I

)′ (
JWW JWX

JXW JXX

)]

− θ

2(1− γ)J

∣∣∣∣∣
(
W̄tσ̄

′
t

I

)′ (
JW
JX

)∣∣∣∣∣
2

=
1

2
tr [JXX ]− θ

2(1− γ)J
|JX |2 −

(
W̄ ∗2
t JWW − θ(W ∗

t JW )2

(1− γ)J

)−1

|ζt|2, (A.7)

where

ζt = −W̄ ∗
t JW

(
λ̄t +

JXW
JW

+
θ

γ − 1

JX
J

)
. (A.8)

By substituting optimal control (A.3) and (A.4) into the HJB equation (A.2), and
using eqs.(A.6) and (A.7), the following PDE for J is obtained:

Jt +
1

2
tr [JXX ]− θ

2(1− γ)J
|JX |2 − 1

2

(
W̄ ∗2
t JWW − θ(W ∗

t JW )2

(1− γ)J

)−1

|ζt|2

+ r̄tW̄
∗
t JW − (KXt)

′JX +
1

ψ − 1
c∗tJW − β(1− γ)

1− ψ−1
J = 0. (A.9)

From the above PDE, we conjecture that the indirect utility function takes the form
of (3.7). The derivatives of J are given by

Jt = − 1− γ

ψ − 1
J
Gτ
G
, W̄JW = (1− γ)J, JX =

1− γ

ψ − 1
J
GX
G
, W̄ 2JWW = −γ(1− γ)J,

W̄JXW =
(1− γ)2

ψ − 1
J
GX
G
, JXX =

1− γ

ψ − 1
J

(
2− γ − ψ

ψ − 1

GX
G

G′
X

G
+
GXX
G

)
.

The optimal consumption control (3.9) follows from eq.(A.3):

c∗t = βψ
(
(1− γ)J

W̄ ∗
t

)−ψ (
(1− γ)J

) γψ−1
γ−1 = βψW̄ ∗ψ

t

(
W̄ ∗1−γ
t G

1−γ
ψ−1

)ψ−1
γ−1

= βψ
W̄ ∗
t

G
.

(A.10)
Tt in eq.(A.5) and ζt in eq.(A.8) are expressed as

Tt = (γ + θ)−1, (A.11)

ζt = (γ − 1)J

(
λ̄t +

γ + θ − 1

1− ψ

GX
G

)
. (A.12)

Therefore, by inserting eq.(A.12) and derivatives of J into eq.(A.4), we obtain the
optimal investment control (3.10). The second to fourth terms in the PDE (A.9)
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are calculated from eqs.(A.12) as follows:

1

2
tr [JXX ]− θ

2(1− γ)J
|JX |2 − 1

2

(
W̄ ∗2
t JWW − θ(W ∗

t JW )2

(1− γ)J

)−1

|ζt|2

=J

{
1− γ

2(ψ − 1)
tr

[
2− γ − ψ

ψ − 1

GX
G

G′
X

G
+
GXX
G

]
− (1− γ)θ

2(ψ − 1)2

∣∣∣∣GXG
∣∣∣∣2

+
1− γ

2(ψ − 1)2(γ + θ)

∣∣∣∣(ψ − 1)λ̄t − (γ + θ − 1)
GX
G

∣∣∣∣2}
=
1− γ

ψ − 1
J

{
1

2
tr

[
2− γ − ψ

ψ − 1

GX
G

G′
X

G
+
GXX
G

]
− θ

2(ψ − 1)

∣∣∣∣GXG
∣∣∣∣2

+
1

2(ψ − 1)(γ + θ)

∣∣∣∣(ψ − 1)λ̄t − (γ + θ − 1)
GX
G

∣∣∣∣2}
=
1− γ

ψ − 1
J

{
1

2
tr

[
GXX
G

]
+

ψ − 1

2(γ + θ)
|λ̄t|2 −

(
1− (γ + θ)−1

)
λ̄′t
GX
G

− 1

2(ψ − 1)

(
γ + ψ − 2 + θ −

(
1− (γ + θ)−1

)
(γ + θ − 1)

