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Abstract

This paper presents a theoretical analysis of the consumption-investment
problem and CAPMs based on homothetic robust Epstein–Zin utility
under a quadratic security market model in which interest rates, the
market price of risk, the variances and covariances of asset returns,
and inflation rates are stochastic. Robust investors first determine
the “conditional worst-case probability” of minimizing utility for a
given consumption and investment and then determine the optimal
consumption and investment that maximizes utility under the con-
ditional worst-case probability. The optimal consumption-investment
decisions implicitly determine the worst-case probability. We clarify
the theoretical structures of i) the budget constraint and market price
of risk under the conditional worst-case probability; ii) the market price
of risk under the worst-case probability; iii) the CAPMs; and iv) the
CAPMs under the worst-case probability.

Keywords Homothetic robust utility, Consumption-investment prob-
lem, CAPM, Stochastic volatility, Stochastic inflation

JEL classification C61, D81, G11

1 Introduction

Two issues should be considered when studying consumption and investment
problems. The first is to incorporate into security market models the stylized
facts that interest rates, the market price of risk, the variances and covari-
ances of asset returns, and inflation rates are stochastic and mean-reverting.
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The second is to assume utility that accounts for Knightian uncertainty,
as recognized during the global financial crisis. Regarding the first issue,
Batbold, Kikuchi, and Kusuda (2022) examine the consumption-investment
problem for long-term investors with constant relative risk aversion (CRRA)
utility under a quadratic security market model that satisfies the above styl-
ized facts. The class of quadratic models, a generalization of affine models
presented by Duffie and Kan (1996), has been independently developed by
Ahn, Dittmar, and Gallant (2002) and Leippold and Wu (2002).1 Batbold
et al. (2022) derive an optimal portfolio decomposed into myopic demand,
intertemporal hedging demand, and inflation-deflation hedging demand, and
show that all three types of demand are nonlinear functions of the state vec-
tor. Their numerical analysis presents the nonlinearity and significance of
market timing effects. Such nonlinearity is attributed to the stochastic vari-
ances and covariances of asset returns, while such significance is attributed
to inflation-deflation hedging demand in addition to myopic demand.

Kikuchi and Kusuda (2023a) consider both these issues and study the
consumption-investment problem for long-term investors with homothetic2

robust utility under the quadratic security market model of Batbold et al.
(2022). Investors with homothetic robust utility, introduced by Maenhout
(2004) and theoretically justified by Skiadas (2003), regard the “base prob-
ability” as the most likely probability; however, they also consider other
probabilities because the true probability is unknown. Homothetic robust
utility is characterized by relative risk aversion and relative ambiguity aver-
sion, which represents the investor’s degree of distrust of the base proba-
bility. Since a nonlinear term appears in the partial differential equation
(PDE) for the indirect utility function, Kikuchi and Kusuda (2023a) use
a linear approximation method to derive an approximate optimal portfo-
lio. Their numerical analysis confirms the nonlinearity and significance of
market timing effects.

Investors with homothetic robust utility first determine the “conditional
worst-case probability” of minimizing utility for a given consumption and
investment and then determine the optimal consumption and optimal in-
vestment that maximize utility under the conditional worst-case probabil-
ity. These optimal consumption-investment decisions implicitly determine
the worst-case probability. Homothetic robust utility is used for robust port-
folio studies such as Skiadas (2003), Maenhout (2006), Liu (2010), Branger,
Larsen, and Munk (2013), Munk and Rubtsov (2014), Yi, Viens, Law, and
Li (2015), Batbold, Kikuchi, and Kusuda (2019), and Kikuchi and Kusuda

1Quadratic models are adopted in security pricing studies (Chen, Filipović, and Poor
(2004), Kim and Singleton (2012), Filipović, Gourier, and Mancini (2016)) and in optimal
consumption-investment studies (Batbold et al. (2022), Kikuchi and Kusuda (2023b)).

2A utility function U is homothetic if, for any consumption plan c and c̃, and any scaler
α > 0, U(αc̃) ≥ U(αc) ⇔ U(c̃) ≥ U(c).
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(2023a)3. These studies have done little to elucidate the theoretical struc-
tures of i) the budget constraint equation and market price of risk under
the conditional worst-case probability; ii) the market price of risk under
the worst-case probability; iii) the capital asset pricing formula in general
equilibrium (i.e., the CAPMs); and iv) the CAPMs under the worst-case
probability.

Homothetic robust utility can be interpreted as homothetic robust CRRA
utility in the sense that homothetic robust utility converges to CRRA util-
ity as ambiguity aversion approaches zero. CRRA utility does not sepa-
rate relative risk aversion and the elasticity of intertemporal substitution
(EIS). Epstein–Zin utility (Epstein and Zin (1989)) generalizes CRRA util-
ity and separates these properties while retaining homotheticity. Kikuchi
and Kusuda (2023b) present “homothetic robust Epstein–Zin (HREZ) util-
ity” and study the finite-time consumption-investment problem under the
quadratic security market model of Batbold et al. (2022). Their research
aims to quantitatively evaluate the market timing effects of the optimal
robust portfolio. By contrast, to clarify the above theoretical issues, we
examine the consumption-investment problem under the quadratic security
market model, assuming infinitely lived investors with HREZ utility.

The main results of this study are summarized as follows. First, we intro-
duce the optimal consumption-investment problem based on HREZ utility
and derive the conditional worst-case probability for a given consumption
and “investment,” which is the product of the volatility matrix of risky
securities and the vector of the fractions of wealth invested in those risky
securities. Comparing the budget constraint equation under the conditional
worst-case probability with the budget constraint equation under the base
probability, we find that the volatility of wealth is invariant, while the mar-
ket price of risk in the return on wealth is replaced by the “investor price
of risk under the conditional worst-case probability” discounted from the
market price of risk. Since the discount from the market price of risk here is
permanent, this implies that investors with HREZ utility assume long-term
stagnation rather than increased volatility as the worst-case scenario.

