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Abstract

We investigate the convergence properties of an adaptive learning model that over-
laps those of stochastic fictitious play learning and experience-weighted attraction
learning in normal form games with strict Nash equilibria. In particular, we consider
the case in which adaptive players play a game against not only other adaptive players
but also committed players, who do not revise their behaviour and follow a fixed (strict
Nash equilibrium or corresponding logit quantal response equilibrium) action. We then
provide conditions under which the adaptive learning process, the choice probability
profile of adaptive players, almost surely converges to the logit quantal response equi-
librium that committed players follow. We also provide conditions under which the
adaptive learning process of a more general adaptive learning model which overlaps
those of payoff assessment learning and delta learning converges to a logit quantal re-
sponse equilibrium different from the equilibrium that committed players follow with
positive probability. Lastly, we also consider the case without committed players and
provide conditions under which the adaptive learning process of the general learning
model converges to each of the logit quantal response equilibria corresponding to strict
Nash equilibria with positive probability.
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1 Introduction

In the standard learning-in-games literature, we mostly consider the case in which adaptive
players (e.g. incomers in a touristic city) following the same behaviour and learning rules
interact only with each other and play the same game (e.g. incomers choose a side when
passing by each other on a narrow street) repeatedly over periods. However, we can
also consider the case in which adaptive players sometimes face other types of players
(e.g. one-time visitors, local residents) who do not adjust their behaviour and commit
to the same action (e.g. keeping on the right) in each period. In the experiments of
finitely repeated prisoner’s dilemma games and public goods games for instance, we also
observe that some players seem to be not adjusting their behaviour but committing to
a cooperative behaviour over periods.1 One intriguing question is whether the existence
of such committed players affects adaptive players’ long-run behaviour. In particular,
it is interesting to know (i) whether the existence of committed players guarantees the
convergence of adaptive players’ behaviour; (ii) if so, which equilibrium concept describes
adaptive players’ long-run behaviour; and (iii) if there exist multiple equilibria, whether
adaptive players end up playing one specific equilibrium or one of any equilibria in the long
run.

In this paper, to address these questions, we theoretically investigate the convergence
properties of an adaptive learning model which overlaps those of stochastic fictitious play
learning (Fudenberg and Kreps, 1993; SFPL hereafter) and experience-weighted attraction
learning (Camerer and Ho, 1999; EWAL hereafter) with a possibility that adaptive players
play a game against not only other adaptive players but also committed players, who do
not revise their behaviour over periods.

In particular, we consider the following situation. In each period, from the adaptive
players and committed players, a pair is randomly chosen to play a fixed finite normal form
game. When facing the game, each adaptive player assigns a subjective payoff assessment,
which corresponds to the expected payoff with the empirical distribution in the SFPL model
and an attraction in the EWAL model, to each of her actions and chooses the action which
has the highest assessment with the highest probability: she may choose the other actions
with some positive probability. If an adaptive player is picked and plays the game, she
observes payoff information for each of her actions, including the foregone/counterfactual
payoff information, the payoff that she could have obtained if she had chosen the other
actions. Using the payoff information, the adaptive player revises her assessment in such a
way that the new assessment becomes a weighted average of the past payoffs. Therefore,
each adaptive player chooses an action which has performed relatively better than the
other actions with higher probability and adjusts the assessments towards the payoffs.
Regarding the behaviour rule of committed players, we assume that each of them chooses
an action according to a fixed probability distribution in each period and does not revise

1See Andreoni (1995) and Andreoni and Miller (1993) for instance.
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her behaviour. We also assume that each adaptive player cannot identify whether her
opponent is an adaptive player or a committed player, so she follows the same behaviour
rule even when she interacts with a committed player.

We first consider the simplest case in which there exist only two adaptive players 1
and 2 and one committed player ν, where in each period, (i) adaptive players interact with
each other with probability p1,2 and interact with a committed player ν with probabilities
p1,ν and p2,ν , respectively, and (ii) paired players play a fixed symmetric 2 × 2 game. In
particular, we assume that p1,2 ∈ [0, 1], and thus this model corresponds to (i) the typical
learning model in games when p1,2 = 1 and (ii) the model in a single-person decision
problem,2 in which each player plays the game against nature, choosing a state according
to some fixed probability distribution, when p1,2 = 0. We then consider a more general
case in which there may exist more than two adaptive players and committed players, a
pair of whom are randomly chosen to play a fixed finite two-player normal form game in
each period.

To investigate the convergence properties, we additionally assume that (i) each adaptive
player follows the logit choice rule and (ii) committed players follow a logit quantal response
equilibrium (McKelvey and Palfrey, 1995; LQRE hereafter) that is close to a strict Nash
equilibrium. In particular, we can show that any strict Nash equilibrium can be LQRE
approachable (Goeree et al., 2016), meaning that there exists a sequence of LQREs which
approaches the strict Nash equilibrium as the precision parameter of the logit choice rule
increases. Therefore, we can pick any strict Nash equilibrium for committed players to
follow.

From the existing literature, such as the SFPL model, we know that (a) in a single-
person decision problem, adaptive players learn to choose the optimal action, and (b)
in the case where adaptive players do not interact with committed players, each of the
Nash equilibria can arise with positive probability.3 In this paper, we also consider the
intermediate case, that is, the case in which the probabilities of adaptive players interacting
with other adaptive players are between 0 and 1, and we provide a condition for the
probabilities under which the equilibrium that committed players follow is uniquely chosen
by adaptive players in the end. In particular, we show that if the probabilities of adaptive
players facing other adaptive players are smaller than some normalised value of what players
lose by unilaterally deviating from the equilibrium that committed players follow, then
adaptive players learn to follow the equilibrium almost surely. We also relax assumption
(ii), that is, committed players may not follow an LQRE, and provide the condition for the
convergence.

As an auxiliary argument, we also focus on the result of Benäım and Hirsch (1999)
showing that the SFPL process without committed players converges to any of the strict
Nash equilibria with positive probability. In this paper, we extend the result and show

2The case in which an adaptive player faces a single-person decision problem is also investigated in Funai
(2014).

3We show that the same result holds in a more general adaptive learning model.
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Figure 1: Symmetric 2× 2 game

s t

s πs,s, πs,s πs,t, πt,s
t πt,s, πs,t πt,t, πt,t

that without committed players, an adaptive learning process of a more general learning
model which overlaps those of SFPL, EWAL, payoff assessment learning (Cominetti et al.,
2010; Funai, 2019; Leslie and Collins, 2005 and Sarin and Vahid, 1999) and delta learning
(Yechiam and Busemeyer, 2005, 2006) also converges to any of the strict Nash equilibria
with positive probability.

Then, by utilising the result, we show that in the general learning model, if the prob-
abilities of adaptive players interacting with other adaptive players are greater than some
normalised value of what players lose by unilaterally deviating from the equilibrium that
committed players follow and shifting to another equilibrium, then adaptive players end
up following the different equilibrium with positive probability.

The rest of paper is organised as follows. In Section 2, we focus on the simplest case in
which there exist only two adaptive players and one committed player, a pair of whom is
randomly chosen to play a fixed symmetric 2× 2 game. In Section 3, we consider the case
in which there may exist more than two adaptive players and committed players, a pair
of whom play a finite two-player normal form game. In Section 4, we consider the case
in which adaptive players may learn to follow an equilibrium which may be different from
that which committed players follow. In Section 5, we provide a brief literature review. In
Section 6, we conclude the argument.

2 The simplest case: two adaptive players and one commit-
ted player playing a symmetric 2× 2 game

In this section, we focus on the simplest case in which there exist only two adaptive players,
who are labelled 1 and 2, and a committed player, who is labelled ν, a pair of whom are
randomly picked and play a fixed symmetric 2× 2 game, whose payoff matrix is shown in
Figure 1, repeatedly.4 In detail, in each period, adaptive players 1 and 2 are chosen with
probability p1,2, adaptive player 1 and committed player ν are chosen with probability p1,ν ,
and adaptive player 2 and committed player ν are chosen with probability p2,ν , where the
probabilities are fixed over periods and p1,2 + p1,ν + p2,ν = 1.

When adaptive player i ∈ {1, 2} faces the committed player, the committed player
chooses an action according to a probability distribution which is fixed over periods. Let
xu, u ∈ {s, t}, be the probability that the committed player chooses action u and x =

4General cases are discussed in Section 3.
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Figure 2: Pedestrians’ coordination game

L R

L 1, 1 0, 0

R 0, 0 1, 1

(xs, xt) be the probability profile.
Note that (i) when p1,2 = 1, this model corresponds to a typical adaptive learning

model in games; (ii) when p1,2 = 0, this model corresponds to the model in a single-
person decision problem, in which the committed player corresponds to nature, her actions
correspond to states and x corresponds to the probability distribution over states; and
(iii) when p1,2 ∈ (0, 1), each adaptive player learns through the interaction with the other
adaptive player and the committed player.

For instance, consider the case in which, on a narrow street in a city, pedestrians have
to choose a side when they pass by each other. In this example, there exist two incomers,
who correspond to adaptive players, who (i) interact with each other with probability p1,2
and (ii) interact with the local resident, who corresponds to the committed player choosing
the same side each time, with probabilities p1,ν and p2,ν . In this example, during the
interaction, they play the coordination game of Figure 2, in which each player chooses L
(left) or R (right) and receives a payoff of 1 when they smoothly pass by each other, and
a payoff of 0 otherwise.

Now, we describe the behaviour rule of adaptive players. In each period, each adaptive
player assigns a subjective payoff assessment to each of her actions: let Qn,i,u denote player
i’s payoff assessment on action u in period n ∈ N ∪ {0}, where we assume that the initial
assessment is bounded.5 After playing a fixed game in each period n, for each action, each
player i observes a payoff, which is denoted by πn,i,u, and updates the payoff assessment
using the payoff information in the following manner: for each n, i and u,

Qn+1,i,u =

{
Qn,i,u + λn,i

(
πn,i,u −Qn,i,si

)
if i is picked,

Qn,i,u otherwise,

=Qn,i,u + λn,i1n,i
(
πn,i,u −Qn,i,u

)
,

where λn,i ∈ [0, 1] represents player i’s weighting parameter in period n describing how
much the payoff information of each action affects the next period’s assessment, and 1n,i
represents the indicator function such that 1n,i = 1 if player i is chosen to play in period n,
and 0 otherwise. Therefore, the subjective payoff assessment for each action is a weighted
average of the past payoffs, and if the observed payoff of an action is greater (less) than

5In the SFPL model, the payoff assessment of each action corresponds to the sample average of the
past (realised or foregone) payoffs of the action, and in the EWAL model, it corresponds to the action’s
attraction.
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the current assessment of the action, the player revises and raises (lowers) the assessment.
Regarding πn,i,u, the payoff that adaptive player i observes for action u in period n, we
assume that she observes πu,v if the opponent player chooses v: for each n, i and u, if the
opponent player chooses action v,

πn,i,u = πu,v.

Note that since the opponent player can be the other adaptive player or the committed
player, πn,i,u can be expressed as follows:

πn,i,u =1n,i,−i
∑

v∈{s,t}

πu,v1n,−i,v + 1n,i,ν
∑

v∈{s,t}

πu,v1n,ν,v,

where 1n,i,−i and 1n,i,ν are the indicator functions for the events that the other adaptive
player −i and the committed player ν, respectively, are chosen to play in period n, and
1n,−i,v and 1n,ν,v are the indicator functions for the events that the other adaptive player
and the committed player, respectively, choose action v in period n.

Note that when an adaptive player is chosen to play, she also updates the assessment
of the action which is not chosen by using the payoff information which would have been
obtained if she had chosen the action. Therefore, in this section, we consider the adaptive
learning model with (partial) foregone/counterfactual payoff information; in other words,
we focus on the belief-based part of the EWAL model.

In terms of the weighting parameter profile for each player, we assume that the profile
satisfies the following condition: for each i,∑

n

λn,i =∞ and
∑
n

(λn,i)
2 <∞ (1)

almost surely. This condition means that the influence of the payoff information on her
behaviour diminishes over periods but does not vanish completely in later periods. Note
that as opposed to the standard assumption in the SFPL model, we do not need to assume
that the weighting parameter profile should be the same among players: how the payoff
information affects her behaviour can be different among players. However, we assume
that for each player, the weighting parameter for each of her actions should be the same.
Note that when λn,i = 1

n+1 , the model corresponds to the SFPL model.
Next, we describe the choice behaviour of each adaptive player. In this paper, we

assume that she follows the logit choice rule. In detail, for each n, i, u and her assessment
profile Qn,i = (Qn,i,s, Qn,i,t), player i’s choice probability for action u in period n, which is
denoted by xn,σ,i,u, is defined as follows:

xn,σ,i,u =
eσQn,i,u∑

v∈{s,t} e
σQn,i,v

,
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Figure 3: Symmetric 2× 2 game

s t

s A,A 0, 0

t 0, 0 B,B

where σ represents player i’s precision on her decision. Note that (i) the precision parameter
for each player is fixed over periods; (ii) if σ →∞, the choice rule approaches the one which
chooses the actions with the highest assessment with equal probability; and (iii) if σ → 0,
the choice rule approaches the one which chooses each of her actions with equal probability.
We also let xn,σ,i = (xn,σ,i,s, xn,σ,i,t) denote adaptive player i’s choice probability profile
and xn,σ = (xn,σ,1, xn,σ,2) denote the adaptive players’ choice probability profile in period
n. We also assume that players’ decisions are conditionally independent: the probability
that adaptive players choose action profile (u, v) in period n is given by xn,σ,1,u × xn,σ,2,v.
In the following argument, we call the sequence {xn,σ : n ∈ N ∪ {0}} an adaptive learning
process.

Also, we assume that each adaptive player follows the same choice and updating rules
during the interaction with her opponent, whether the opponent is the other adaptive player
or the committed player, in each period. One interpretation of this assumption is that the
adaptive player cannot distinguish or does not pay attention to whether her opponent
is the other adaptive player or a committed player. In the context of the pedestrians’
coordination problem, players never ask each of the other pedestrians whether they follow
some local rule or whether they are local residents, so they never learn the types of her
opponents.