) ∣∣∣∣GXG
∣∣∣∣2}

=
1− γ

ψ − 1
J

{
1

2
tr

[
GXX
G

]
+
ψ − 1

2
(γ + θ)−1|λ̄t|2 −

(
1− (γ + θ)−1

)
λ̄′t
GX
G

− 1

2(ψ − 1)

(
ψ − (γ + θ)−1

) ∣∣∣∣GXG
∣∣∣∣2}

(A.13)

The first, fifth, and sixth terms in the PDE (A.9) are computed as follows:

Jt + r̄tW̄
∗
t JW − (KXt)

′JX =
1− γ

ψ − 1
J

(
−Gτ
G

+ (ψ − 1)r̄t − (KXt)
′GX
G

)
. (A.14)

The seventh and eighth terms in the PDE (A.9) are calculated from eq.(A.10) as
follows:

1

ψ − 1
c∗tJW−β(1− γ)

1− ψ−1
J =

1

ψ − 1

(
βψ

W̄t

G

(1− γ)J

W̄t
+β(γ−1)ψJ

)
=

1− γ

ψ − 1
J

(
βψ

G
− βψ

)
.

(A.15)

Substituting eqs.(A.13)–(A.15) into eq.(A.9) and dividing by
1− γ

ψ − 1
J yields PDE

(3.11).

A.2 Proof of Proposition 1

Eqs.(3.7), (4.11)-(4.13) and the PDE (3.11) immediately follow from Lemma 3.
Substituting eq.(2.11) for λ̄t in eq.(4.13), we obtain

ς̄∗t =
1

γ + θ
(λt − σpt ) +

(
1− 1

γ + θ

)(
− 1

ψ − 1

GX(τ,Xt)

G(τ,Xt)

)
. (A.16)
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It follows from eqs.(4.4) and (4.9) that Φ∗
ε(Xt) is computed as

Φ∗
ε(Xt) = Σε(Xt)

′−1(ς̄∗t + σpt )

=
((
I + ε(Xt)

(
Σ(Xt)Σ(Xt)

′)−1
)
Σ(Xt)

)′−1

(ς̄∗t + σpt )

=
(
Σ(Xt) + ε(Xt)Σ(Xt)

′−1
)′−1

(ς̄∗t + σpt )

=
(
Σ(Xt)

′ + ε(Xt)Σ(Xt)
−1

)−1
(ς̄∗t + σpt )

=
(
Σ(Xt)

(
Σ(Xt)

′ + ε(Xt)Σ(Xt)
−1

))−1

Σ(Xt)(ς̄
∗
t + σpt )

=
(
Σ(Xt)Σ(Xt)

′ + ε(Xt)I
)−1

Σ(Xt)(ς̄
∗
t + σpt ).

(A.17)

Substituting eq.(A.16) for ς̄∗t in the equation shown above yields eqs.(4.14) and

(4.15).

A.3 Proof of Proposition 2

Substituting eqs.(5.7) and GX =
(
b∗(τ, 0)+B∗(τ, 0)Xt

)
G into eqs.(4.12) and (4.13)

yields the approximate optimal consumption (5.14) and investment (5.15). Substi-
tuting g̃ and its derivatives into the PDE (5.5), we obtain the following:

db0
dτ

+X ′ db

dτ
+

1

2
X ′ dB

dτ
X

=m(Xt; (B, b))−
ψ − (γ + θ)−1

2(ψ − 1)

(
b̃(τ, 0) + B̃(τ, 0)Xt

)′(
b(τ) +B(τ)Xt

))
=m(Xt; (B, b))−

ψ − (γ + θ)−1

2(ψ − 1)

{
b̃(τ, 0)′b(τ)

+X ′
t

(
B̃(τ, 0)′b(τ) +

(
ψ − (γ + θ)−1

)
B(τ)′b̃(τ, 0)

)
+

(
ψ − (γ + θ)−1

)
X ′
tB̃(τ, 0)′B(τ)Xt

}
,

(A.18)

where m(Xt; (B, b)) is given by

m(Xt; (B, b)) =
1

2
tr[B] +

1

2

(
∥b∥2 + 2X ′

tBb+X ′
tB

2Xt

)
−
{(

1− (γ + θ)−1
)
λ̄+

(
K +

(
1− (γ + θ)−1

)
Λ̄
)
Xt

}′
b−

(
1− (γ + θ)−1

)
λ̄′BXt

− 1

2
X ′
t

(
K +

(
1− (γ + θ)−1

)
Λ̄
)′
BXt −

1

2
X ′
tB

(
K +

(
1− (γ + θ)−1

)
Λ̄
)
Xt

+
ψ − 1

2

(
(γ + θ)−1|λ̄|2 + 2(γ + θ)−1λ̄′Λ̄Xt + (γ + θ)−1X ′

tΛ̄
′Λ̄Xt

)
+ (ψ − 1)