Second, we derive the optimal consumption and investment, both of
which depend on the unknown function that comprises the indirect utility
function, as well as the nonlinear PDE for the unknown function. We show
that the optimal investment is a weighted average of the market price of risk
and the “investor hedging value of intertemporal uncertainty.” The weights
are relative risk tolerance and one minus relative risk tolerance, respectively.
We also show that the “investor price of risk under the worst-case probabil-
ity” is a weighted average of the market price of risk and the investor hedging
value of intertemporal uncertainty. The weights are the ratio of risk aver-

3With the exception of Kikuchi and Kusuda (2023a), these ignore some of the above
stylized facts in the securities market.
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sion to uncertainty aversion and that of ambiguity aversion to uncertainty
aversion, respectively. Interestingly, the optimal investment and investor
price of risk under the worst-case probability are both weighted averages
of the market price of risk and the investor hedging value of intertemporal
uncertainty.

Third, we derive robust versions of the ICAPM based on Epstein–Zin
utility and of the two-factor CAPM (Duffie and Epstein (1992), Fisher
and Gilles (1999)), which is a linear combination of the consumption-based
CAPM and market portfolio-based CAPM. We also show that the market
price of risk under the worst-case probability in equilibrium is consistent
with the market price of risk based on Epstein–Zin utility.

Finally, we derive the exact solution of the PDE for the unit EIS case and
a loglinear approximate solution of the PDE for the general case. We then
present the approximate optimal portfolio and approximate CAPM based
on the loglinear approximate solution.

The remainder of this paper is organized as follows. In Section 2, we
review the quadratic security market model and real budget constraint. In
Section 3, we introduce the control problem based on HREZ utility and de-
rive the conditional worst-case probability. In Section 4, we theoretically
analyze the optimal investment and investor price of risk under the worst-
case probability. In Section 5, we derive two types of CAPMs. In Section 6,
we derive the optimal portfolio for the unit EIS case and an approximate op-
timal portfolio for the general case. In Section 7, we address future research
directions.

2 Quadratic Security Market Model and Real Bud-
get Constraint

In this section, we review the quadratic security market model and real
budget constraint according to Batbold et al. (2022).

2.1 Quadratic Security Market Model

We consider frictionless US markets over the period [0,∞). Investors’ com-
mon subjective probability and information structure are modeled by a com-
plete filtered probability space (Ω,F ,F,P), where F = (Ft)t∈[0,∞) is the nat-
ural filtration generated by an N -dimensional standard Brownian motion
Bt. We denote the expectation operator under P by E and the conditional
expectation operator given Ft by Et.

There are markets for a consumption commodity and securities at every
date t ∈ [0,∞), and the consumer price index pt is observed. The traded
securities are the instantaneously nominal risk-free security called the money
market account and a continuum of zero-coupon bonds and zero-coupon
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inflation-indexed bonds whose maturity dates are (t, t + τ∗]. Each zero-
coupon bond has a 1 US dollar payoff at maturity and each zero-coupon
inflation-indexed bond has a pT US dollar payoff at maturity T . Moreover,
J types of non-bond indices (e.g., stock indices and REIT indices) are traded.

At every date t, Pt, P
T
t , Q

T
t , and S

j
t denote the USD prices of the money

market account, zero-coupon bond with maturity date T , zero-coupon inflation-
indexed bond with maturity date T , and j-th index, respectively. Let A′

and I denote the transpose of A and N ×N identity matrix, respectively.
We assume the following quadratic latent factor security market model.

Assumption 1. Let (ρ0, ι0, δ0j , σ0j) and (λ, ρ, ι, λI , δj , σj) denote the scalers
and N -dimensional vectors, respectively.

1. The state vector process Xt satisfies the following stochastic differential
equation (SDE):

dXt = −KXt dt+ I dBt, (1)

where K is an N × N lower triangular matrix such that K + K′ is
positive-definite.

2. The market price λt of risk and instantaneous nominal risk-free rate
rt are provided as

λt = λ+ ΛXt, (2)

rt = ρ0 + ρ′Xt +
1

2
X ′
tRXt, (3)

where Λ is an N×N matrix such that K+Λ is regular, R is a positive-
definite symmetric matrix, and4

ρ0 ≥
1

2
ρ′R−1ρ. (4)

3. The consumer price pt satisfies

dpt
pt

= it dt+ (σpt )
′dBt, p0 = 1, (5)

where it and σ
p
t are given by

it = ι0 + ι′Xt +
1

2
X ′
tIXt, (6)

σpt = σp +ΣpXt. (7)

For eq.(6), I is a positive-definite symmetric matrix and a matrix R̄
defined by

R̄ = R− I +Σ′
pΛ + Λ′Σp (8)

is positive-definite.

4Condition (4) ensures that the instantaneous nominal risk-free rate is non-negative.
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4. The dividend of the j-th index is given by

Dj
t =

(
δ0j + δ′jXt +

1

2
X ′
t∆jXt

)
exp

(
σ0jt+ σ′jXt +

1

2
X ′
tΣjXt

)
,

(9)
where (δ0j , δj ,∆j) is such that ∆j is a positive-definite symmetric ma-
trix and5

δ0j ≥
1

2
δ′j∆

−1
j δj . (10)

Note that δ0j + δ′jXt +
1

2
X ′
t∆jXt is the instantaneous dividend.

5. Markets are complete and no-arbitrage.

2.2 No-arbitrage Dynamics of Security Price Processes and
Real Budget Constraint

We define the real market price λ̄t of risk and real instantaneous interest
rate r̄t by

λ̄t = λt − σpt , (11)

r̄t = rt − it + λ′tσ
p
t . (12)

Note that the real market price of risk is an affine function of Xt, and r̄t is
a quadratic function of Xt:

λ̄t = λ̄+ Λ̄Xt, (13)

r̄t = ρ̄0 + ρ̄′Xt +
1

2
X ′
tR̄Xt, (14)

where R̄ is given by eq.(8) and

λ̄ = λ− σp, (15)

Λ̄ = Λ− Σp, (16)

ρ̄0 = ρ0 − ι0 + λ′σp, (17)

ρ̄ = ρ− ι+ Λ′σp +Σ′
pλ. (18)

Batbold et al. (2022) show the SDEs of no-arbitrage security price pro-
cesses.

Lemma 1. Let τ = T − t denote the time to maturity of bond P Tt or
inflation-indexed bond QTt . Under Assumption 1, the dynamics of security
price processes satisfy the following:

1. The SDEs of security price processes:

5Condition (10) ensures that dividends are non-negative processes.
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(i) The default-free bond with time τ to maturity:

dP Tt
P Tt

=
(
rt + (σ(τ) + Σ(τ)Xt)

′λt
)
dt+(σ(τ)+Σ(τ)Xt)

′ dBt, P TT = 1,

where

dΣ(τ)

dτ
= Σ(τ)2 − (K + Λ)′Σ(τ)− Σ(τ)(K + Λ)−R, Σ(0) = 0,

dσ(τ)

dτ
= −(K + Λ− Σ(τ))′σ(τ)− (Σ(τ)λ+ ρ), σ(0) = 0.