In this paper, we first focus on the case in which players face a game with multiple
strict Nash equilibria: letting A := πs,s − πt,s and B := πt,t − πs,t, we focus on the case in
which A,B > 0 or A,B < 0. One example of this case is the symmetric game shown in
Figure 3.6

Before providing a sufficient condition for the convergence in this case, we additionally
assume that the committed player follows an LQRE with σ. That is, we assume that
(xs, xt) = (x∗σ,s, x

∗
σ,t), where x∗σ,u denotes the equilibrium choice probability for action u

and satisfies the following condition: for each u ∈ {s, t},

x∗σ,u =
eσ(πu,sx

∗
σ,s+πu,tx

∗
σ,t)∑

v∈{s,t} e
σ(πv,sx∗σ,s+πv,tx

∗
σ,t)

.

In particular, for the LQRE that committed players follow, we pick the one which corre-
sponds to strict Nash equilibrium (s, s), that is, the one which is closest to the strict Nash
equilibrium; in the following section, we show that any strict Nash equilibrium is LQRE

6As each player observes the payoff information of unchosen actions, it is sufficient to focus on the 2× 2
in Figure 3 where A := πs,s − πt,s and B := πt,t − πs,t to analyse the original game.
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approachable (Goeree et al., 2016). Thus, in the following argument, we pick large enough
σ and the LQRE such that x∗σ,s >

1
2 .7

In the following statement, we provide a condition for the conditional probability of
each adaptive player facing the other adaptive player, given that she is chosen, under which
adaptive players learn to follow the LQRE that the committed player follows almost surely.
Let

pmax := max{ p1,2
p1,2 + p1,ν

,
p1,2

p1,2 + p2,ν
}

be the maximum probability of each adaptive player facing another adaptive player given
that she is chosen to play the game.

Proposition 1. If pmax <
|A|
|A+B| , then there exists σ such that for any σ > σ, the adaptive

learning process xn,σ almost surely converges to the LQRE x∗σ that the committed player
ν follows.

Proof. See Appendix A.

It is worth noting that in Appendix A we provide a more general condition for the
convergence. Note also that the condition pmax < |A|

|A+B| coincides with the one under
which players do not choose t at the Bayesian Nash equilibrium when the committed player
chooses s with probability one. However, players in this model require less knowledge than
in the equilibrium theory: each adaptive player does not need to know the probability of
facing the committed player, the (mixed) action that the committed player chooses or even
the existence of the committed player.

Also, note that since we can pick any σ which is greater than σ and the LQRE ap-
proaches the Nash equilibrium as σ approaches infinity, the argument holds when the
committed player (almost) follows a strict Nash equilibrium.

To understand the condition further, it is helpful to focus on some specific games. We
first consider the pedestrians’ coordination game with the payoff matrix in Figure 2. Note
that |A + B| = 2 and |A| = 1. Therefore, incomers learn to follow the local rule if the
conditional probability of each incomer facing the other incomer is less than that of facing
the local resident: pmax <

1
2 if σ is large enough. We can also show that if the conditional

probability of each incomer facing the the other incomer is greater than that of facing the
local resident, then there is a possibility that incomers fail to follow the local rule and form
a different rule.8

Next, consider the game of Figure 4. Note that |A+ B| = 3, |A| = 2. In this case, for
large enough σ, (i) if the committed player follows the LQRE corresponding to (L,L) and
if pmax <

2
3 , then the adaptive learning process almost surely converges to the equilibrium,

7For instance, there exist three LQREs if σ > 2 in the coordination game of Figure 2. Note that the
number of equilibria depends on the precision parameter. If the precision parameter becomes small, then
there exists only one LQRE. For the analysis of the case, see Funai (2019).

8This is shown in Section 4.1.
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Figure 4: symmetric 2× 2 game with risk- and payoff-dominant equilibria

L R

L 2, 2 3, 0

R 0, 3 4, 4

Figure 5: Prisoner’s dilemma game

s t

s 1, 1 6, 0

t 0, 6 5, 5

and (ii) if the committed player follows the LQRE corresponding to (R,R) and if pmax <
1
3 ,

the process almost surely converges to the equilibrium. Note that (L,L) risk-dominates
(R,R) but (R,R) payoff-dominates (L,L). Note also that the condition for the convergence
to the risk-dominant equilibrium is weaker than the one for the convergence to the payoff-
dominant equilibrium: for the preservation of the risk-dominant local rule, incomers need
to interact with the local resident less often than for the preservation of the payoff-dominant
local rule.

We next consider the case in which there exists only one strict Nash equilibrium, the
symmetric games with a strictly dominant action, in which, without loss of generality, we
assume that s is the dominant action for each i: for each v ∈ {s, t}, πs,v > πt,v. The class
of such games includes prisoner’s dilemma games, whose payoff matrix is shown in Figure
5. Then, in the following statement, we show that in these games, adaptive players in the
end follow the LQRE corresponding to the strictly dominant strategy equilibrium for any
interaction probability profile.

Proposition 2. In symmetric 2×2 games with a strictly dominant action, for any pmax ∈
[0, 1], there exists σ such that for any σ > σ, adaptive learning process xn,σ almost surely
converges to the LQRE x∗σ that corresponds to the strictly dominant strategy equilibrium
and that the committed player ν follows.

Proof. See Appendix B.

3 Generalisation

3.1 Finite two-player normal form games

In this section, we generalise the argument above so that (i) there may exist more than
two adaptive players and (ii) the game that they play may not be symmetric and may have
more than two actions. In detail, in each period n ∈ N∪{0}, a pair of players is randomly
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chosen from the set of players denoted by N = {1, 2, ..., N} to play a fixed finite two-player
normal form game. In particular, there exist two types of players, type 1 and type 2, and
in each period, a type-1 player and a type-2 player are chosen to play a game (T , S, π),
where (i) T = {1, 2} corresponds to the set of types, (ii) S = S1 × S2 is the set of action
profiles with Sτ being the set of actions for type-τ ’s players and |Sτ | <∞ for each τ ∈ T ,
and (iii) π = (π1, π2) : S → R

2 is the payoff function, where for each τ ∈ T , πτ : S → R

represents the payoff function of type-τ players. Therefore, for each i ∈ N , if player i’s
type is τ , then the set of actions of player i, Si, and the payoff function of player i, πi, are
Sτ and πτ respectively.

Let πn,i,si denote the payoff that player i observes for action si ∈ Si in period n and
πn,i,si := πi(si, sn,−i) =

∑
s−i∈S−i πi(si, s−i)1n,−i,s−i , where (i) 1n,−i,s−i is the indicator

function such that 1n,−i,s−i = 1 if player i’s opponent chooses s−i in period n and 0
otherwise and (ii) sn,−i is the action that player i’s opponent chooses in period n.

As in the standard argument, we extend the domain of the payoff function to the set
of mixed actions: let πi(x) =

∑
(si,s−i)∈S πi(si, s−i)xi,six−i,s−i denote the expected payoff

of player i given a mixed action profile x ∈ ∆(S) := {(xi,si) ∈ [0, 1]|S| :
∑

si∈Si xi,si =
1 for each i} and let πi(si, x−i) =

∑
s−i∈S−i πi(si, s−i)x−i,s−i denote the expected payoff

of player i when player i chooses si with probability one and the opponent player follows
mixed action x−i.

For the purpose of formal analysis, we introduce the following notation. Let (Ω,F ,P)
be the probability space on which all the random variables that appear in this paper are
based. Let Fn denote the σ-algebra which is generated by the initial payoff assessments,
the information about which pair is picked and about all the choices of players up to, but
not included, period n: Fn := σ(Q0,1m,i,j ,1m,i,si : m < n, i, j ∈ N , si ∈ S), where Q0

denotes the initial assessment profile and 1m,i,j denotes the indicator function such that
1m,i,j = 1 if players i and j are picked in period m and 0 otherwise.9 This generates a
filtration {Fn}, where Fm ⊂ Fn for m < n.

For any i and j ∈ N , we assume that the event that they are picked is independent of
any other events and its probability is fixed over periods: for each n, let pi,j := E[1n,i,j |
Fn] = P({i and j are picked in period n} | Fn) denote the probability that players i and
j are picked in period n. We assume that different types of players are picked in each
period: for each τ , pi,j = 0 for i, j ∈ Nτ , where Nτ denotes the set of players of type τ and
N = N1 ∪N2. Letting pi :=

∑
j∈N pi,j be the probability that player i is chosen to play in

period n, we assume that pi > 0 for each i ∈ N : we only focus on the decision problems of
players who actually play the game.

As in the previous section, there exist committed players, who follow a fixed (mixed)
action in each period, for each type.10 In particular, let (i) Nτ,l = {1, ..., Nτ,l} and Nτ,ν =
{1, ..., Nτ,ν} denote the sets of adaptive players and committed players, respectively, for

9The initial payoff assessment profile is formally defined in the following argument.
10In Section 2, there exists only one committed player. Since in that section, we consider the case in

which two adaptive players face a symmetric game, we omit the argument for their types and regard two
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type τ ∈ {1, 2} and (ii) Nl = ∪τNτ,l and Nν = ∪τNτ,ν denote the set of adaptive players
and committed players, respectively. We assume that each player is either an adaptive
player or a committed player: Nτ = Nτ,l ∪Nτ,ν for each τ and N = Nl ∪Nν .

Next, we introduce notation regarding the interaction probabilities between players.
Let (i) p(i,j)|i :=

pi,j
pi

denote the conditional probability of i and j being matched given
that i is chosen, (ii) for a set of players J , p(i,J )|i :=

∑
j∈J p(i,j)|i denote the conditional

probability that i and a player in set J are matched given that i is chosen, and (iii) for
j ∈ J , p(i,j)|(i,J ) :=

pi,j∑
k∈J pi,k

denote the probability that players i and j are matched given

that i is matched with a player in set J .
Next, we describe adaptive players’ behaviour. In each period, each adaptive player

(i) assigns a subjective payoff assessment to each of her actions, which represents what
she expects from choosing the action, and (ii) chooses an action which has the highest
assessment with some randomness. For each n ∈ N∪{0}, i ∈ Nl and si ∈ Si, let Qn,i,si ∈ R
denote the payoff assessment of player i on action si, let Qn,i = (Qn,i,si)si∈Si denote player
i’s assessment profile, and let Qn = (Qn,i)i∈Nl denote the assessment profile in period n.
We assume that the initial assessment profile is bounded: there exists some Q0,max ∈ R
such that ||Q0||∞ < Q0,max almost surely, where || · ||∞ denotes the maximum norm.

Given her payoff assessments, each adaptive player chooses an action which has the
highest assessment. In particular, we consider the case in which each of the payoff assess-
ments is subject to some random perturbation. In detail, given that noise is added to each
of the assessments, each adaptive player chooses an action which has the highest perturbed
assessment: for each n, i and si,

P(player i chooses si in period n | Fn) = P(si = arg max
ti∈Si

(Qn,i,ti + ηi,ti)),

where ηi,ti represents the perturbation of the assessment of action ti of player i.11 In this
paper, we assume that (ηi,ti)i,ti is independent and identically distributed with the extreme
value distribution, F (ηi,ti) = exp(− exp(−σηi,ti)), so that adaptive players follow the logit
choice rule: for each n, i and si,

xn,σ,i,si :=P(player i chooses si in period n | Fn)

=
eσQn,i,si∑
ti∈Si e

σQn,i,ti
,

where xn,σ,i,si denotes the probability that player i chooses si in period n given her as-
sessments Qn,i and precision parameter σ. We assume that (i) the precision parameter is

committed players for both types as just one committed player.
11In the payoff assessment learning model, the perturbations are sometimes interpreted as emotional noise

on the assessment (Sarin and Vahid, 1999), while in the SFPL model, the perturbations are interpreted as
random payoffs (Fudenberg and Kreps, 1993).
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the same among players and fixed over periods and (ii) players’ decisions are conditionally
independent: for each n, J ⊂ Nl and (sj)j∈J ∈ ×j∈JSj ,

P((sj)j∈J is chosen in period n | Fn) =
∏
j∈J

xn,σ,j,sj .

In the following argument, we call the sequence {xn,σ = (xn,σ,i,si)i,si : n ∈ N ∪ {0}} an
adaptive learning process.

Next, we describe the updating rule, the way in which adaptive players revise their
payoff assessments. In each period, each adaptive player updates her assessments using the
payoff information in the following manner: for each n, i and si,

Qn+1,i,si =


Qn,i,si + λn,i

(
πi(si, sj)−Qn,i,si

)
if i and j are picked and sj

is chosen in period n,

Qn,i,si if i is not picked in period n

=Qn,i,si + λn,i
∑
j∈N

1n,i,j

( ∑
s−i∈S−i

πi(si, s−i)1n,j,s−i −Qn,i,si
)
.

Note that when player i is chosen, the assessment of each of her actions is updated. It
means that each player also observes what she could have received if she had chosen other
actions: players observe foregone/counterfactual payoffs.12 However, when players are not
chosen, they do not obtain payoff information and do not update their payoff assessments.
Therefore, each adaptive player observes payoff information for all of her actions only when
she has been chosen to play the game.

Regarding the behaviour of committed players in each type, we assume that in each
period, the choice probability profile of each committed player is fixed: for each n and τ ,
let xτ,k,sk denote the probability of committed player k ∈ Nτ,ν of type τ choosing action
sk ∈ Sτ , that is,

P(Committed player k of type τ chooses action sk in period n | Fn) = xτ,k,sk .

Also, we assume that each committed player chooses an action independently: for J ⊂ Nl,
K ⊂ Nν , (sj)j∈J ∈ ×j∈JSj , (sk)k∈K ∈ ×k∈KSk and s = (sj , sk) ∈ ×j∈JSj ××k∈KSk,

P(s is chosen in period n | Fn) =
∏
j∈J

xn,σ,j,sj ×
∏
k∈K

xτ,k,sk .

In particular, we assume that committed players follow an LQRE action of their own
type, where the LQRE is close to s∗ = (s∗1, s

∗
2). First, we provide the definition of LQRE

for a more general game (I, S, π), where (i) the set of players, I := {1, 2, ..., I}, may consist

12If players know the payoff function, then the assumption means that each player imagines what she
could have obtained if she had chosen the other actions.
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of more than two players; (ii) S = ×i∈ISi denotes the finite set of action profiles; and (iii)
the payoff function is π : S → R

I , where πi : S → R denotes the i-th component and
corresponds to player i’s payoff function.