(
ρ̄0 + ρ̄′Xt +

1

2
X ′
tR̄Xt

)
− βψ. (A.19)

As eq.(A.18) is identical on X, we obtain the system of ODEs (5.16).
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B Estimation Methods and Results

B.1 State-space Model Representation

Eq.(2.1) can be transformed as d
(
etKXt

)
= etK dBt. Integrating this equation over

the interval [nh, (n+ 1)h] yields

e(n+1)hKX(n+1)h − enhKXnh =

∫ (n+1)h

nh

esK dBs. (B.1)

Dividing both sides of the above equation by e(n+1)hK, we get

X(n+1)h = e−hKXnh +

∫ (n+1)h

nh

e{s−(n+1)h}K dBs. (B.2)

From the above equation, we obtain eq.(6.3). By definitions of spot rate and TIPS
real spot rate, the following holds:

st(τ) = −1

τ
logPt(τ), (B.3)

s̄Qt (τ) = −1

τ
(logQt(τ)− log pt). (B.4)

Thus, from eqs.(2.19), (2.24), (B.3), (B.4) (2.9), and (2.29), we obtain

Ynh = H2(Xnh) +H1Xnh +H0. (B.5)

Adding the observation error term εn to the right-hand side in the above equation,

we obtain eq.(6.4).

B.2 Parameter Estimates

d

(
X1t

X2t

)
= −

(
K11 0
K21 K22

)(
X1t

X2t

)
dt+ I2dBt

= −
(

0.08049 0
−0.005062 0.1066

)(
X1t

X2t

)
dt+

(
1 0
0 1

)
dBt,

(B.6)

(
λ1t
λ2t

)
= λ+ Λ

(
X1t

X2t

)
=

(
−0.03605
0.3500

)
+

(
0.03388 0
0.1296 0.01928

)(
X1t

X2t

)
, (B.7)

rt = ρ0 + ρ′
(
X1t

X2t

)
+

1

2

(
X1t

X2t

)′

R
(
X1t

X2t

)
= 0.06964 +

(
−0.02395
0.06803

)′ (
X1t

X2t

)
+

1

2

(
X1t

X2t

)′ (
0.004145 −0.001112
−0.001112 0.0004623

)(
X1t

X2t

)
, (B.8)

it = ι0 + ι′
(
X1t

X2t

)
= 0.02445 +

(
0.006011
0.01658

)′ (
X1t

X2t

)
, (B.9)(

σp1t
σp2t

)
= σp +Σp

(
X1t

X2t

)
=

(
0.09348
0.01345

)
+

(
0.05115 0

0 0.02112

)(
X1t

X2t

)
, (B.10)
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(
λ̄1
λ̄2

)
= λ− σp =

(
−0.1295
0.3366

)
, (B.11)

Λ̄ = Λ− Σp =

(
−0.01727 0
0.1296 −0.001843

)
, (B.12)

ρ̄0 = ρ0 − ι0 + σ′
pλ = 0.04653, (B.13)(

ρ̄1
ρ̄2

)
= ρ− ι+ Λ′σp +Σ′

pλ =

(
−0.02690
−0.002124

)
, (B.14)

Dt

St
= δ0+

(
δ1
δ2

)′ (
X1t

X2t

)
+

1

2

(
X1t

X2t

)′

∆

(
X1t

X2t

)
= 0.01482+

(
0.0004861
0.001912

)′ (
X1t

X2t

)
+

1

2

(
X1t

X2t

)′ (
2.917× 10−4 4.569× 10−6

4.569× 10−6 1.258× 10−4

)(
X1t

X2t

)
. (B.15)

Ωε = 10−5 × diag(2.052× 10−4, 6.825, 7.595, 1.490× 10−4). (B.16)
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