(ii) The default-free inflation-indexed bond with time τ to maturity:

dQTt
QTt

=

(
rt +

(
σQ(τ) + σp + (ΣQ(τ) + Σp)Xt

)′
λt

)
dt

+
(
σQ(τ) + σp + (ΣQ(τ) + Σp)Xt

)′
dBt, QTT = pT ,

where

dΣQ(τ)

dτ
= ΣQ(τ)

2−(K+Λ̄)′ΣQ(τ)−ΣQ(τ)(K+Λ̄)−R̄, ΣQ(0) = 0,

dσQ(τ)

dτ
= −(K+Λ̄−ΣQ(τ))

′σQ(τ)− (ΣQ(τ)λ̄+ ρ̄), σQ(0) = 0.

(iii) The j-th index:

dSjt +Dj
tdt

Sjt
=
(
rt + (σj +ΣjXt)

′λt
)
dt+ (σj +ΣjXt)

′ dBt,

where

Σ2
j − (K + Λ)′Σj − Σj(K + Λ) +∆j −Rj = 0,

σj = (K + Λ− Σj)
′−1(δj − ρ− Σjλ).

Proof. See Appendix A.1 in Batbold et al. (2022).

2.3 Real Budget Constraint

We assume that the investor invests in Pt(τ1), · · · , Pt(τJ), Qt(τQ1 ), · · · , Qt(τQK),

S1
t , · · · , SLt where J+K+L = N . Let Φ(τ) and φQt (τ

Q) denote the portfolio
weight on the default-free bond with τ -time to maturity and the default-free
inflation-indexed bond with τQ-time to maturity, respectively. Let Φlt de-
note the portfolio weight on the l-th index. Let Φt and Σ(Xt) denote the
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portfolio weight vector and volatility matrix, respectively. Φt and Σ(Xt) are
expressed as

Φt =



Φt(τ1)
...

Φt(τJ)

ΦQt (τ
Q
1 )

...

ΦQt (τ
Q
K)

Φ1
t
...
ΦLt


, Σ(Xt) =



(σ(τ1) + Σ(τ1)Xt)
′

...
(σ(τJ) + Σ(τJ)Xt)

′

(σq(τ
Q
1 ) + Σq(τ

Q
1 )Xt)

′

...

(σq(τ
Q
K) + Σq(τ

Q
K)Xt)

′

(σ1 +Σ1Xt)
′

...
(σL +ΣLXt)

′


. (19)

Let ct and W̄t denote the consumption process and real wealth process,
respectively. Batbold et al. (2022) show the real budget constraint.

Lemma 2. The real budget constraint given (ct, ς̄
W
t ) is expressed as

dW̄t

W̄t
=

(
r̄t + ς̄ ′λ̄t −

ct
W̄t

)
dt+ ς̄ ′ dBt, (20)

where
ς̄t = Σ(Xt)

′Φt − σpt . (21)

Proof. See Appendix A.2 in Batbold et al. (2022).

Remark 1. The real budget constraint stands for the instantaneous real rate
of return on wealth. Eq.(20) shows that increasing the investment in the
measure of ς̄t increases the volatility of wealth, while the real expected excess
return on wealth increases in proportion to ς̄t. Thus, the (real) market price
λ̄t of risk is interpreted as the price per unit of investment for all investors.

We call ς̄t the investment control. Let Xt = (W̄t, X
′
t)
′ and let W̄0 > 0.

We call the control satisfying budget constraint (20) with initial state X0 =
(W̄0, X

′
0)

′ the admissible control and denote the set of admissible controls
by B(X0).

3 Robust Control Problem and Conditional Worst-
case Probability

Following Kikuchi and Kusuda (2023b), we introduce the robust cosumption-
investment problem based on HREZ utility. Then, we show the conditional
worst-case probability for a given control.
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3.1 HREZ Utility and Robust Control Problem

We begin with the following continuous-time version (Duffie and Epstein
(1992)) of Epstein–Zin utility:

Vt = Et

[∫ ∞

t
f(cs, Vs)ds

]
, (22)

where f̃ denotes the normalized aggregator of the form:

f(c, v) =


β

1− ψ−1
c1−ψ

−1(
(1− γ)v

)1− 1−ψ−1

1−γ − β(1− γ)

1− ψ−1
v, if ψ ̸= 1,

β(1− γ)v log c− βv log
(
(1− γ)v

)
, if ψ = 1,

(23)
where β > 0 is the subjective discount rate, γ > 1 is relative risk aversion,
and ψ > 0 is the EIS.

While an investor with robust utility regards probability P (“base prob-
ability”) as the most likely probability, they also consider other probabilities
because the true probability is unknown. Thus, the investor assumes set P of
all equivalent probability measures6 as alternative probabilities. According
to Girsanov’s theorem, any equivalent probability measure is characterized
by a measurable process ξt with Novikov’s integrable condition as the fol-
lowing Radon–Nikodým derivative:

dPξ

dP
= exp

(∫ ∞

0
ξt dBt −

1

2

∫ ∞

0
|ξt|2dt

)
. (24)

Therefore, the investor decides the worst-case probability, which minimizes
their utility among P for every consumption plan.

Definition 1. HREZ utility is defined by

u(c) = inf
Pξ∈P

Eξ
[∫ ∞

0

(
f(ct, Vt) +

(1− γ)Vt
2θ

|ξt|2
)
dt

]
, (25)

where Eξ is the expectation under Pξ, θ is relative ambiguity aversion, and
Vt is the utility process defined recursively as follows:

Vt = Eξt

[∫ ∞

t

(
f(cs, Vs) +

(1− γ)Vs
2θ

|ξs|2
)
ds

]
. (26)

Assumption 2. An investor maximizes HREZ utility (25) under the real
budget constraint (20).