Definition 1. A logit quantal response equilibrium of the normal form game (I, S, π) is a
mixed action profile x∗σ = (x∗σ,i,si)i,si such that for each i ∈ I and si ∈ Si,

x∗σ,i,si =
eσπi(si,x

∗
σ,−i)∑

ti∈Si e
σπi(ti,x∗σ,−i)

,

where for each ti ∈ Si, πi(ti, x∗σ,−i) :=
∑

s−i∈×j 6=iSj πi(ti, s−i)
∏
j 6=i x

∗
σ,j,sj

.

Then we assume that for each i ∈ Nτ ,
∑

k∈N−τ,ν p(i,k)|(i,N−τ,ν)x−τ,k,s−τ = x∗σ,−τ,s−τ for

each s−τ ∈ S−τ , where x∗σ = (x∗σ,1, x
∗
σ,2) is an LQRE which approaches s∗ as σ → ∞,

x∗σ,τ = (x∗σ,τ,sτ ) is the equilibrium choice probability profile for type τ , and x∗σ,τ,sτ is the
choice probability that the equilibrium assigns to action sτ ∈ Sτ . This means that in the
population level, committed players follow an LQRE. If each committed player follows the
equilibrium, meaning that xτ,k,sτ = x∗σ,τ,sτ for each τ , k and sτ , then the condition holds.

The strict Nash equilibrium that committed players follow, s∗, is considered as a con-
vention (e.g. keeping on the right on a narrow street) that the existing members of a society
(e.g. local residents) have already formed. In this paper, we allow some perturbation of
players’ behaviour so that their behaviour can be expressed as an LQRE. However, in this
paper, we do not consider a big perturbation of their behaviour. We take a perturba-
tion small enough so that there exist multiple LQREs if there exist multiple strict Nash
equilibria.

We say that a Nash equilibrium of the normal form game (I, S, π) is LQRE approachable
(Goeree et al. 2016) if there exists a sequence of LQREs with respect to σ such that the
sequence approaches the Nash equilibrium as σ approaches infinity. To be more specific,
the strict Nash equilibrium s∗ = (s∗i )i is LQRE approachable if there exists a sequence
{σn : n ∈ N} converging to infinity and a corresponding sequence of LQREs {x∗σn : n ∈ N}
such that for each i, x∗σn,i,s∗i

→ 1 as σn →∞.13

One natural question is whether any strict Nash equilibrium is LQRE approachable,
so that we can pick any strict Nash equilibrium for the one that committed players follow.
The following statement answers the question. Note that in the following statement, we
consider a more general game (I, S, π) in which there may exist more than two players.

Proposition 3. In any finite normal form game (I, S, π), any strict Nash equilibrium is
LQRE approachable.

13The definition of Goeree et al. (2016), which also includes the case for a mixed Nash equilibrium, is
as follows: a Nash equilibrium ς∗ = (ς∗i,si) is LQRE approachable if there exists a sequence {σn : n ∈ N}
converging to infinity and a corresponding sequence of LQRE {x∗σn : n ∈ N} such that for each i and si,
x∗σn,i,si → ςi,si as σn →∞.
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Proof. See Appendix C.

Now we consider a condition under which the adaptive learning process almost surely
converges to an LQRE corresponding to a strict Nash equilibrium s∗. Here, we take σ large
enough so that the expected payoff of the equilibrium action is greater than those of the
other actions: we take σ such that πd∗i,si := πi(si, x

∗
σ,−i)− πi(s∗i , x∗σ,−i) < 0 for each si 6= s∗i .

Note that πd∗i,si → πi(si, s
∗
−i)− πi(s∗i , s∗−i) < 0 as σ →∞, so that the condition holds if we

take large enough σ. Let pmax := maxi p(i,Nl)|i and M := maxi(|Si| − 1).

Proposition 4. If

pmax

Mmaxi,si,s−i 6=s∗−i |πi(si, s−i)− πi(s
∗
i , s−i)− πi(si, s∗−i) + πi(s

∗
i , s
∗
−i)|

mini,si |πi(si, s∗−i)− πi(s∗i , s∗−i)|
< 1,

there exists σ such that for any σ > σ, adaptive learning process xn,σ almost surely
converges to the LQRE x∗σ that committed players follow.

Proof. See Appendix D.

Roughly speaking, Proposition 4 says that if the conditional probability of each adaptive
player facing another adaptive player is lower than some normalised value of what each
player loses by unilaterally deviating from the equilibrium s∗, then adaptive players learn
to follow what committed players follow. If (i) there exist only one adaptive player and one
committed player for each type, (ii) paired players play the symmetric 2×2 game in Figure
3 and (iii) committed players follow the LQRE corresponding to s∗, then |Si| = 2,M = 1,
|πi(si, s−i)−πi(s∗i , s−i)−πi(si, s∗−i)+πi(s∗i , s∗−i)| = |A+B|, mini,si |πi(si, s∗−i)−πi(s∗i , s∗−i)| =
A and pmax = max{ p1,2

p1,2+p1,ν
,

p1,2
p1,2+p2,ν

}, and thus the condition corresponds to that of
Proposition 1.

Next, we consider the case in which there exists a strictly dominant action s∗i for each
player. That is, for each i, there exists s∗i such that for si 6= s∗i , πi(s

∗
i , s−i) > πi(si, s−i) for

s−i ∈ S−i. Then we can first show that there exists a period after which the assessment of
the dominant action is always greater than those of the other actions.

Lemma 1. With probability one, there exists N such that for n > N , Qdn,i,si := Qn,i,si −
Qn,i,s∗i < 0 for si 6= s∗i .

Proof. See Appendix E.

Given Lemma 1, we can show that for any interaction probability profile, adaptive
players learn to play the LQRE corresponding to the strictly dominant strategy equilibrium.

Proposition 5. For a game with a strictly dominant strategy equilibrium, for any pi,j ∈
[0, 1], there exists σ such that for any σ > σ, the adaptive learning process xn,σ almost
surely converges to the LQRE x∗σ that committed players follow and corresponds to the
strictly dominant strategy equilibrium.

Proof. See Appendix F.
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3.2 When committed players do not follow a logit quantal response equi-
librium

In the previous section, to show that the behaviour of adaptive players corresponds to that
of committed players in the long run, we assumed that (i) the precision parameters for
adaptive players and committed players are the same and (ii) committed players follow an
LQRE. In this section, we first show that given the condition (i), if the assessment profiles
and choice probability profiles converge and the limit choice probability profile coincides
with the choice probability profile of committed players, then the choice probability profile
of committed players should correspond to an LQRE. In the following statement, we assume
that committed players of each type follow the same choice probability profile: xτ,k,sτ =
xτ,l,sτ =: xτ,sτ for each τ ∈ {1, 2}, k, l ∈ Nτ,ν , and sτ ∈ Sτ .

Proposition 6. If the assessment profile almost surely converges and the limit choice
probability profile of each adaptive player is the same as the choice probability profile
of committed players of the same type, then the choice probability profile of committed
players corresponds to an LQRE.

Proof. See Appendix G.

Next, we relax the condition (i) and consider the case in which the precision parameters
of adaptive players and committed players may not be the same. For instance, we can
consider the case in which each committed player chooses the same action with probability
one and adaptive players follow the logit choice rule in each period.

To analyse the case, we consider the following auxiliary payoff function: for each i ∈ Nτ
and (si, s−i),

π′i(si, s−i) = p(i,Nl)|iπi(si, s−i) + (1− p(i,Nl)|i)πi(si, x−i),

where x−i = (x−i,s−i)s−i and x−i,s−i :=
∑

k∈N−τ,ν p(i,k)|(i,N−τ,ν)x−τ,k,s−i for each s−i. That

is, the payoff of adaptive player i given action profile (si, s−i) under the auxiliary payoff
function is the weighted average of (i) the payoff obtained from playing against an adaptive
player and (ii) the expected payoff obtained from facing committed players. Note that in
this case, we do not need to assume that x = x∗σ; we can obtain the convergence even when
xi,si = 1 for some action si.

Proposition 7. If π′i(s
∗
i , s
∗
−i) > π′i(si, s

∗
−i) for each i and si 6= s∗i and

Mmaxi,si,s−i 6=s∗−i |π
′
i(si, s−i)− π′i(s∗i , s−i)− π′i(si, s∗−i) + π′i(s

∗
i , s
∗
−i)|

mini,si |π′i(si, s∗−i)− π′i(s∗i , s∗−i)|
< 1,

there exists σ such that for any σ > σ, adaptive learning process xn,σ almost surely
converges to the LQRE x∗σ that corresponds to strict Nash equilibrium s∗ under π′.
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Figure 6: A graphical expression of the condition in Proposition 7
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Proof. See Appendix H.

We now focus on the case in which (i) there exist only one adaptive player and one
committed player for each type, (ii) committed players follow x and (iii) paired players play
a fixed symmetric 2× 2 game. Note that the payoff function π′ in this case is expressed as
follows: for i ∈ {1, 2} and v, w ∈ {s, t}, π′i,v,w :=

pi,−i
pi,−i+pi,ν

πv,w +
pi,ν

pi,−i+pi,ν

∑
u∈{s,t} πv,uxu.

Also, let A′i := π′i,s,s − π′i,t,s and B′i := π′i,t,t − π′i,s,t. In particular, we focus on the case in
which A′i > 0 for each i, that is, (s, s) is a strict Nash equilibrium under π′. Also, since any
strict Nash equilibrium is LQRE approachable, we focus on the LQRE such that x∗σ,i,s >

1
2

for each i. Then, by Proposition 7, we know that if A′i > 0 and
maxi |A′i+B′i|

mini |A′i|
< 1 for each

i, then there exists σ such that for any σ > σ, the adaptive learning process converges to
the LQRE x∗σ under π′.

To understand the conditions further, we focus on the case in which (i) players play the
game in Figure 3 and (ii) p(i,−i)|i = p(i,−i)|−i so that A′i = A′−i =: A′ and B′i = B′−i =: B′

and
maxi |A′i+B′i|

mini |A′i|
= |A′+B′|

|A′| . Then we express the conditions A′ > 0 and |A
′+B′|
|A′| < 1 graph-

ically using a two-dimensional graph with x-axis representing xs and y-axis representing
p(i,−i)|i.

14 In particular, when A = 1 and B = 1, the conditions are graphically expressed
as in Figure 6.

14Note that

A′ =Ap(i,−i)|i +A(1− p(i,−i)|i)xs −B(1− p(i,−i)|i)(1− xs)
=(A+B)(xs + p(i,−i)|i − xsp(i,−i)|i)−B,

B′ =Bp(i,−i)|i +B(1− p(i,−i)|i)(1− xs)−A(1− p(i,−i)|i)xs
=(A+B)(−xs + xsp(i,−i)|i) +B and

A′ +B′ =(A+B)p(i,−i)|i.
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Note that (i) the dark shaded area on the lower right part of the diagram represents
the profiles (xs, p(i,−i)|i) which satisfy the conditions; (ii) when xs < 1, the upper limit for
the probability p(i,−i)|i to satisfy the conditions should be less than 1/2.

Also, it is worth noting that if the precision parameters are the same among adaptive
players and committed players, even for the case in which xs = x∗σ,s < 1, the upper limit
for the probability p(i,−i)|i to satisfy the conditions is 1/2. Therefore, if we impose the
restriction that the precision parameters for adaptive players and committed players are
the same, we have a better upper limit for p(i,−i)|i to satisfy the conditions.

4 Locking into a strict Nash equilibrium, and the possibility
of convergence to any strict Nash equilibria

In this section, first, we do not consider the existence of committed players. In particular,
there exist only two adaptive players facing each other to play a finite two-player game
repeatedly. By focusing on this case, we may provide one possible explanation for the
existence of committed players: if adaptive players have enough experience of the game
and their behaviour is close to one strict Nash equilibrium, then with high probability, their
behaviour converges to the equilibrium. Also, we show that in any finite period, adaptive
players’ behaviour can be close to any strict Nash equilibrium with positive probability,
which means that any strict Nash equilibrium can be selected by the adaptive learning
process.

In particular, we consider the following updating rule:

Qn+1,i,si = Qn,i,si + λnγn,i,si
(∑
s−i

πi(si, s−i)1n,−i,s−i −Qn,i,si
)
,

where (i) {λn} satisfies condition (1) in Section 2; (ii) γn,i,si is such that, almost surely,
E[γn,i,si1n,−i,s−i | Fn] = E[γn,i,si | Fn]E[1n,−i,s−i | Fn] for each n, i and si; and (iii)

E[1n,i,ti | Fn] =
exp(σQn,i,ti )∑
ui

exp(σQn,i,ui )
. In particular, we focus on the case in which γn,i,si =∑

ti
γ′i,si,ti1n,i,ti , where γ′i,si,ti ∈ [0, 1] and γ′i,si,si = 1 for any i, si and ti, and thus

Qn+1,i,si = Qn,i,si + λn(
∑
ti

γ′i,si,ti1n,i,ti)
(∑
s−i

πi(si, s−i)1n,−i,s−i −Qn,i,si
)
. (2)

Note that (i) when γ′i,si,ti = 1 if ti = si and 0 otherwise, the learning model coincides
with those of Cominetti et al.(2010), Funai (2019), Leslie and Collins (2005) and Sarin and
Vahid (1999); (ii) when γ′i,si,ti = 1 for each si and ti, the model coincides with the one in
the previous sections; and (iii) when γi,si,ti ∈ (0, 1) for si 6= ti and γi,si,si = 1, the model
coincides with that of Yechiam and Busemeyer (2005, 2006).