6A probability measure P̃ is said to be an equivalent probability measure of P if and
only if P(A) = 0 ⇔ P̃(A) = 0.
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The investor’s consumption-investment problem and indirect utility func-
tion are recursively defined by

Vt = sup
(c,ς̄)∈B(Xt)

inf
Pξ∈P

Eξt

[∫ ∞

t

(
f̄(cs, V

ξ
s ) +

(1− γ)V ξ
s

2θ
|ξs|2

)
ds

]
. (27)

3.2 Conditional Worst-case Probability

As the standard Brownian motion under Pξ is given by Bξ
t = Bt−

∫ t

0
ξs ds,

the SDE for Xt under P
ξ is rewritten as

d =

((
W̄t(r̄t + ς̄ ′tλ̄t)− ct

−KXt

)
+

(
W̄tς̄

′
t

I

)
ξt

)
dt+

(
W̄tς̄

′
t

I

)
dBξ

t . (28)

Let J denote the indirect utility function. Then, the HJB equation for
problem (27) is expressed as

sup
(c,ς̄)∈B(X0)

inf
Pξ∈P

{(
W̄t

(
r̄t + ς̄ ′tλ̄t

)
− ct

−KXt

)′(
JW
JX

)
+ ξ′t

(
W̄tς̄

′
t

I

)′(
JW
JX

)

+
1

2
tr

[(
W̄tς̄

′
t

I

)(
W̄tς̄

′
t

I

)′(
JWW JWX

JXW JXX

)]

+ f(ct, J) +
(1− γ)J

2θ
|ξt|2

}
= 0. (29)

The conditional worst-case probability Pξ̂ for a given control (ct, ς̄t) sat-
isfies

ξ̂t = − θ

(1− γ)J

(
W̄tς̄

′
t

I

)′(
JW
JX

)
. (30)

The real budget constraint eq.(20) under the conditional worst-case prob-

ability Pξ̂ for the given control (ct, ς̄t) is rewritten as

dW̄t

W̄t
=

{
r̄t + ς̄ ′tλ̂t −

ct
W̄t

}
dt+ ς̄ ′t dB

ξ̂
t , (31)

where

λ̂t = λ̄t + ξ̂t = λ̄t −
θ

(1− γ)J

(
W̄tς̄

′
t

I

)′(
JW
JX

)
. (32)

Remark 2. In eq.(31), the real market price λ̄t of risk in the real budget
constraint eq.(20) is replaced by λ̂, which is the investor price per unit of

investment under the conditional worst-case probability Pξ̂ for a given con-
trol. As shown by Remark 1, when ambiguity is not considered, the price per
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unit of investment risk is the real market price λ̄t of risk, which is common
to all investors. By contrast, λ̂t varies across investors. Eq.(31) shows that
a more ambiguity averse investor values a lower price per unit of invest-
ment than the real market price of risk, under the conditional worst-case
probability.

Henceforth, we refer to the real market price of risk simply as the market
price of risk.

Remark 3. In eq.(31), under the conditional worst-case probability assumed
by investors with HREZ utility, the investment control ς̄t, which is the volatil-
ity of the wealth process, is as assumed under the base probability, but its
price λ̂t is permanently discounted from the market price of risk. This im-
plies that investors with HREZ utility assume long-term stagnation rather
than increased volatility as the worst-case scenario.

Substituting Pξ̂ into the HJB eq.(29) yields

sup
u∈B(X0)

[(
W̄t

(
r̄t + ς̄ ′tλ̄t

)
− ct

−KXt

)′(
JW
JX

)
+
1

2
tr

[(
W̄tς̄

′
t

I

)(
W̄tς̄

′
t

I

)′(
JWW JWX

JXW JXX

)]

+ f(ct, J)−
θ

2(1− γ)J

∣∣∣∣∣
(
W̄tς̄

′
t

I

)′(
JW
JX

)∣∣∣∣∣
2]

= 0. (33)

Let u∗ = (c∗, ς̄∗) and W̄ ∗ denote the optimal robust investment control
and optimal wealth. Define the “worst-case probability” and “investor price
of risk under the worst-case probability” by

ξ∗t = − θ

(1− γ)J

(
W̄ ∗
t (ς̄

∗
t )

′

I

)′(
JW
JX

)
, (34)

λ̄∗t = λ̄t − θ

(
W̄ ∗
t JW

(1− γ)J
ς̄∗t +

JX
(1− γ)J

)
. (35)

4 Theoretical Analysis of the Optimal Robust Con-
trol

We theoretically analyze the optimal robust control and investor price of
risk under the worst-case probability to solve the optimal consumption-
investment problem.

4.1 A First Expression of the Optimal Robust Consumption-
Investment

Let

U = −W̄tJWW

JW
+ θ

W̄tJW
(1− γ)J

. (36)
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We obtain the following lemma.

Lemma 3. Under Assumptions 1 and 2, the optimal control is given by

c∗t =


βJ−1

W (1− γ)J, if ψ = 1,

βψ
(
(1− γ)J

W̄ ∗
t

)−ψ (
(1− γ)J

) γψ−1
γ−1 , if ψ ̸= 1,

(37)

ς̄∗t =
1

U

(
λ̄t +

JXW
JW

− θJX
(1− γ)J

)
, (38)

where J is a solution of the following PDE:

0 =
1

2
tr [JXX ]−

θ

2(1− γ)J
|JX |2

− 1

2

(
W̄ ∗2
t JWW − θ(W ∗

t JW )2

(1− γ)J

)−1

|πt|2 + r̄tW̄
∗
t JW − (KXt)

′JX

+

β
{
(1− γ)(log c∗t − 1)− log

(
(1− γ)

)}
J, if ψ = 1,

1

ψ − 1
c∗tJW − β(1− γ)

1− ψ−1
J, if ψ ̸= 1,

(39)

where

πt = −W̄tJW

(
λ̄t +

JXW
JW

− θJX
(1− γ)J

)
. (40)

Proof. See Appendix A.

It follows from eqs.(21) and (38) that the optimal robust portfolio Φ∗
t

satisfies

Σ(Xt)
′Φ∗
t − σpt =

1

U

(
λ̄t +

JXW
JW

− θ
JX

(1− γ)J

)
. (41)

Thus, from eq.(11), the optimal robust portfolio is decomposed into the
following four terms.

Φ∗
t =

1

U
Σ(Xt)

′−1λt +
1

U
Σ(Xt)

′−1JXW
JW

− 1

U
Σ(Xt)

′−1 θJX
(1− γ)J

+

(
1− 1

U

)
Σ(Xt)

′−1σpt . (42)

The first term is myopic demand. The fourth term insures inflation-deflation
risk. Following Kikuchi and Kusuda (2023a), we call the fourth term “inflation-
deflation hedging demand,” as presented by Brennan and Xia (2002), Sangv-
inatsos and Wachter (2005), Batbold et al. (2022), and Kikuchi and Kusuda
(2023a).
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Remark 4. Since the PDE (39) depends not only on relative risk aversion
but also on relative ambiguity aversion, the indirect utility function depends
on both relative risk aversion and ambiguity aversion. Thus, the second
and third terms in eq.(42) are related to the intertemporal uncertainty on
marginal indirect utility and on indirect utility, respectively.

From the PDE (39), we infer that the indirect utility function takes the
form in eq.(43):

J(Xt) =



W̄ 1−γ
t

1− γ
G(Xt), if ψ = 1,

W̄ 1−γ
t

1− γ

(
G(Xt)

) 1−γ
ψ−1 , if ψ ̸= 1.

(43)

Thus, the partial derivatives of J with respect to W̄ are given by

W̄JW = (1− γ)J,

W̄ 2JWW = −γ(1− γ)J.
(44)

Remark 5. Eq.(32) is rewritten as follows:

λ̂t = λ̄t − θ

(
W̄tJW

(1− γ)J
ς̄t +

JX
(1− γ)J

)
. (45)

The second term represents the discount from the market price of risk to λ̂t.
Eq.(45) shows that the discount is proportional to the investor’s ambiguity
aversion. Substituting eq.(44) into eq.(45) yields

λ̂t = λ̄t − θ

(
ς̄t +

JX
(1− γ)J

)
. (46)

Eq.(46) shows that the discount from the market price of risk to λ̂t increases
as the investment ς̄t increases. Since the discount from the market price of
risk increases with relative ambiguity aversion and investment, these com-
bined effects suppress the optimal investment of the ambiguity averse in-
vestor.

Substituting eq.(44) into eq.(36), we obtain

U = γ + θ. (47)

Batbold et al. (2022) call the sum of relative risk aversion and relative ambi-
guity aversion “relative uncertainty aversion.” Since the reciprocal of rela-
tive risk aversion is called relative risk tolerance, they also call the reciprocal
of relative uncertainty aversion “relative uncertainty tolerance.”
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Remark 6. Eq.(47) shows that U−1 is relative uncertainty tolerance. Eq.(38)
shows that the optimal investment is proportional to relative uncertainty tol-
erance.

The partial derivatives of J with respect to X are given by

JX =


J
GX
G
, if ψ = 1,

1− γ

ψ − 1
J
GX
G
, if ψ ̸= 1,

W̄JXW =


(1− γ)J

GX
G
, if ψ = 1,

(1− γ)2

ψ − 1
J
GX
G
, if ψ ̸= 1,

JXX =


J

(
GX
G

G′
X

G
+
GXX
G

)
, if ψ ̸= 1,

1− γ

ψ − 1
J

(
2− γ − ψ

ψ − 1

GX
G

G′
X

G
+
GXX
G

)
, if ψ ̸= 1.

(48)

Substituting the derivatives of J into eq.(35), the investor price of risk
under the worst-case probability is given by

λ̄∗t =
γ

γ + θ
λ̄t +

θ

γ + θ
η∗t , (49)

where

η∗t =


1

γ − 1

GX
G
, if ψ = 1,

− 1

ψ − 1

GX
G
, if ψ ̸= 1.

(50)

We refer to η∗t as the “investor hedging value of intertemporal uncertainty.”

Remark 7. Eq.(49) shows that the investor price of risk under the worst-
case probability is a weighted average of the market price of risk and investor
hedging value of intertemporal uncertainty. The weights are the ratio of risk
aversion to uncertainty aversion and that of ambiguity aversion to uncer-
tainty aversion, respectively. The optimal investor price of uncertainty con-
verges to the market price of risk in the case of Epstein–Zin utility (θ ↘ 0)
and to the investor hedging value of intertemporal uncertainty as relative
ambiguity aversion diverges to infinity.

4.2 A Second Expression of the Optimal Robust Control

We obtain the following proposition.

14



Proposition 1. Under Assumptions 1 and 2, the optimal wealth, optimal
consumption, and optimal investment for the problem (27) satisfy eqs.(51),
(52), and (53), respectively:

W̄ ∗
t =


W̄0 exp

(∫ t

0

(
r̄s + (ς̄∗s )

′λ̄s −
1

2
|ς̄∗s |2 − β

)
ds+

∫ t

0
(ς̄∗s )

′ dBs

)
, if ψ = 1,

W̄0 exp

(∫ t

0

(
r̄s + (ς̄∗s )

′λ̄s −
1

2
|ς̄∗s |2 −

βψ

G(Xt)

)
ds+

∫ t

0
(ς̄∗s )

′ dBs

)
, if ψ ̸= 1,

(51)

c∗t =

βW̄
∗
t , if ψ = 1,

βψ

G(Xt)
W̄ ∗
t , if ψ ̸= 1,

(52)

ς̄∗t =
1

γ + θ
λ̄t +

(
1− 1

γ + θ

)
η∗t , (53)

where G(Xt) is a solution of the following PDE:

1. The unit EIS case:

1

2
tr

[
GXX
G

]
+

θ

2(γ − 1)(γ + θ)

∣∣∣∣GXG
∣∣∣∣2 − (KXt +

γ + θ − 1

γ + θ
λ̄t

)′ GX
G

− β logG−
(

γ − 1

2(γ + θ)
|λ̄t|2 + (γ − 1)r̄t + β(log β − 1)(γ − 1)

)
= 0.

(54)

2. The general case:

1

2
tr

[
GXX
G

]
−ψ − (γ + θ)−1

2(ψ − 1)

∣∣∣∣GXG
∣∣∣∣2−(KXt+

(
1−(γ+θ)−1

)
λ̄t

)′GX
G

+
βψ

G
+

(
(ψ − 1)(γ + θ)−1

2
|λ̄t|2 + (ψ − 1) r̄t − βψ

)
= 0. (55)

Proof. See Appendix B.