Here, γ′i,si,ti represents how much/whether the assessment of action si is updated when
player i chooses action ti. In particular, the parameter can represent a situation in which the
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player may obtain foregone payoff information for only some of their actions. For instance,
among multiple routes to a destination, when player i chooses route A, she may obtain the
traffic congestion information for routes B and C, but might not obtain the information for
routes D and E as they are far from route A. In this case, we can represent the situation by
assuming that γ′i,D,A = γ′i,E,A = 0. Also, γ′i,si,ti can represent what player i can guess for
the payoff of si when choosing action ti. For instance, when player i walks on the left-hand
side of street A and passes by another pedestrian smoothy, she may be able to guess what
could have happened if she had walked on the different side of the street; however, if player
i had chosen street B instead, she might not be able to guess what could have happened
if she had walked on the left-side of street A and faced a pedestrian. Therefore, γ′i,si,ti can

represent the physical and psychological distance between the actions.15

For analytical purposes, we rewrite equation (2) in the following manner:

Qn+1,i,si =Qn,i,si + λnγn,i,si
(∑
s−i

πi(si, s−i)1n,−i,s−i −Qn,i,si
)

=Qn,i,si + λn
(
γn,i,si(

∑
s−i

πi(si, s−i)xn,σ,−i,s−i −Qn,i,si) +Mn,i,si

)
, (3)

where

Mn,i,si :=γn,i,si
(∑
s−i

πi(si, s−i)1n,−i,s−i −Qn,i,si
)

− γn,i,si(
∑
s−i

πi(si, s−i)xn,σ,−i,s−i −Qn,i,si).

Then, by the stochastic approximation method, the discrete-time learning process can be
approximated by the solution of the ODE Q̇t = dQt

dt = h(Qt),
16 where function h = (hi,si) :

R
|S| → R

|S| is defined as follows: for each i, si and Qt = (Qt,i,si),

hi,si(Qt) := γt,i,si(πi(si, xt,σ,−i)−Qt,i,si),

where xt,σ,−i = (xt,σ,−i,s−i) and xt,σ,−i,s−i :=
exp(σQt,−i,s−i )∑
t−i

exp(σQt,−i,t−i )
.

15Sarin and Vahid (2004) also consider the case in which players observe partial foregone payoffs. In
particular, γ′i,si,ti corresponds to fi(si, ti) in their model. However, the difference between their model and
the model in this paper is that in their model, players use the payoff obtained by choosing an action to
update the assessments of similar but different actions. While in this paper, players use the foregone payoff
of each action to update its assessment.

16See Benäım (1999) and Borkar (2008) for details. Note that we can show that the assumptions (A1) to
(A4) in Section 2.1 of Borkar (2008) hold: (A1) holds as the logit choice rule is Lipschitz continuous and the
payoff function, assessments and {γn} are all bounded; (A2) holds as we impose the same assumption on
{λn}; (A3) holds as {Mn} is a martingale difference sequence and the payoff function, assessments and {γn}
are all bounded; (A4) holds since the initial assessment profile Q0 is bounded and each period’s assessment
of each action is a convex combination of the assessment in the previous period and a payoff.
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Let (s∗i , s
∗
−i) be a strict Nash equilibrium and x∗σ be an LQRE which approaches (s∗i , s

∗
−i)

as σ →∞. Let π∗ = (π∗i,si) denote the LQRE payoff profile such that for large enough σ,
π∗i,s∗i

> π∗i,si for each i and si 6= s∗i .
We now find the domain such that

V (Q) = ||Q− π∗||∞

becomes a Lyapunov function for the ODE. Let Q ⊂ R|S| be such that for each Q ∈ Q and
i, −K < Qi,si − Qi,s∗i < ε for si 6= s∗i and 0 < ε < K, where we pick ε and K such that
(πi(si, s

∗
i ))i,si ∈ Q and |Qn,i,si −Qn,i,ti | < K for any n, i, Qn,i, si and ti.

17 Note also that
Q is an open set.

Lemma 2. There exists σ such that for σ > σ, V becomes a Lyapunov function for
Q̇t = h(Qt) on Q.

Proof. See Appendix I.

Now we consider the case in which the assessment process converges to an LQRE
payoff profile with high probability. Here, to utilise Corollary 12 of Borkar (2008), we
additionally assume that (i) there exists c such that λn ≤ cλm for any n ≥ m,18 (ii) there
exists a constant C such that ||h(Q)||∞ ≤ C,19 and (iii) there exists a Lipschitz constant
L for h: for any Q and Q′,

||h(Q)− h(Q′)||∞ ≤ L||Q−Q′||∞.

Now we pick an open set B such that π∗ ∈ B ⊂ B ⊂ Q, where B is the compact closure of
B.

Proposition 8. For any B such that π∗ ∈ B ⊂ B ⊂ Q, there exists n such that for any
n0 ≥ n,

P(Qn → π∗ | Qn0 ∈ B) ≥ 1− η(b(n0)),

where b(n0) :=
∑

n≥n0
(λn)2 and η : R→ (0,∞) is such that η(x)→ 0 as x→ 0, and thus

lim
n0→∞

P(Qn → π∗ | Qn0 ∈ B) = 1.

Proof. See Appendix J.

17Note that since (s∗i , s
∗
−i) is a strict Nash equilibrium, πi(si, s

∗
−i)−πi(s∗i , s∗−i) < 0 for each i and si 6= s∗i .

In addition, since we focus on a finite game, we can pick ε > 0 such that πi(si, s
∗
−i)−πi(s∗i , s∗−i) < −ε for each

i and si 6= s∗i . In terms of K, since each assessment is updated in a convex combination manner, for each n,
i and si, we have Qn,i,si ∈ [min{Q0,i,si ,mins−i πi(si, s−i)},max{Q0,i,si ,maxs−i πi(si, s−i)}], and thus we
pick K such that K > |maxi,si max{Q0,i,si ,maxs−i πi(si, s−i)} −mini,si min{Q0,i,si ,mins−i πi(si, s−i)}|.

18Note that for the SFPL model, c = 1.
19Such C exists due to the fact that the assessment, payoff function and γ are all bounded.

19



Roughly speaking, Proposition 8 says that in later periods, if the assessments are aligned
so that the assessment of the strict Nash equilibrium action becomes the highest for each
player, then with high probability, the process converges to the Nash equilibrium. Ianni
(2014) shows a similar result on the reinforcement learning model of Roth and Erev (1995)
and Erev and Roth (1998). Her result can be extended to the adaptive learning models
of Cominetti et al (2006), Funai (2019), Leslie and Collins (2005), Sarin and Vahid (1999)
and Yechiam and Busemeyer (2005, 2006).

Next, we show that assessments can be close to the payoff profile of any strict Nash
equilibrium with positive probability. Now, pick ε′ and K ′ such that π∗ = (πi(si, x

∗))i,si ∈
Bε′ := {Q = (Qi,si) : −K ′ < Qi,si −Qi,s∗i < −ε

′ for each si 6= s∗i } and Bε′ = {Q = (Qi,si) :
−K ′ ≤ Qi,si −Qi,s∗i ≤ −ε for each si 6= s∗i } ⊂ Q. Note that Bε′ is an open set.

Lemma 3. For any n, there exists n0 > n such that P (Qn0 ∈ Bε′) > 0.

Proof. See Appendix K.

Given Proposition 8 and Lemma 3, we can show that any strict Nash equilibria can be
realised with positive probability by the adaptive learning process.

Proposition 9. For any strict Nash equilibrium, the probability of the adaptive learning
process converging to the LQRE corresponding to the strict Nash equilibrium is positive.

Proof. It follows from Proposition 8 and Lemma 3.

Remark: Benäim and Hirsch (1999) show the same convergence result for the SFPL
process; we can show the result even when players are not required to know the payoff
function, as in the adaptive learning model of Sarin and Vahid (1999), for instance.

4.1 With committed players

In this section, we extend the result above to the case considered in Section 3, in which there
is a possibility that each adaptive player interacts with a committed player. In particular,
we consider the case in which there exist only one adaptive player and one committed
player for each type. As in the previous section, the updating rule of each assessment is
given as follows:

Qn+1,i,si = Qn,i,si + λn
∑
j∈N

1n,i,j

(
γn,i,si(

∑
s−i

πi(si, s−i)1n,j,s−i −Qn,i,si)
)
,

where γn,i,si =
∑

ti
γ′i,si,ti1n,i,ti . Note that each player updates her assessments only when

she is picked, and γn,i,si is the discount factor for the foregone/counterfactual payoff in-
formation for action si, where how much the information is discounted depends on which
action is actually chosen and γ′i,si = (γ′i,si,ti)ti , where γ′i,si,ti ∈ [0, 1] and γ′i,si,si = 1 for any
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i, si and ti. Note also that since we focus on the same matching structure as in Section 3,
we have

E[1n,j,s−i | Fn] =

{
xn,σ,j,s−i if j ∈ Nl,
x−i,s−i if j ∈ Nν ,

where without any confusion, x−i,s−i denotes the probability that the committed player
whose type is opposite to player i chooses action s−i.

Now recall the auxiliary payoff function π′, which is defined in Section 3.2 as follows:
for each (si, s−i),

π′i(si, s−i) := p(i,−i)|iπi(si, s−i) + (1− p(i,−i)|i)πi(si, x−i),

where for each i, p(i,−i)|i represents the conditional probability of adaptive players being
matched given that adaptive player i is chosen and x−i = (x−i,s−i).

Proposition 10. If π′i(s
∗
i , s
∗
−i) > π′i(si, s

∗
−i) for each i and si 6= s∗i , then there exists σ such

that for any σ > σ, the adaptive learning process with committed players converges to the
LQRE in ({1, 2}, S, π′) which corresponds to the strict Nash equilibrium (s∗i , s

∗
−i) under π′

with positive probability.

Proof. See Appendix L.

Note that in the case in which (i) players face the 2×2 game in Figure 3 with A,B > 0
and (ii) xi,s = 1 for each i, the auxiliary payoff π′ is given as follows:

π′i(s, s) =A,

π′i(s, t) =A(1− p(i,−i)|i),
π′i(t, s) =0 and

π′i(t, t) =Bp(i,−i)|i.

Therefore, (t, t) is a strict Nash equilibrium under π′ if Bp(i,−i)|i > A(1− p(i,−i)|i) for each

i, that is, if pmin := min{ p1,2
p1,2+p1,ν

,
p1,2

p1,2+p2,ν′
} > A

A+B for ν ∈ N2 and ν ′ ∈ N1 . In other

words, given each adaptive player being chosen, if the conditional probability of her playing
against the other adaptive player exceeds A

A+B , then the probability of adaptive players
following the equilibrium (t, t), which is different from that which committed players follow,
is positive. In the example of the pedestrians’ coordination game with p1,ν = p2,ν′ , if each
adaptive player interacts with the other adaptive player more often than the committed
player, then there is a chance that adaptive players in the end choose a different side from
that which the local residents choose.

Next, we consider a more general case in which committed players follow strict Nash
equilibrium t∗ = (t∗1, t

∗
2) while adaptive players may end up following strict Nash equilibrium
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s∗ = (s∗1, s
∗
2) in a finite two-player game. By Proposition 10, this may happen if

π′i(s
∗
i , s
∗
−i) = p(i,−i)|iπi(s

∗
i , s
∗
−i) + (1− p(i,−i)|i)πi(s∗i , t∗−i)

> p(i,−i)|iπi(si, s
∗
−i) + (1− p(i,−i)|i)πi(si, t∗−i) = π′i(si, s

∗
−i)

for each i and si 6= s∗i . In particular, this condition holds when

p(i,−i)|i >
πi(t

∗
i , t
∗
−i)− πi(s∗i , t∗−i)

πi(s∗i , s
∗
−i)− πi(t∗i , s∗−i) + πi(t∗i , t

∗
−i)− πi(s∗i , t∗−i)

for each i.20 That is, if the conditional probability of each adaptive player interacting
with the other adaptive player is greater than some normalised value of what each player
loses by unilaterally deviating from the equilibrium that the committed players follow and
shifting to a different equilibrium, then adaptive players may end up following the different
equilibrium with positive probability.

Lastly, note that this result does not require players to observe foregone/counterfactual
payoffs: this result holds in the models of not only SFPL and EWAL, but also payoff
assessment learning (Sarin and Vahid, 1999; Cominetti et al., 2010; Funai, 2019; Leslie and
Collins, 2005) and delta learning (Yechiam and Busemeyer, 2005, 2006).

20If we rearrange the inequality in Proposition 10, we obtain(
πi(s

∗
i , s
∗
−i)− πi(si, s∗−i) + πi(si, t

∗
−i)− πi(s∗i , t∗−i)

)
p(i,−i)|i > πi(si, t

∗
−i)− πi(s∗i , t∗−i)

for each i and si 6= s∗i . Note that (i) πi(s
∗
i , s
∗
−i)−πi(si, s∗−i) > 0 and (ii) if the term inside the parentheses on

the left-hand side of the inequality above is equal to zero, πi(s
∗
i , s
∗
−i)−πi(si, s∗−i)+πi(si, t∗−i)−πi(s∗i , t∗−i) = 0,

then πi(si, t
∗
−i) − πi(s∗i , t∗−i) < 0 and the inequality above holds for any p(i,−i)|i without contradiction. If

πi(si, t
∗
−i)− πi(s∗i , t∗−i) < 0 and πi(s

∗
i , s
∗
−i)− πi(si, s∗−i) + πi(si, t

∗
−i)− πi(s∗i , t∗−i) > 0, then

p(i,−i)|i ≥ 0 >
πi(si, t

∗
−i)− πi(s∗i , t∗−i)(

πi(s∗i , s
∗
−i)− πi(si, s∗−i) + πi(si, t∗−i)− πi(s∗i , t∗−i)

) ,
which holds for any p(i,−i)|i without contradiction. If πi(si, t

∗
−i) − πi(s

∗
i , t
∗
−i) < 0 and πi(s

∗
i , s
∗
−i) −

πi(si, s
∗
−i) + πi(si, t

∗
−i)− πi(s∗i , t∗−i) < 0, then

p(i,−i)|i ≤ 1 <
πi(si, t

∗
−i)− πi(s∗i , t∗−i)(

πi(s∗i , s
∗
−i)− πi(si, s∗−i) + πi(si, t∗−i)− πi(s∗i , t∗−i)

) ,
which also holds for any p(i,−i)|i without contradiction. Lastly, if πi(si, t

∗
−i)− πi(s∗i , t∗−i) ≥ 0,

p(i,−i)|i >
πi(si, t

∗
−i)− πi(s∗i , t∗−i)(

πi(s∗i , s
∗
−i)− πi(si, s∗−i) + πi(si, t∗−i)− πi(s∗i , t∗−i)

) ,
where the right-hand side of the inequality above takes the highest value when si = t∗i . Therefore, if the
inequality above holds at si = t∗i , then the condition in Proposition 10 also holds.