Remark 8. Eq.(53) shows that the optimal investment is a weighted aver-
age of the market price of risk and investor hedging value of intertemporal
uncertainty. The weights are relative risk tolerance and one minus rela-
tive risk tolerance, respectively. Interestingly, the optimal investment and
investor price of risk under the worst-case probability are both weighted av-
erages of the market price of risk and investor hedging value of intertemporal
uncertainty.
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We obtain the optimal robust portfolio from eq.(21). The optimal robust
portfolio is given by

Φ∗
t =

1

γ + θ
Σ(Xt)

′−1λt +

(
1− 1

γ + θ

)
Σ(Xt)

′−1η∗t

+

(
1− 1

γ + θ

)
Σ(Xt)

′−1σpt . (56)

Remark 9. The second and third terms related to intertemporal uncertainty
in eq.(42) are integrated into the second term in eq.(56). Hereafter, we
refer to the second term in eq.(56) as “intertemporal uncertainty hedging
demand.”

5 CAPMs

In this section, we assume the general case (ψ ̸= 1) and derive the CAPMs.
Here, the consumption-investment problem (27) for investors is replaced by
that for the representative agent. Then, the optimal consumption becomes
the aggregated consumption and the optimal portfolio becomes the market
portfolio. In addition, the investor price of risk under the worst-case prob-
ability becomes the market price of risk under the worst-case probability,
which represents the price of risk for the representative agent under the
worst-case probability.

Let σ̄ct and σMt denote the volatility of aggregated consumption and of
the market portfolio, respectively. Let σ̄Mt = σMt − σpt . Note that σ̄Mt = ς̄∗t .
We obtain the following proposition.

Proposition 2. In addition to Assumption 1, assume that the representative
agent’s problem is given by (27). Then, in equilibrium, the market price of
risk is expressed as eqs.(57) and (58):

λ̄t = (γ + θ)ς̄∗t +
(
1− (γ + θ)

)(
− 1

ψ − 1

GX
G

)
, (57)

= −γ + θ − 1

ψ − 1
σ̄ct +

ψ(γ + θ)− 1

ψ − 1
σ̄Mt . (58)

The market price of risk under the worst-case probability is expressed as

λ̄∗t = γς̄∗t + (1− γ)

(
− 1

ψ − 1

GX
G

)
, (59)

= − γ − 1

ψ − 1
σ̄ct +

γψ − 1

ψ − 1
σ̄Mt . (60)

Proof. Eq.(57) immediately follows from eq.(53). The derivative of eq.(52)
leads to

GX
G

= ς̄∗t − σ̄ct . (61)
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Inserting the above equation and ς̄∗t = σ̄Mt into eq.(57), we obtain eq.(58).
Substituting eq.(57) into eq.(49) yields (59). Substituting eq.(61) and ς̄∗t =
σ̄Mt into eqs.(57) and (59) yields eqs.(58) and (60), respectively.

Remark 10. In the case of Epstein–Zin utility (θ = 0), eqs.(57) and (58)
are simplified to

λ̄t = γς̄∗t + (1− γ)

(
− 1

ψ − 1

GX
G

)
, (62)

= − γ − 1

ψ − 1
σ̄ct +

γψ − 1

ψ − 1
σ̄Mt . (63)

Eq.(62) is the ICAPM based on Epstein–Zin utility, and eq.(63) is the two-
factor CAPM shown by Duffie and Epstein (1992) and Fisher and Gilles
(1999), which is a linear combination of the consumption-based CAPM and
market portfolio-based CAPM. Eqs.(57) and .(58) are robust versions of the
ICAPM (62) and of the two-factor CAPM. Note that eqs. (59) and (60),
which represent the market price of risk under the worst-case probability
based on HREZ utility, are identical to eqs.(62) and (63), which represent
the market price of risk based on Epstein–Zin utility.

As noted in the Introduction, we assume a quadratic security market
model to incorporate the stylized facts of the securities market. Estimating
the quadratic security market model requires at least monthly data; the
consumption-based CAPM (58) is difficult to test because reliable monthly
aggregate consumption data are unavailable. The ICAPM (57) is untestable
because it contains the unknown function G. In the next section, we derive
an approximate solution to the PDE (55) and present a testable ICAPM.

6 Analytical Expression of the Optimal Robust
Consumption-Investment

First, for the unit EIS case, that is, ψ = 1, we derive the optimal solution.
Second, for the general case, we derive an approximate optimal solution.
Finally, we derive a testable CAPM.

6.1 Optimal Solution for the Unit EIS Case

An analytical solution of the PDE (54) is expressed as:

G(Xt) = exp

(
a0 + a′Xt +

1

2
X ′
tAXt

)
, (64)

where A is a symmetric matrix.
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Substituting G and its derivatives into the PDE (54) and noting A′ = A
and X ′(K +

(
1 − (γ + θ)−1

)
Λ̄
)′
AX = X ′A

(
K +

(
1 − (γ + θ)−1

)
Λ̄
)
X, we

obtain

1

2
tr[A] +

1

2

(
1 +

θ

(γ − 1)(γ + θ)

)(
|a|2 + 2a′AXt +X ′

tA
2Xt

)
−
{
γ + θ − 1

γ + θ
λ̄+

(
K +

γ + θ − 1

γ + θ
Λ̄

)
Xt

}′
a− γ + θ − 1

γ + θ
λ̄′AXt

− 1

2
X ′
t

(
K +

γ + θ − 1

γ + θ
Λ̄

)′
AXt −

1

2
X ′
tA

(
K +

γ + θ − 1

γ + θ
Λ̄

)
Xt

− β

(
a0 + a′Xt +

1

2
X ′
tAXt

)
− γ − 1

2(γ + θ)

(
|λ̄|2 + 2λ̄′Λ̄Xt +X ′

tΛ̄
′Λ̄Xt

)
− (γ − 1)

(
ρ̄0 + ρ̄′Xt +

1

2
X ′
tR̄Xt

)
− β(log β − 1)(γ − 1) = 0. (65)

As eq.(65) is identical on X, we obtain the following proposition.

Theorem 1. Under Assumptions 1 and 2, the indirect utility function, opti-
mal consumption, and optimal investment for problem (27) satisfy eqs.(66),
(52), and (67), respectively:

J(Xt) =
W̄ 1−γ
t

1− γ
exp

(
a0 + a′Xt +

1

2
X ′
tAXt

)
, (66)

ς̄∗t =
1

γ + θ
(λ̄+ Λ̄Xt) +

(
1− 1

γ + θ

)(
1

γ − 1
(a+AXt)

)
, (67)

where (A, a, a0) is a solution of the simultaneous eqs.(68)–(70):

γ(γ + θ − 1)

(γ − 1)(γ + θ)
A2 −

(
K +

γ + θ − 1

γ + θ
Λ̄

)′
A−A

(
K +

γ + θ − 1

γ + θ
Λ̄

)
− (γ − 1)

(
1

γ + θ
Λ̄′Λ̄ + R̄

)
= 0, (68)

(
γ(γ + θ − 1)

(γ − 1)(γ + θ)
A−

(
K +

γ + θ − 1

γ + θ
Λ̄

))′
a

−
(
γ + θ − 1

γ + θ
Aλ̄+

γ − 1

γ + θ
Λ̄′λ̄+ (γ − 1)ρ̄

)
= 0, (69)

βa0 =
1

2
tr[A] +

γ(γ + θ − 1)

2(γ − 1)(γ + θ)
|a|2 − γ + θ − 1

γ + θ
λ̄′a

− γ − 1

2γ(γ + θ)
|λ̄|2 − γ − 1

γ
ρ̄0 −

β(γ − 1)

γ
(log β − 1). (70)
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Remark 11. Eq.(52) indicates that the optimal consumption-wealth ratio
is constant and independent of the state process, which is unrealistic. How-
ever, this result implies that the optimal consumption-wealth ratio is stable
if the EIS does not deviate from one and the state process does not deviate
significantly from zero. In the next section, we consider the general case,
in which a nonhomogeneous term appears in the PDE for indirect utility.
We then use a loglinear approximation based on the stability of the optimal
consumption-wealth ratio to derive an approximate solution.

6.2 Approximate Optimal Solution for the General Case

Next, for the general case, that is, ψ ̸= 1, we derive an approximate opti-
mal solution by applying the loglinear approximation method presented by
Campbell and Viceira (2002) to our quadratic security market model.

6.2.1 Loglinear Approximation

In the PDE (55), both the nonlinear term and the nonhomogeneous term

appear. From eq.(52), the nonhomogeneous term
βψ

G
is expressed as

βψ

G
=

c∗t
W̄ ∗
t

. (71)

Considering that the optimal consumption-wealth ratio is stable, Campbell
and Viceira (2002) make a loglinear approximation to the nonhomogeneous
term and derive an approximate analytical solution. We apply the loglinear
approximation to the nonhomogeneous term as follows:

1

G(Xt)
≈ g0 − g1 logG(Xt), (72)

where

g0 = g1(1− log g1), (73)

g1 = exp
(
E
[
log
(
lim
t→∞

c∗t
W ∗
t

)]
− ψ log β

)
. (74)

In PDE (55), approximating the nonhomogeneous term by eq.(72) and in-
serting eqs.(11) and (12) into Λ̄t and r̄t, respectively, yields the following
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approximate PDE:

1

2
tr

[
GXX
G

]
− ψ − (γ + θ)−1

2(ψ − 1)

∣∣∣∣GXG
∣∣∣∣2

−
(
KXt +

(
1− (γ + θ)−1

)(
λ̄+ Λ̄Xt

))′GX
G

− βψg1 logG

+βψg0+
(ψ − 1)(γ + θ)−1

2

∣∣λ̄+ Λ̄Xt

∣∣2+(ψ−1)

(
ρ̄0 + ρ̄′Xt +

1

2
X ′
tR̄Xt

)
−βψ = 0.

(75)

An analytical solution of the PDE (75) is expressed as eq.(64). Substituting
the optimal consumption control (52) into eq.(74), we obtain

g1 = exp
(
−E

[
lim
t→∞

logG(Xt)
])

= exp

([
−a0 − a′E[ lim

t→∞
Xt]−

1

2
E[ lim
t→∞

X ′
tAXt]

])
.

(76)
Since eq.(1) is transformed as d

(
etKXt

)
= etK dBt, Xt is solved as

Xt = e−tKX0 +

∫ t

0
e(s−t)K dBs. (77)

Hence, the stationary distribution of the state vector is N(0, (K + K′)−1).
Thus, g1 in eq.(76) is calculated as

g1 = exp

(
−a0 −

1

2
tr
[(
K +K′)−1

A
])

. (78)

6.2.2 Approximate Optimal Solution

Substituting G and its derivatives into the PDE (75) yields

1

2
tr
[
aa′ +A+ aX ′

tA+AXta
′ +AXtX

′
tA
]
−ψ − (γ + θ)−1

2(ψ − 1)

(
a′ +X ′

tA
)
(a+AXt)

−
{(

1− (γ + θ)−1
)
λ̄+

(
K +

(
1− (γ + θ)−1

)
Λ̄
)
Xt

}′
a−
(
1−(γ+θ)−1

)
λ̄′AXt

− 1

2
X ′
t

(
K +

(
1− (γ + θ)−1

)
Λ̄
)′
AXt −

1

2
X ′
tA
(
K +

(
1− (γ + θ)−1

)
Λ̄
)
Xt

− βψg1

(
log g1 − 1 + a0 + a′Xt +

1

2
X ′
tAXt

)
+

(ψ − 1)(γ + θ)−1

2

(
|λ̄|2 + 2λ̄′Λ̄Xt +X ′

tΛ̄
′Λ̄Xt

)
+ (ψ − 1)

(
ρ̄0 + ρ̄′Xt +

1

2
X ′
tR̄Xt

)
− βψ = 0. (79)

When the solution of the PDE (55) is approximated by the solution of
the approximate PDE (75), the optimal control is called the approximate
optimal control, denoted by (c̃∗, ς̃∗). We obtain the following proposition.
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Theorem 2. Under Assumptions 1 and 2, the approximate optimal con-
sumption and optimal approximate investment for problem (27) satisfy eqs.(80)
and (81), respectively:

c̃∗t = W̃ ∗
t exp

[
−
(
a0 + a′Xt +

1

2
X ′
tAXt

)]
, (80)

ς̃∗t =
1

γ + θ
(λ̄+ Λ̄Xt) +

(
1− 1

γ + θ

)(
− 1

ψ − 1
(a+AXt)

)
, (81)

where (A, a, a0) is a solution of the simultaneous equations (82)–(84):

−1− (γ + θ)−1

ψ − 1
A2−

(
K +

(
1− (γ + θ)−1

)
Λ̄
)′
A−A

(
K +

(
1− (γ + θ)−1

)
Λ̄
)