22



5 Literature Review

In this paper, we focus on the case in which adaptive players and committed players are
randomly matched to play a finite two-player game. Utilising the SFPL model, which
the model of this paper overlaps, Fudenberg and Takahashi (2011) investigate a similar
situation in which players in some populations are randomly matched and play a symmetric
two-player game in each period, in which they only observe their own outcomes. They also
consider the case in which only some of the players are chosen to be active in each period,
which causes asynchronous belief updating among players. The model in this paper shares
the same motivation as theirs: we also consider the case in which players are randomly
matched and update their assessments only when they are chosen. However, they do not
consider the possibility that players are matched with committed players, who never revise
their behaviour. Also, they investigate the impact of initial conditions on the long-run
outcome via simulations; in this paper, we provide a theoretical prediction of the impact
of the initial conditions for the assessments on the long-run behaviour of adaptive players.

In the game theory literature, there have already been arguments concerning the exis-
tence of players who commit to a specific action or behaviour. For instance, in the finitely
repeated prisoner’s dilemma, Kreps et al. (1982) theoretically investigate how the belief
in the existence of players who commit to a “tit-for-tat” strategy or cooperative strategy
affects the behaviour of rational players in the equilibrium model. In the experimental
literature, for instance, Andreoni and Miller (1993) test the model of Kreps et al. (1982)
and argue that there actually exist such committed players, and Andreoni (1995) suggests
that we should incorporate such players into learning models.

Also, in the evolutionary game theory and learning-in-games literature, there have
already been analyses which consider the existence of players who do not revise their be-
haviour. For instance, Skyrms and Pemantle (2000) simultaneously consider the evolutions
of networks among players and of strategies that players choose in some games via a re-
inforcement learning scheme. However, they assume that as the evolution of strategies
is slower than the evolution of the structure, each player always chooses a fixed strategy,
but which can be different among players, during the evolution of the networks among
players.21 Although motivation for the existence of the committed players is the same, in
their paper, they mainly focus on the evolution of the networks and each player does not
learn which strategy to choose in the game.

We can also consider some other reasons for players committing to some behaviour. If
we consider that the commitment is due to inertia, Chmura, Goerg and Selten (2012) show
that on the experimental investigation of several learning models in 2× 2 games, the rate
of the inertia of their lab agents tends to increase over time; they suggest incorporating the
inertia element into learning models. If we consider the commitment is due to some religious

21In some non-game-theory literature, Singh et al. (2012) for instance, the effect of the existence of
committed agents on the social networks and the spread of some behaviour or opinions on some social
networks are considered.
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or cultural restrictions, Carvalho (2017) investigates perturbed best-response dynamics
with two populations, each of which may face a restriction on its own action set, which
may cause a commitment on a specific action, in coordination games.

For the stochastic stability analysis of an imitative model, Sandholm (2012) incorpo-
rates committed players instead of mutation.22 He justifies the existence of the players in
the following manner: they may not change their behaviour if they think the game that
they are facing is less important than other problems or if they engage in other activi-
ties which require more cognitive capacities.23 He shows that in two-action games where
committed players focus on one action and are not negligible, the imitative players end
up choosing the action that the committed players choose.24 In this paper, however, we
also consider the case in which players play the game with more than two actions avail-
able and provide conditions for the interaction probabilities under which we obtain the
convergence/non-convergence to the equilibrium that committed players follow.

Block et al. (2019) also incorporate the existence of committed players in a learning
model in which they assume that each action is taken by committed players to guarantee
experimentation on all the actions. However, they do not provide any implication for how
the degree of the interaction with the committed players affects the long-run behaviour of
their learning process. Also, they assume that for each action, there is at least one player
who follows the action, which we do not need to assume in this paper. Also, our motivation
for introducing committed players is different from theirs: in this paper, we focus on the
way in which the equilibrium that committed players follow is transmitted to adaptive
players.

When we do not consider the existence of committed players, Benäım and Hirsch (1999)
show that in coordination games, the SFPL process converges to any strict Nash equilibrium
with positive probability. Ianni (2014) shows the same convergence result for a different
learning process, the reinforcement learning process of Roth and Erev (1995) and Erev
and Roth (1998). While we also show that the convergence result is obtained in other
adaptive learning models, we mainly focus on the condition under which the equilibrium
that committed players follow is transmitted to adaptive players.

6 Conclusion

In this paper, we consider the case in which adaptive players interact with not only other
adaptive players but also committed players, who never revise their behaviour. We first
consider the case in which adaptive players in a model overlapping those of SFPL (Fuden-

22Heller and Mohlin (2018) also consider the existence of committed players in prisoner’s dilemma games
but in the equilibrium model: players do not revise their behaviour via their experience.

23In the evolutionary game context, Sawa and Zusai (2019) consider the situation where each player faces
multiple games and investigate the evolutions of actions in the games simultaneously.

24Nakajima and Masuda (2015) also argue that in a similar evolutionary model, players in a fixed popu-
lation always end up following what committed players play if committed players follow one specific action.
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berg and Kreps, 1993) and EWAL (Camerer and Ho, 1999) learn to play the equilibrium
that committed players follow. In particular, we show that if the conditional probabili-
ties of each adaptive player interacting with other adaptive players are lower than some
normalised value of what each player loses by unilaterally deviating from the equilibrium,
then adaptive players learn to follow the equilibrium.

We also extend the argument to a general model overlapping those of SFPL, EWAL,
payoff assessment learning (Sarin and Vahid, 1999; Cominetti et al., 2010; Funai, 2019;
Leslie and Collins, 2005) and delta learning (Yechiam and Busemeyer, 2005, 2006) and
consider the case in which adaptive players may not end up following the equilibrium that
committed players follow. In particular, if the conditional probabilities of adaptive players
interacting with other adaptive players are greater than some normalised value of what
each player loses by unilaterally deviating from the equilibrium that committed players
follow and shifting to a different equilibrium, then adaptive players may end up following
the different equilibrium with positive probability.

Lastly, as an auxiliary result, we also show that when adaptive players of the general
model interact with each other only, if their behaviour is close to an equilibrium in later
periods, then their behaviour converges to the equilibrium with probability close to one.

Appendix A Proof of Proposition 1

Before providing a proof of Proposition 1, we first introduce the following notation relating

to LQRE. For each u ∈ {s, t}, let π∗u := πu,sx
∗
σ,s +πu,tx

∗
σ,t and x∗σ,u := eσπ

∗
u

eσπ
∗
s+eσπ

∗
t

denote the

equilibrium payoff and the equilibrium choice probability, respectively, for action u. Also,
let πd∗ := π∗t − π∗s denote the equilibrium payoff difference. Then, in this Appendix, we
prove the following statement:

Proposition. If pmax|A + B| |x
∗
σ,s|
|πd∗| < 1, then adaptive learning process xn,σ almost surely

converges to the LQRE x∗σ = (x∗σ,s, x
∗
σ,t) that the committed player follows and corresponds

to (s, s). In particular, if pmax
|A+B|
|A| < 1, then there exists σ such that for any σ > σ, the

convergence is obtained.

To utilise a stochastic approximation method, we first rewrite the updating rule of each
adaptive player in the following manner: for each i and u ∈ {s, t},

Qn+1,i,u =Qn,i,u + λn,i1n,i
(
πn,i,u −Qn,i,u

)
=Qn,i,u + λn,i(pi,−i + pi,ν)

(
πn,i,u −Qn,i,u +Mn,i,u

)
,

where

πn,i,u :=
pi,−i

pi,−i + pi,ν

∑
v∈{s,t}

πu,vxn,σ,−i,v +
pi,ν

pi,−i + pi,ν

∑
v∈{s,t}

πu,vxv
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and

Mn,i,u :=
1n,i

pi,−i + pi,ν

(
πn,i,u −Qn,i,u

)
−
(
πn,i,u −Qn,i,u

)
.

Note that for each i and u, {Mn,i,u} is a martingale difference sequence.
Since only two actions are available for each player, it is enough for the following

convergence analysis to focus on the assessment difference. In particular, let Qdn,i denote
the difference of player i’s assessments in period n: for s, t ∈ S and s 6= t,

Qdn,i := Qn,i,t −Qn,i,s.

Let Qdn = (Qdn,1, Q
d
n,2) be the assessment difference profile of adaptive players. Then each

player’s choice rule can be expressed as a function of the difference: let fσ : R→ R be the
choice rule of each player choosing s and defined as follows: for each i and Di ∈ R,

fσ(Di) :=
1

1 + exp(σDi)

and let xn,σ,i,s = fσ(Qdn,i) denote the choice probability of player i for action s in period n.
Note also that LQRE can also be described by the equilibrium payoff difference and

fσ. In particular, we have

πd∗ =(πt,s − πs,s)x∗σ,s + (πt,t − πs,t)x∗σ,t = −(A+B)x∗σ,s +B and

x∗σ,s =
1

1 + exp(σπd∗)
= fσ(πd∗) = fσ(−(A+B)x∗σ,s +B),

recalling that A = πs,s − πt,s and B = πt,t − πs,t.
To show the convergence, we express the updating rule of the payoff assessment differ-

ences in the following manner: for each n and i,

Qdn+1,i = Qdn,i + λn,i(pi,−i + pi,ν)
(
Gi(Q

d
n)−Qdn,i +Md

n,i

)
where

1. Md
n,i := Mn,i,t −Mn,i,s, which is still a martingale difference noise;

2. G = (Gi, G−i) : R2 → R2 is defined in the following manner: for each i and D =
(D1, D2) ∈ R2,

Gi(D) :=
(
p(i,−i)|i

∑
v∈{s,t}

πt,vxσ,−i,v + (1− p(i,−i)|i)
∑

v∈{s,t}

πt,vxv
)

−
(
p(i,−i)|i

∑
v∈{s,t}

πs,vxσ,−i,v + (1− p(i,−i)|i)
∑

v∈{s,t}

πs,vxv
)

=− (A+B)(p(i,−i)|ixσ,−i,s + (1− p(i,−i)|i)xs) +B,

where
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(a) p(i,−i)|i :=
pi,−i

pi,−i+pi,ν
and

(b) xσ,i,s := fσ(Di), xσ,i,t := 1− xσ,i,s and xσ,i := (xσ,i,s, xi,t) for each i.

Now to utilise the asynchronous stochastic approximation method of Tsitsiklis (1994),
we consider the following difference: for each i,

|Gi(D)− πd∗| =p(i,−i)|i|A+B||xσ,−i,s − x∗σ,s|
=kn,i|D−i − πd∗|,

where

kn,i :=

{
p(i,−i)|i|A+B| |fσ(D−i)−fσ(π

d∗)|
|D−i−πd∗|

if D−i 6= πd∗,

p(i,−i)|i|A+B| · |f ′σ,(πd∗)| otherwise.

Note also that in the first equality, we utilise the fact that xs = x∗σ,s, that is, the committed
player follows the LQRE x∗σ. Then, if there is a scholar β ∈ [0, 1) such that for D ∈ R2

and πd∗ := (πd∗, πd∗) ∈ R2,

||G(D)− πd∗||∞ ≤ β||D − πd∗||∞,

then by Theorem 3 of Tsitsiklis (1994), Qdn almost surely converges to πd∗, that is, xn,σ
almost surely converges to x∗σ. Note that (i) || · ||∞ denotes the maximum norm; (ii)
||(Q0,1, Q0,2)||∞ < Q0,max for some Q0,max ∈ R, as we assume that the initial assessments
are bounded; and (iii) payoffs, assessments and the martingale difference noises are all
bounded in each period. Therefore, Assumptions 1 to 3 of Tsitsiklis (1994) are all satisfied.

Now, since f is positive and decreasing on the whole domain and concave on the non-
positive domain, we know that for any D−i ∈ R,

|fσ(D−i)− fσ(πd∗)|
|D−i − πd∗|

≤ |fσ(πd∗)|
|πd∗|

and

|f ′σ(πd∗)| ≤ |fσ(πd∗)|
|πd∗|

for πd∗ < 0 and fσ(πd∗) > 1
2 .25 Then

|Gi(D)− πd∗| ≤p(i,−i)|i|A+B| |fσ(πd∗)|
|πd∗|

|D−i − πd∗|

≤pmax|A+B| |fσ(πd∗)|
|πd∗|

||D − πd∗||∞.

25Note that (i) for Q ≤ 0, the first inequality holds since f is a concave function on the non-positive

domain; (ii) for Q > 0, if the first inequality does not hold ( fσ(π
d∗)−fσ(Q)

Q−πd∗ > fσ(π
d∗)

−πd∗ ⇒ πd∗fσ(Q) >

fσ(πd∗)Q), then fσ(πd∗) or Q should be negative, which contradicts the assumptions and (iii) for the
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Therefore, by the asynchronous stochastic approximation method of Tsitsiklis (1994), if

pmax|A+ B|fσ(π
d∗)

|πd∗| = pmax|A+ B| x
∗
σ,s

|πd∗| < 1, we know that xn,σ almost surely converges to

the LQRE x∗σ.

Lastly, note that if σ → ∞, |A + B| x
∗
σ,s

|πd∗| approaches |A+B||A| . Therefore, there exists σ

such that for any σ > σ, the condition pmax|A+B| |x
∗
σ,s|
|πd∗| < 1 holds if pmax

|A+B|
|A| < 1.26

Appendix B Proof of Proposition 2

We consider the case in which action s strictly dominates action t, that is, A > 0 and B < 0.
Since (i) the payoff from action t is strictly lower than the one from action s for any action
of her opponent and (ii) for the payoff difference, −A or B is realised, we can show that for
any ε, there exists Nε such that for all n > Nε, Q

d
n,i ∈ [min{−A,B} − ε,max{−A,B}+ ε]

for each i.27 In particular, we focus on ε such that max{−A,B}+ε < 0 and n > Nε. Now,
since fσ is decreasing and concave on the negative domain, for D−i 6= πd∗,

|fσ(D−i)− fσ(πd∗)|
|D−i − πd∗|

=|f ′σ(DM )|

≤|f ′σ(max{−A,B}+ ε)|

for some DM ∈ (min{D−i, πd∗} − ε,max{D−i, πd∗} + ε). As max{−A,B} + ε < 0,
|f ′σ(max{−A,B} + ε)| → 0 as σ → ∞. Therefore, for any pmax ∈ [0, 1], we take σ such
that for any σ > σ

pmax|A+B||f ′σ(max{−A,B}+ ε)| < 1,

and thus

p(i,−i)|i|A+B| |fσ(D−i)− fσ(πd∗)|
|D−i − πd∗|

≤ pmax|A+B||f ′σ(max{−A,B}+ ε)| < 1.

second inequality, note that for Q < 0,

|f ′σ(Q)| =| σ exp (σQ)

(1 + exp (σQ))2
|

=|fσ(Q)| · | σ

1 + exp (−σQ)
|

≤|fσ(Q)| · | 1
1
σ
−Q
|

≤ |fσ(Q)|
|Q| .

26Since |fσ(π
d∗)|

|πd∗| →
1
|A| as σ →∞, for any ε, there exists σε such that for any σ > σε,

|fσ(πd∗)|
|πd∗| < 1

|A| (1+ε).

Now pick ε such that pmax|A + B| 1
|A| (1 + ε) < 1 (since pmax < |A|

|A+B| , there exists ε > 0 such that

pmax(1 + ε) < |A|
|A+B| ).

27See Lemma 1 for details.
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For D−i = πd∗, we have

p(i,−i)|i|A+B||f ′σ(πd∗)| ≤ pmax|A+B||f ′σ(max{−A,B}+ ε)| < 1.

Therefore, as in the argument of Proposition 1, we have the convergence for any pmax ∈
[0, 1].

Appendix C Proof of Proposition 3

We first characterise an LQRE by players’ payoff difference profiles and the logit choice
rule defined on the profiles. In detail, for each i, Di ∈ R(|Si|−1) and s∗i , which corresponds
to player i’s action at a strict Nash equilibrium (s∗i , s

∗
−i), let fσ = (fσ,i,si)si 6=s∗i : R(|Si|−1) →

R
(|Si|−1) be such that for each i and si 6= s∗i ,

fσ,i,si(Di) :=
eσDi,si

1 +
∑

ti 6=s∗i
eσDi,ti

.

Then an LQRE is characterised as follows: for each i and si,

x∗σ,i,si = fσ,i,si(π
d∗
i ),

where (i) πd∗i,si = πi(si, x
∗
σ,−i) − πi(s

∗
i , x
∗
σ,−i) represents the equilibrium payoff difference

between actions si and s∗i and (ii) πd∗i = (πd∗i,si)si 6=s∗i represents player i’s equilibrium payoff
difference profile.

Next, let function Fσ : ×iR(|Si|−1) → ×iR(|Si|−1) be such that for each i, D ∈
×iR(|Si|−1) and si 6= s∗i ,

Fσ,i,si(D) :=
∑

s−i=(sj)j 6=i

(πi(si, s−i)− πi(s∗i , s−i))
∏
j 6=i

fσ,j,sj (D).

Note that for si 6= s∗i and D ∈ ×iR(|Si|−1),

Fσ,i,si(D) =
∑

s−i 6=s∗−i

(πi(si, s−i)− πi(s∗i , s−i)− πi(si, s∗−i) + πi(s
∗
i , s
∗
−i))

∏
j 6=i

fσ,j,sj (D)

+ πi(si, s
∗
−i)− πi(s∗i , s∗−i).

Now, we restrict the domain of F to

D := ×i,si 6=s∗i [πi(si, s
∗
−i)− πi(s∗i , s∗−i)− ε, πi(si, s∗−i)− πi(s∗i , s∗−i) + ε]

for some ε > 0 such that πi(si, s
∗
−i)− πi(s∗i , s∗−i) + ε < 0 for each i and si. Note that since

(s∗i , s
∗
−i) is a strict Nash equilibrium, there exists such ε.
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Next, consider a sequence {σn} of precision parameters such that σn → ∞ as n →
∞. Since for any D ∈ D, i and si 6= s∗i , {fσn,i,si(D)}n is monotonically decreasing and
converging to zero and {fσn,i,si}n is a sequence of continuous functions on D, we know by
Dini’s theorem that fσn,i,si uniformly converges to zero on D: for any ε′ > 0, there exists
Nε′,si such that for any n > Nε′,si , we have fσn,i,si(D) < ε′ for any D ∈ D. In particular,
we pick N such that for any D ∈ D and n > N ,28∑

s−i 6=s∗−i

|πi(si, s−i)− πi(si, s∗−i)− πi(s∗i , s−i) + πi(s
∗
i , s
∗
−i)|

∏
j 6=i

fσn,j,sj (D) < ε.

Then for each n > N ,

Fσn,i,si(D) ≤πi(si, s∗−i)− πi(s∗i , s∗−i)

+
∑

s−i 6=s∗−i

|πi(si, s−i)− πi(si, s∗−i)− πi(s∗i , s−i) + πi(s
∗
i , s
∗
−i)|

∏
j 6=i

fσn,j,sj (D)

≤πi(si, s∗−i)− πi(s∗i , s∗−i) + ε

and

Fσn,i,si(D) ≥πi(si, s∗−i)− πi(s∗i , s∗−i)

−
∑

s−i 6=s∗−i

|πi(si, s−i)− πi(si, s∗−i)− πi(s∗i , s−i) + πi(s
∗
i , s
∗
−i)|

∏
j 6=i

fσn,j,sj (D)

≥πi(si, s∗−i)− πi(s∗i , s∗−i)− ε

Therefore, Fσn is a continuous mapping on the domain D to itself, which is nonempty,
compact and convex. Therefore, by Brouwer’s fixed point theorem, there exists D∗n ∈ D
such that Fσn(D∗n) = D∗n. Note that for each n, D∗n corresponds to an LQRE payoff

28For each j and sj , pick Nsj such that for n > Nsj ,

fσn,sj (D) ≤
( ε

maxi,si(
∑
s−i 6=s∗−i

|πi(si, s−i)− πi(si, s∗−i)− πi(s∗i , s−i) + πi(s∗i , s
∗
−i)|)

) 1
N−1

if maxi,si(
∑
s−i 6=s∗−i

|πi(si, s−i)−πi(si, s∗−i)−πi(s∗i , s−i)+πi(s
∗
i , s
∗
−i)|) 6= 0. Then N = maxi,si Nsi,ε′ , where

ε′ =
(

ε
maxi,si (

∑
s−i 6=s∗−i

|πi(si,s−i)−πi(si,s∗−i)−πi(s
∗
i ,s−i)+πi(s

∗
i ,s
∗
−i)|)

) 1
N−1 . If maxi,si(

∑
t−i 6=s∗−i

|πi(si, s−i) −

πi(si, s
∗
−i)− πi(s∗i , s−i) + πi(s

∗
i , s
∗
−i)|) = 0, we can pick any N .
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difference profile: for each i and si,

x∗σn,i,si :=fσn,i,si(D
∗
n,i) =

eσnD
∗
n,si

1 +
∑

ti 6=s∗i
eσnD

∗
n,ti

=
e
σn

∑
s−i

(πi(si,s−i)−πi(s∗i ,s−i))
∏
j 6=i fσn,j,sj (D

∗
n,−i)

1 +
∑

ti 6=s∗i
e
σn(

∑
s−i

(πi(ti,s−i)−πi(s∗i ,s−i))
∏
j 6=i fσn,j,sj (D

∗
n,−i))

=
eσnπi(si,x

∗
σn,−i)∑

ti
eσnπi(ti,x

∗
σn,−i)

.

Also, note that for each n > N , D∗n ∈ D and thus, for si 6= s∗i , x
∗
σn,i,si

= fσn,i,si(D
∗
n,i)→ 0

as σn →∞. That is, the sequence of LQREs {x∗σn} converges to the strict Nash equilibrium
s∗ = (s∗i )i as σn →∞, which shows that s∗ is LQRE approachable. Since we pick a strict
Nash equilibrium arbitrarily, the argument above holds for any strict Nash equilibrium.

Appendix D Proof of Proposition 4

Without any confusion, let i denote both a player and her type. For analytical purposes,
we first express the updating rule in the following manner: for each n, i and si,

Qn+1,i,si =Qn,i,si + λn,i
∑
j

1n,i,j

( ∑
s−i∈S−i

πi(si, s−i)1n,j,s−i −Qn,i,si
)

=Qn,i,si + αn,i

(
πn,i,si −Qn,i,si +Mn,i,si

)
,

where (i)αn,i := λn,ipi, (ii) πn,i,si :=
∑

s−i∈S−i πi(si, s−i)(
∑

j p(i,j)|iE[1n,j,s−i | Fn]) and
(iii)

Mn,i,si :=
1

pi

(∑
j

1n,i,j

( ∑
s−i∈S−i

πi(si, s−i)1n,j,s−i −Qn,i,si
)

−E[
∑
j

1n,i,j(
∑

s−i∈S−i

πi(si, s−i)1n,j,s−i −Qn,i,si) | Fn]
)
,

which is a martingale difference noise. Note that

E[1n,j,s−i | Fn] =

{
xn,σ,j,s−i for j ∈ Nl,
xσ,j,s−i for j ∈ Nν ,

31



and ∑
j

p(i,j)|iE[1n,j,s−i | Fn] =
∑
j∈Nl

p(i,j)|ixn,σ,j,s−i +
∑
j∈Nν

p(i,j)|ixσ,j,s−i

=
∑
j∈Nl

p(i,j)|ixn,σ,j,s−i + p(i,Nν |i)
∑
j∈Nν

p(i,j)|(i,Nν)xσ,j,s−i

=
∑
j∈Nl

p(i,j)|ixn,σ,j,s−i + (1− p(i,Nl)|i)x
∗
σ,−i,s−i

=:x′n,σ,−i,s−i .

In addition, we assume that for each i,∑
n

αn,i =∞ and
∑
n

(αn,i) <∞

with probability one, which holds when {λn,i} satisfies condition (1) in Section 2.
Now, we follow the argument in Appendix A: we define the payoff assessment difference

profile and utilise the stochastic approximation method of Tsitsiklis (1994). Let Qdn,i,si :=
Qn,i,si − Qn,i,s∗i denote the payoff assessment difference of actions si and s∗i in period n.
Note that for si 6= s∗i ,

Qdn+1,i,si =Qdn,i,si + αn,i(πn,i,si − πn,i,s∗i −Q
d
n,i,si − (Mn,i,si −Mn,i,s∗i

))

=Qdn,i,si + αn,i(π
d
n,i,si −Q

d
n,i,si +Md

n,i,si)

where Md
n,i,si

:= Mn,i,si −Mn,i,s∗i
, which is still a martingale difference noise, and

πdn,i,si :=πn,i,si − πn,i,s∗i
=

∑
s−i∈S−i

(πi(si, s−i)− πi(s∗i , s−i))x′n,σ,−i,s−i

=
∑

s−i 6=s∗−i

(πi(si, s−i)− πi(s∗i , s−i))x′n,σ,−i,s−i + (πi(si, s
∗
−i)− πi(s∗i , s∗−i))(1−

∑
s−i 6=s∗−i

x′n,σ,−i,s−i)

=
∑

s−i 6=s∗−i

(πi(si, s−i)− πi(s∗i , s−i)− πi(si, s∗−i) + πi(s
∗
i , s
∗
−i))x

′
n,σ,−i,s−i + (πi(si, s

∗
−i)− πi(s∗i , s∗−i)).

To utilise the asynchronous stochastic approximation method, letting G = (Gi,si) :
×iR|Si|−1 → ×iR|Si|−1 be such that for each si and D ∈ ×iR|Si|−1,

Gi,si(D) =
∑

s−i 6=s∗−i

(πi(si, s−i)− πi(s∗i , s−i)− πi(si, s∗−i) + πi(s
∗
i , s
∗
−i))

× (
∑
j∈Nl

p(i,j)|ifσ,j,s−i(D)− (1− p(i,Nl)|i)x
∗
σ,−i,s−i)

+ (πi(si, s
∗
−i)− πi(s∗i , s∗−i)),
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we consider the following difference:

|Gi,si(D)− πd∗i,si |

=|
∑
j∈Nl

p(i,j)|i
∑

s−i 6=s∗−i

(πi(si, s−i)− πi(s∗i , s−i)− πi(si, s∗−i) + πi(s
∗
i , s
∗
−i))(xσ,j,s−i − x∗σ,−i,s−i)|

≤
∑
j∈Nl

p(i,j)|ib
∑

s−i 6=s∗−i

|xσ,j,s−i − x∗σ,−i,s−i |,

where (i) xσ,j,s−i = fσ,j,s−i(Dj), (ii) b = maxi,si,s−i 6=s∗−i |πi(si, s−i)−πi(s
∗
i , s−i)−πi(si, s∗−i)+

πi(s
∗
i , s
∗
−i)| and (iii) for the equilibrium payoff difference profile πd∗ = (πd∗i,si), we have

πd∗i,si =
∑
s−i

(πi(si, s−i)− πi(s∗i , s−i))x∗σ,−i,s−i

=
∑

s−i 6=s∗−i

(
πi(si, s−i)− πi(s∗i , s−i)− πi(si, s∗−i) + πi(s

∗
i , s
∗
−i))x

∗
σ,−i,s−i + (πi(si, s

∗
−i)− πi(s∗i , s∗−i)

)
.

Now, if there exists some β ∈ [0, 1) such that for any D ∈ ×iR|Si|−1,

||G(D)− πd∗||∞ ≤ β||D − πd∗||∞,

then we can show the convergence by the method.
To obtain the inequality above, we consider the inequality between the difference

xσ,j,s−i−x∗σ,−i,s−i and ||D−πd∗||∞. In particular, we express the difference xσ,j,s−i−x∗σ,−i,s−i
as a telescoping sum and consider the inequality between each term of the sum and ||Qd−
πd∗||∞. To do so, givenDj = (Dj,s−i , Dj,t−i , ..., Dj,z−i) and πd∗−i = (πd∗−i,s−i , π

d∗
−i,t−i , ..., π

d∗
−i,z−i),

we define the sequence (D0,j , D1,j , ..., D|S−i|−1,j) such that

D0,j := (Dj,s−i , Dj,t−i , ..., Dj,z−i) = Dj ,

D1,j := (πd∗−i,s−i , Dj,t−i , ..., Dj,z−i),

...,

D|S−i|−2,j := (πd∗−i,s−i , ..., π
d∗
−i,y−i , Dj,z−i),

D|S−i|−1,j := (πd∗−i,s−i , ..., π
d∗
−i,y−i , π

d∗
−i,z−i) = πd∗−i.

Then the difference xσ,j,s−i − x∗σ,−i,s−i can be expressed as the following telescoping sum:

xσ,j,s−i − x∗σ,−i,s−i =

|S−i|−2∑
m=0

(fσ,−i,s−i(Dm,j)− fσ,−i,s−i(Dm+1,j)). (4)
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Next, we see an upper bound for each term of the summation in equation (4). For
m = 0,

|fσ,−i,s−i(D0,j)− fσ,−i,s−i(D1,j)| =
|fσ,−i,s−i(D0,j)− fσ,−i,s−i(D1,j)|

||D0,j −D1,j ||∞
||D0,j −D1,j ||∞

=
|fσ,−i,s−i(D0,−i)− fσ,−i,s−i(D1,j)|

|Dj,s−i − πd∗−i,s−i |
|Dj,s−i − πd∗−i,s−i |.

If Dj,s−i ≥ 0, we have fσ,−i,s−i(D0,−i) > fσ,−i,s−i(D1,−i), |Dj,s−i − πd∗−i,s−i | ≥ |π
d∗
−i,s−i | and

|fσ,−i,s−i(D0,j)− fσ,−i,s−i(D1,j)| ≤ |1− fσ,−i,s−i(D1,j)|. Then

|fσ,−i,s−i(D0,j)− fσ,−i,s−i(D1,j)| ≤
|1− fσ,−i,s−i(D1,j)|

|πd∗−i,s−i |
|Dj,s−i − πd∗−i,s−i |.

If Dj,s−i < 0, since fσ,−i,s−i is convex and increasing in Dj,s−i ,

fσ,−i,s−i(D0,j)− fσ,−i,s−i(D1,j)

Dj,s−i − πd∗−i,s−i
≤
fσ,−i,s−i((0, Dj,t−i , ..., Dj,z−i))− fσ,−i,s−i(D1,j)

−πd∗−i,s−i

≤
|1− fσ,−i,s−i(D1,j)|

|πd∗−i,s−i |

where fσ,−i,s−i((0, Dj,t−i , ..., Dj,z−i))− fσ,−i,s−i(D1,j) > 0. Therefore, for any Dj,s−i ,

|fσ,−i,s−i(D0,j)− fσ,−i,s−i(D1,j)| ≤
|1− fσ,−i,s−i(D1,j)|

|πd∗−i,s−i |
|Dj,s−i − πd∗−i,s−i |.

Next, for m 6= 0, let u−i be such that ||Dm,j −Dm+1,j ||∞ = |Dj,u−i − πd∗−i,u−i |. Then

|fσ,−i,s−i(Dm,j)− fσ,−i,s−i(Dm+1,j)| =
|fσ,−i,s−i(Dm,−i)− fσ,−i,s−i(Dm+1,−i)|

||Dm,j −Dm+1,j ||∞
||Dm,j −Dm+1,j ||∞

=
|fσ,−i,s−i(Dm,−i)− fσ,−i,s−i(Dm+1,−i)|

|Dj,u−i − πd∗−i,u−i |
|Dj,u−i − πd∗−i,u−i |.

If Dj,u−i ≤ 0, since fσ,−i,s−i is concave and decreasing in Dj,u−i , we have

|fσ,−i,s−i(Dm,−i)− fσ,−i,s−i(Dm+1,−i)|
|Dj,u−i − πd∗−i,u−i |

≤
|fσ,−i,s−i(πd∗−i,s−i , ..., π

d∗
−i,t−i , 0, Dj,v−i , ..., Dj,z−i)− fσ,−i,s−i(Dm+1,−i)|

|πd∗−i,u−i |

≤
fσ,−i,s−i(Dm+1,j)

|πd∗−i,u−i |
,
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as fσ,−i,s−i(π
d∗
−i,s−i , ..., π

d∗
−i,t−i , 0, Dj,v−i , ..., Dj,z−i)−fσ,−i,s−i(Dm+1,j) < 0. While if Dj,u−i >

0, since |Dj,u−i − πd∗−i,u−i | > |π
d∗
−i,u−i | and fσ,−i,s−i(Dm,j)− fσ,−i,s−i(Dm+1,j) < 0, we have

|fσ,−i,s−i(Dm,j)− fσ,−i,s−i(Dm+1,j)|
|Dj,u−i − πd∗−i,u−i |

<
|fσ,−i,s−i(Dm+1,j)|

|πd∗−i,u−i |
.

Therefore, for any Dj,u−i , we have

|fσ,−i,s−i(Dm,j)− fσ,−i,s−i(Dm+1,j)| ≤
|fσ,−i,s−i(Dm+1,j)|

|πd∗−i,u−i |
|Dj,u−i − πd∗−i,u−i |.

Now, given the argument above, we have the following inequality: for D = (Di,si)i,si 6=s∗i
and πd∗ = (πd∗i,si)i,si 6=s∗i ,

|xσ,j,s−i − x∗σ,−i,s−i | ≤
|S−i|−2∑
m=0

|fσ,−i,s−i(Dm,−i)− fσ,−i,s−i(Dm+1,−i)|

≤
( |1− fσ,−i,s−i(D1,j)|

|πd∗−i,s−i |
+

|S−i|−2∑
m=1

|fσ,−i,s−i(Dm+1,j)|
|πd∗−i,u−i |

)
||D − πd∗||∞.

Note that for each si 6= s∗i , π
d∗
i,si
→ πi(si, s

∗
−i) − πi(s

∗
i , s
∗
−i) < 0 and for each m ≥ 1,

fσ,−i,s−i(Dm,j)→ 0 as σ →∞.29 Therefore, for any ε, we can pick large σ such that30

|xσ,j,s−i − x∗σ,−i,s−i | ≤(
|1− fσ,−i,s−i(D1,j)|

|πd∗−i,s−i |
+

|S−i|−2∑
m=1

|fσ,−i,s−i(Dm+1,j)|
|πd∗−i,u−i |

)||D − πd∗||∞

≤ (1 + ε)

mini,si |πi(si, s∗−i)− πi(s∗i , s∗−i)|
||D − πd∗||∞.

29For m ≥ 1, Dm,j = (πd∗−i,s−i , ..., Dj,z−i), and thus the numerator of f converges to zero as σ diverges.
Note that f is expressed as follows:

fσ,−i,s−i(Dm,j) =
e
σπd∗−i,s−i

1 +
∑
t−i 6=s∗−i

e
σD−i,t−i

,

where, for the denominator, (i) D−i,t−i is πd∗−i,t−i or Dj,t−i , depending on m, and (ii) each e
σD−i,t−i diverges

to infinity, converges to zero, or converges to one. Even in the case where e
σD−i,t−i for each t−i converges

to zero, since there exists the term 1, fσ,−i,s−i(Dm,j) converges to zero as σ diverges.
30Note that

fσ,−i,s−i(Dm,j) =
e
σπd∗−i,s−i

1 +
∑
t−i 6=s∗−i

e
σD−i,t−i

< e
σπd∗−i,s−i

and σ does not depend on Dm,j .
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Therefore,

|Gi,si(D)− πd∗i,si | ≤
∑
j∈Nl

p(i,j)|ib
∑

s−i 6=s∗−i

|xσ,j,s−i − x∗σ,−i,s−i |

≤pmaxb
(1 + ε)(|S−i| − 1)

mini,si |πi(si, s∗−i)− πi(s∗i , s∗−i)|
||D − πd∗||∞

≤pmaxb
(1 + ε)M

mini,si |πi(si, s∗−i)− πi(s∗i , s∗−i)|
||D − πd∗||∞

where M := maxi(|Si| − 1). Now, if pmax|b| M
mini,si |πi(si,s

∗
−i)−πi(s∗i ,s∗−i)|

< 1, there exists ε

such that pmaxb
(1+ε)M

mini,si |πi(si,s
∗
−i)−πi(s∗i ,s∗−i)|

< 1. Thus, if we pick σ under which the above

inequality holds, then the adaptive learning process converges to the LQRE x∗σ.

Appendix E Proof of Lemma 1

Note that

Qn+1,i,si −Qn+1,i,s∗i
= (1− αn,i)(Qn,i,si −Qn,i,s∗i ) + αn,i(πi(si, xn,−i)− πi(s∗i , xn,−i) +Md

n,i,si)

=(1− αn,i)(1− αn−1,i)(Qn−1,i,si −Qn−1,i,s∗i )
+ αn−1,i(1− αn,i)(πi(si, xn−1,−i)− πi(s∗i , xn−1,−i) +Md

n−1,i,si)

+ αn,i(πi(si, xn,−i)− πi(s∗i , xn,−i) +Md
n,i,si)

= · · ·

=
( n∏
m=0

(1− αm,i)
)
(Q0,i,si −Q0,i,s∗i

) +
n∑

m=1

αm,i
( n∏
l=m+1

(1− αi,l)
)
(πi(si, xm,−i)− πi(s∗i , xm,−i) +Md

m,i,si),

where for m = n,
∏n
l=n+1(1 − αi,l) := 1. Note that

∏n
m=0(1 − αm,i) converges to zero as

n→ 0.31 Therefore, for any ε, we can take N1 such that for n > N1,( n∏
m=0

(1− αm,i)
)
|Q0,i,ti −Q0,i,si | <

ε

2
.

Also, note that as n→∞,
n∑

m=1

αm,i
( n∏
l=m+1

(1− αi,l)
)
Md
m,i,si → 0

31Since αn,i → 0 as n→ 0, there exists N such that for n > N , αn,i < 1. Note that
∏n
m=0(1− αm,i) =∏N−1

m=0(1− αm,i)
∏n
m=N (1− αm,i), and thus we focus on the latter term. In particular, we now show that

for n ≥ N and 0 < αn,i < 1,
∏n
m=N (1 − αm,i) converges to zero as n → ∞ when

∑
m αm = ∞. First,

note that
∑n
m=N αm,i <

∏n
m=N (1 + αm,i), and thus

∏n
m=N (1 + αm,i) diverges to infinity. Next, note that∏n

m=N (1 − αm,i)
∏n
m=N (1 + αm,i) ≤ 1, as (1 − αm,i)(1 + αm,i) = 1 − α2

m,i ≤ 1 for each m. Therefore,∏n
m=N (1− αm,i) ≤ 1∏n

m=N
(1+αm,i)

converges to zero.
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with probability one.32 Therefore, we take N2 such that for n > N2,
n∑

m=1

αm,i
( n∏
l=m+1

(1− αi,l)
)
Md
m,i,si <

ε

2
.

Since for any x−i,

πi(si, x−i)− πi(s∗i , x−i) ∈ [min
s−i

(πi(si, s−i)− πi(s∗i , s−i)),max
s−i

(πi(si, s−i)− πi(s∗i , s−i))],

for n > N := max{N1, N2},

Qn,i,si −Qn,i,s∗i ∈ (min
s−i

(πi(si, s−i)− πi(s∗i , s−i))− ε,max
s−i

(πi(si, s−i)− πi(s∗i , s−i)) + ε).

Note that s∗i strictly dominates si, maxs−i(πi(si, s−i)− πi(s∗i , s−i)) < 0. Therefore, we can
pick small enough ε such that maxs−i(πi(si, s−i)− πi(s∗i , s−i)) + ε) < 0.

Appendix F Proof of Proposition 5

Let s∗i be the strictly dominant action for player i. Then, from Lemma 1, for some η > 0
such that maxs−i(πi(si, s−i) − πi(s∗i , s−i)) + η) < 0, there exists N such that for n > N ,
Qdn,si ∈ (mins−i(πi(si, s−i)−πi(s∗i , s−i))−η,maxs−i(πi(si, s−i)−πi(s∗i , s−i))+η) for si 6= s∗i .
We now follow the argument of Appendix D, where the domain of G and f is restricted to
the set Hη :=

∏
i,si

[mins−i(πi(si, s−i)−πi(s∗i , s−i))−η,maxs−i(πi(si, s−i)−πi(s∗i , s−i))+η].
Consider the sequence (D0,j , D1,j , ..., D|S−i|−1,j) and equation (4) in Appendix D. For

m = 0 of equation (4), there exist Dj,s−i ∈ (Dj,s−i ∧ πd∗−i,s−i , Dj,s−i ∨ πd∗−i,s−i) and σε,j,s−i
such that for Dj = (Dj,s−i , ...., Dj,z−i) and σ > σε,j,s−i ,

|fσ,−i,s−i(D0)− fσ,−i,s−i(D1)|
|Dj,s−i − πd∗−i,s−i |

=| ∂

∂D−i,s−i
fσ,−i,s−i(Dj)|

≤| ∂

∂D−i,s−i
fσ,−i,s−i(D

′
j)|

≤ε,

where D′j = (maxs−i(πi(si, s−i) − πi(s
∗
i , s−i)) + η,Dj,u−i , ..., Dj,z−i). Note that on Hη,

∂
∂D−i,s−i

fσ,−i,s−i = σfσ,−i,s−i(1− fσ,−i,s−i) is increasing and positive and converges to 0 as

σ → ∞. For m > 0, there exist Dj,u−i ∈ (Dj,u−i ∧ πd∗−i,u−i , Dj,u−i ∨ πd∗−i,u−i) and σε,j,u−i
such that for Dj = (πd∗−i,s−i , ...., π

d∗
−i,s−i , Dj,u−i , Dj,v−i ...., Dj,z−i) and σ > σε,j,u−i ,

|fσ,−i,s−i(Dm)− fσ,−i,s−i(Dm+1)|
|Dj,u−i − πd∗−i,u−i |

=| ∂

∂D−i,u−i
fσ,−i,s−i(Dj)|

≤ε.
32For instance, see Lemma 1 of Tsitsiklis (1994).
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Note that ∂
∂D−i,u−i

fσ,−i,s−i = −σfσ,−i,u−ifσ,−i,s−i → 0 as σ → ∞ on Hη. Then for σ >

maxi,si σε,i,si ,

|Gi,si(D)− πd∗i,si | =|
∑
j

p(i,j)|i
∑

s−i 6=s∗−i

(πi(si, s−i)− πi(s∗i , s−i)− πi(si, s∗−i) + πi(s
∗
i , s
∗
−i))(xσ,j,s−i − x∗σ,−i,s−i)|

≤
∑
j

p(i,j)|ib
∑

s−i 6=s∗−i

|xσ,j,s−i − x∗σ,−i,s−i |

≤
∑
j

p(i,j)|ib
∑

s−i 6=s∗−i

|S−i|−2∑
m=0

|fσ,−i,s−i(Dm)− fσ,−i,s−i(Dm+1)|
|Dj,u−i − πd∗−i,u−i |

|Dj,u−i − πd∗−i,u−i |

≤pmaxb(|S−i| − 1)2ε||D − πd∗||∞

where b := maxi,si |πi(si, s−i)− πi(s∗i , s−i)− πi(si, s∗−i) + πi(s
∗
i , s
∗
−i)|, pmax := maxi p(i,Nl)|i.

Therefore, if we pick ε such that pmaxb(|S−i|−1)2ε < 1, the process converges to the strictly
dominant strategy equilibrium.

Appendix G Proof of Proposition 6

Let Q∗∗ be the limit assessment profile. Since the choice rule is continuous, the choice

probability also converges; let x∗∗σ,i,si = e
σQ∗∗i,si∑

ti∈Si
e
σQ∗∗

i,ti

be the limit choice probability for

action si. Since we assume that adaptive players’ limit choice probability of each action
coincides with that of committed players, we have x∗∗σ,i,si = xi,si for each i ∈ Nτ and si ∈ Si,
where without any confusion, i and −i also denote player i’s type and her opponent’s
type, respectively. Now, let Qi,si =

∑
s−i∈S−i π(si, s−i)x−i,s−i be the expected payoff given

committed players’ choice probability profile x = (xi,si). Then, we prove by contradiction
that Q = Q∗∗, which means that x corresponds to an LQRE given precision parameter
σ. Now we assume that Q 6= Q∗∗. Since we assume that the choice probability profile of
adaptive players almost surely converges to what committed players follow, the updating
rule can be expressed as follows: for each n, i and si,

Qn+1,i,si = Qn,i,si + αn,i
(
Qi,si −Qn,i,si +Mn,i,si + ηn,i,si

)
where ηn,i,si = πn,i,si − Qi,si is a noise which disappears with probability one.33 Then by
the asynchronous stochastic approximation method, the assessment profile almost surely
converges to Q, which contradicts the assumption.34

33πn,i,si =
∑
s−i∈S−i πi(si, s−i)(

∑
j∈Nl

p(i,j)|ixn,σ,j,s−i + (1 − p(i,Nl)|i)x−i,s−i) almost surely converges

to
∑
s−i∈S−i πi(si, s−i)x−i,s−i as the choice probability of adaptive players almost surely converges to x.

34For the stochastic approximation method with a noise which disappears with probability one, see
Appendix B of Funai (2022), for instance.
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Appendix H Proof for Proposition 7

Note that the updating rule is expressed as follows:

Qn+1,i,si =Qn,i,si + λn,i
∑
j

1n,i,j

( ∑
s−i∈S

πi(si, s−i)1n,j,s−i −Qn,i,si
)

=Qn,i,si + αn,i

(
πn,i,si −Qn,i,si +Mn,i,si

)
,

where instead of expressing πn,i,si as

πn,i,si =
∑

s−i∈S−i

πi(si, s−i)(
∑
j∈Nl

p(i,j)|ixn,σ,j,s−i + (1− p(i,Nl)|i)x−i,s−i),

we express it as follows:35

πn,i,si =
∑

s−i∈S−i

π′i(si, s−i)
∑
j∈Nl

p(i,j)|(i,Nl)xn,σ,j,s−i .

Therefore, by utilising the argument in Proposition 4 by changing (i) π to π′, (ii) p(i,j)|i to
p(i,j)|(i,Nl), (iii) p(i,Nν)|i to 0 and (iv) pmax = maxi

∑
j∈Nl p(i,j)|i to maxi

∑
j∈Nl p(i,j)|(i,Nl) =

1, we obtain the result.

35Note that

πn,i,si =
∑

s−i∈S−i

πi(si, s−i)(
∑
j∈Nl

p(i,j)|ixn,σ,j,s−i +
∑
k∈Nν

p(i,k)|ixk,s−i)

=
∑

s−i∈S−i

πi(si, s−i)(
∑
j∈Nl

p(i,j)|ixn,σ,j,s−i + p(i,Nν)|i
∑
k∈Nν

p(i,k)|(i,Nν)xk,s−i)

=
∑

s−i∈S−i

(
∑
j∈Nl

p(i,j)|iπi(si, s−i)xn,σ,j,s−i + p(i,Nν)|i
∑
k∈Nν

p(i,k)|(Nν ,i)πi(si, s−i)xk,s−i)

=
∑

s−i∈S−i

∑
j∈Nl

p(i,j)|iπi(si, s−i)xn,σ,j,s−i + p(i,Nν)|iπi(si, x−i)

=
∑

s−i∈S−i

∑
j∈Nl

p(i,j)|(i,Nl)p(i,Nl)|iπi(si, s−i)xn,σ,j,s−i

+ (1− p(i,Nl)|i)
∑

s−i∈S−i

∑
j∈Nl

p(i,j)|(i,Nl)πi(si, x−i)xn,σ,j,s−i

=
∑

s−i∈S−i

π′i(si, s−i)
∑
j∈Nl

p(i,j)|(i,Nl)xn,σ,j,s−i .
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Appendix I Proof for Lemma 2

Note that for Q ∈ Q = {Q ∈ R|S| : −K < Qi,si − Qi,s∗i < −ε for any i and si 6= s∗i } with
0 < ε < K,

fσ,i,si(Qi) =
eσQi,si∑
ti
eσQi,ti

converges to 1 if si = s∗i and 0 otherwise when σ → ∞. Let V : Q → [0,∞) be such that
for Q ∈ Q, V (Q) := ||Q − π∗||∞. Let si be such that ||Q − π∗||∞ = |Qi,si − π∗i,si |. Also,
without loss of generality, we assume that |Qi,si−π∗i,si | = Qi,si−π∗i,si . Note that for ti ∈ Si
and c ∈ R, c(Qi,ti − π∗i,ti) ≤ |c(Qi,ti − π

∗
i,ti

)| ≤ |c||(Qi,si − π∗i,si)| = |c|(Qi,si − π
∗
i,si

). Now

V̇ (Qt) =γn,i,si(πi(si, xt,σ,−i)−Qt,i,si)
=γn,i,si(πi(si, xt,σ,−i)− π

∗
i,si − (Qt,i,si − π∗i,si))

=γn,i,si(πi(si, xt,σ,−i)− πi(si, x
∗
σ,−i)− (Qt,i,si − πi(si, x∗σ,−i)),

where x∗σ,−i = (x∗σ,−i,s−i)s−i and x∗σ,−i,s−i = e
σπ∗−i,s−i∑
ti
e
σπ∗−i,t−i

. Note that

πi(si, xt,σ,−i)− πi(si, x∗σ,−i) =
∑
s−i

π(si, s−i)(xt,σ,−i,s−i − x∗σ,−i,s−i)

=
∑
s−i

π(si, s−i)(
∑
u−i

∂

∂Q−i,u−i
fσ,−i,s−i(Q

′
−i)(Qt,−i,u−i − π∗−i,u−i))

for some c ∈ (0, 1) and Q′−i = cQ−i + (1 − c)π∗−i. Since Q′−i ∈ Q−i := {Q−i ∈ R|S−i| :
−K < Q−i,s−i −Q−i,s∗−i < −ε for si 6= s∗i },

V̇ (Qt) =γn,i,si(πi(si, xt,σ,−i)− πi(si, x
∗
σ,−i)− (Qt,i,si − π∗i,si))

≤γn,i,si((
∑
s−i

∑
u−i

|πi(si, s−i)
∂

∂Q−i,u−i
fσ,−i,s−i(Q

′
−i)| − 1)(Qt,i,si − π∗i,si)).

Note that (i) for u−i = s−i,

∂

∂Q−i,s−i
fσ,−i,s−i(Q

′
−i) =

σe
σQ′−i,s−i (

∑
v−i

e
σQ′−i,v−i )− σeσQ

′
−i,s−ie

σQ′−i,s−i

(
∑

v−i
e
σQ′−i,v−i )2

=σfσ,−i,s−i(Q
′
−i)(1− fσ,−i,s−i(Q′−i))
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and (ii) for u−i 6= s−i,

∂

∂Qu−i
fσ,−i,s−i(Q

′
−i) =− σe

σQ′s−ie
σQ′u−i

(
∑

v−i
e
σQ′v−i )2

=− σfσ,−i,s−i(Q′−i)fσ,−i,u−i(Q′−i).

Now, we show that for | ∂
∂Q−i,s−i

fσ,−i,s−i(Q
′
−i)| in both cases (i) and (ii), there exist

upper bounds which do not depend on Q ∈ Q and converge to zero as σ goes to zero, so
that there exists σ such that for any σ > σ and Q′ ∈ Q,

(
∑
s−i

∑
u−i

|πi(si, s−i)
∂

∂Q−i,u−i
fσ,−i,s−i(Q

′
−i)| − 1) < 0,

and thus V becomes a Lyapunov function.
First, when s−i 6= s∗−i,

fσ,−i,s−i(Qi) =
eσQ−i,s−i∑
t−i

eσQ−i,t−i

=
e
σ(Q−i,s−i−Q−i,s∗−i )

1 +
∑

t−i 6=s∗−i
e
σ(Q−i,t−i−Q−i,s∗−i )

<
e−σε

1 + (|Si| − 1)e−σK

and

σfσ,−i,s−i(Q−i) <
σ

eσε + (|Si| − 1)eσ(ε−K)
,

where the right-hand side of the inequality above converges to 0 as σ goes to infinity.
Therefore, since both s−i and u−i cannot be s∗−i, for the case (i) in which s−i 6= s∗−i and
case (ii), σ

eσε+(|Si|−1)eσ(ε−K) is the upper bound.

Next, for the case (i) in which s−i = s∗−i, we have

σ(1− f−i,s∗i (Qi)) =
∑

t−i 6=s∗−i

σfσ,−i,t−i(Q−i)

<(|Si| − 1)
σ

eσε + (|Si| − 1)eσ(ε−K)
,

where the right-hand side of the inequality above converges to zero as σ goes to infinity.
Therefore, for the case (i) in which s−i = s∗−i, (|Si| − 1) σ

eσε+(|Si|−1)eσ(ε−K) is the upper

bound.
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Appendix J Proof for Proposition 8

By Proposition 2, there exists σ such that on Q, V becomes a Lyapunov function. To
utilise Corollary 12 of Borkar (2008), we also need to show that (i) we can pick n0 such
that (Cλn0 + cK1CLb(n0))c, where K1 is some constant, is small enough and (ii) we can
pick some constant K2 such that ||Mm||∞ ≤ K2(1 + ||Qm−1||∞) for m ≥ 1. Regarding (i),
since λn and b(n) converge to zero as n diverges, there exists such n0. Regarding (ii), since
Mn is bounded for each n, we can pick K2 large enough so that the inequality holds.

Appendix K Proof for Lemma 3

Consider the event E defined by the following steps.

• Step 1: each player i except player 1 plays s∗i and player 1 plays all of her actions
except s∗1 until some period n1 > n such that Qn1,1,s1 < π∗1,s∗1

− 1
2ε
′ for each s1 6= s∗1.

• Step 2: each player i except player 2 plays s∗i and player 2 plays all of her actions
except s∗2 until some period n2 > n1 such that Qn2,2,s2 < π∗2,s∗2

− 1
2ε
′ for each s2 6= s∗2.

• Step 3 to N : follow the same procedure as Step 1 and Step 2 for all the remaining
players.

• Step N+1: players play s∗ = (s∗i )i until some period n0 > nN such that (i) Qn0,i,s∗i
∈

(π∗i,s∗i
− 1

2ε
′, π∗i,s∗i

+ 1
2ε
′) for each i and si and (ii) Qn0,i,si < π∗i,s∗i

− 1
2ε
′ for each i and

si 6= s∗i .

Note that if γ′i,si,s∗i
= 0 for any i and si 6= s∗i , then at Step N + 1, s∗ is repeatedly

played until Qn,i,s∗i reaches the interval for each i. If γ′i,si,s∗i
6= 0 for some i and si, Qn,i,si

may be adjusted and become greater than or equal to π∗i,s∗i
− 1

2ε
′ when player i chooses

s∗i and some player j > i chooses sj 6= s∗j after Step i. In this case, at Step N + 1, s∗

is repeatedly played until both conditions (i) and (ii) at Step N + 1 are satisfied. Note
that for any assessment profile in period n, this event happens in some finite period as
the sets of players and actions are finite. Note also that since the probability of any
action profile s = (si)i being chosen in each period given the assessment profile is greater
than

∏
i fσ,i,si(Qi) > 0, where for Q

i
= (Q

i,ui
)ui , Qi,si

:= min{Q0,i,si ,mint−i πi(si, t−i)}
and Q

i,ti
:= max{Q0,i,ti ,maxt−i πi(ti, t−i)} for ti 6= si, we have P (E) > 0. Lastly, since

E ⊂ {Qn0 ∈ Bε′}, P (Qn0 ∈ Bε′) > 0.
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Appendix L Proof for Proposition 10

Note that the updating rule can be expressed as follows:

Qn+1,i,si =Qn,i,si + λn
∑
j∈N

1n,i,j

(
γn,i,si(

∑
s−i∈S−i

πi(si, s−i)1n,j,s−i −Qn,i,si)
)

=Qn,i,si + λnpiγn,i,si(
∑

s−i∈S−i

π′i(si, s−i)xn,σ,−i,s−i −Qn,i,si +M ′n,i,si),

where xn,σ,−i,si denotes the probability that player i’s adaptive opponent chooses action
s−i in period n and

M ′n,i,si :=
1

piγn,i,si

(∑
j∈N

1n,i,j

(
γn,i,si(

∑
s−i∈S−i

πi(si, s−i)1n,j,s−i −Qn,i,si)
)

−E[
∑
j

1n,i,j

(
γn,i,si(

∑
s−i∈S−i

πi(si, s−i)1n,j,s−i −Qn,i,si)
)
| Fn]

)
.

The remaining proof follows the argument in Proposition 9.
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