− βψg1A+ (ψ − 1)
(
(γ + θ)−1Λ̄′Λ̄ + R̄

)
= 0, (82)

− 1− (γ + θ)−1

ψ − 1
Aa−K′a−

(
1− (γ + θ)−1

)
(Aλ̄+ Λ̄′a)

− βψg1a+ (ψ − 1)
(
(γ + θ)−1Λ̄′λ̄+ ρ̄

)
= 0, (83)

1

2
tr[A]− 1− (γ + θ)−1

2(ψ − 1)
|a|2 −

(
1− (γ + θ)−1

)
λ̄′a

+ βψg1(1− a0 − log g1) + (ψ − 1)

(
(γ + θ)−1

2
|λ̄|2 + ρ̄0

)
− βψ = 0, (84)

where g1 is expressed by eq.(78). Furthermore, the approximate optimal
portfolio Φ̃∗

t is given by

Φ̃∗
t =

1

γ + θ
Σ(Xt)

′−1
(
λ+ΛXt

)
+

(
1− 1

γ + θ

)
Σ(Xt)

′−1

(
− 1

ψ − 1

)(
a+AXt

)
+

(
1− 1

γ + θ

)
Σ(Xt)

′−1
(
σp +ΣpXt

)
. (85)

6.2.3 Testable ICAPM

It follows from eq.(81) and ς̄∗t = σ̄Mt that a testable ICAPM is given by

λ̄t = (γ + θ)σ̄Mt +
(
1− (γ + θ)

)(
− 1

ψ − 1
(a+AXt)

)
. (86)
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7 Future Research Directions

We studied the consumption-investment problem for infinitely lived investors
with HREZ utility under the quadratic security market model. We clarified
the theoretical structures of i) the budget constraint and market price of
risk under the conditional worst-case probability; ii) the market price of risk
under the worst-case probability; iii) the CAPMs; and iv) the CAPMs under
the worst-case probability.

The next step is an empirical analysis of the derived approximate op-
timal portfolio and testable CAPM. However, since our quadratic security
market model omits the foreign sector, these are only the optimal domestic
portfolio and one-country CAPM, respectively, which limits these empirical
analyses. Nevertheless, the optimal domestic portfolio can be interpreted as
the optimal portfolio of an investor who invests only in domestic securities,
which is meaningful for the empirical analysis7, but the one-country CAPM
is unlikely to be accepted. Our future research will aim to construct an in-
ternational security market model, derive the optimal international portfolio
and testable international CAPM, and conduct empirical analyses.

A Proof of Lemma 3

A.1 Proof for the Unit EIS Case

Substituting f(ct, J) = β(1 − γ)J log ct − βv log
(
(1 − γ)J

)
into the HJB

eq.(33) yields

sup
(c,ς̄)∈B(X0)

[(
W̄t

(
r̄t + ς̄ ′tλ̄t

)
− ct

−KXt

)′(
JW
JX

)

+
1

2
tr

[(
W̄tς̄

′
t

I

)(
W̄tς̄

′
t

I

)′(
JWW JWX

JXW JXX

)]
− θ

2(1− γ)J

∣∣∣∣∣
(
W̄tς̄

′
t

I

)′(
JW
JX

)∣∣∣∣∣
2

+ β(1− γ)J log ct − βJ log
(
(1− γ)J

)]
= 0. (87)

It is evident that the optimal control (c∗t , ς̄
∗
t ) in the HJB eq.(87) satisfies

eqs.(37) and (38). The consumption-related terms in the HJB eq.(87) are
computed as

−c∗tJW+β(1−γ)J log c∗t−βJ log
(
(1−γ)J

)
= βJ

{
(1−γ)(log c∗t−1)−log

(
(1−γ)J

)}
.

(88)

7See Kikuchi and Kusuda (2023b) for an empirical analysis of optimal domestic port-
folios under the quadratic security market model based on HREZ utility.
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The investment-related terms in the HJB eq.(87) are computed as

W̄ ∗
t JW λ̄

′
tς̄

∗
t +

1

2
tr

[(
W̄ ∗
t (ς̄

∗
t )

′

I

)(
W̄ ∗
t (ς̄

∗
t )

′

I

)′(
JWW JWX

JXW JXX

)]

− θ

2(1− γ)J

∣∣∣∣∣
(
W̄ ∗
t (ς̄

∗
t )

′

I

)′(
JW
JX

)∣∣∣∣∣
2

=
1

2
tr [JXX ]−

θ

2(1− γ)J
|JX |2 −

|πt|2

2W̄ ∗2
t

(
JWW −

θJ2
W

(1− γ)J

) , (89)

where πt is given by eq.(3).
Substituting the optimal control (37) and (38) into the HJB eq.(87) and

using eqs.(88) and (89), we obtain the PDE (39).

A.2 Proof for the General Case

Substituting f(ct, J) = β
1−ψ−1 c

1−ψ−1

t

(
(1 − γ)J

)1− 1−ψ−1

1−γ − β(1−γ)
1−ψ−1 J into the

HJB eq.(33) yields

sup
(c,ς̄)∈B(X0)

[(
W̄t

(
r̄t + ς̄ ′tλ̄t

)
− ct

−KXt

)′(
JW
JX

)

+
1

2
tr

[(
W̄tς̄

′
t

I

)(
W̄tς̄

′
t

I

)′(
JWW JWX

JXW JXX

)]
− θ

2(1− γ)J

∣∣∣∣∣
(
W̄tς̄

′
t

I

)′(
JW
JX

)∣∣∣∣∣
2

+
β

1− ψ−1
c1−ψ

−1

t

(
(1− γ)J

)1− 1−ψ−1

1−γ − β(1− γ)

1− ψ−1
J

]
= 0. (90)

The optimal control (c∗t , ς̄
∗
t ) in the HJB eq.(90) satisfies eqs.(37) and (38).

The consumption-related terms in the HJB eq.(90) are computed as

−c∗tJW+f(c∗t , J) = c∗t

(
−JW +

1

1− ψ−1
JW

)
−β(1− γ)

1− ψ−1
J =

1

ψ − 1
c∗tJW−β(1− γ)

1− ψ−1
J.

(91)
The investment-related terms in the HJB eq.(90) are computed as

W̄ ∗
t JW λ̄

′
tς̄

∗
t +

1

2
tr

[(
W̄ ∗
t (ς̄

∗
t )

′

I

)(
W̄ ∗
t (ς̄

∗
t )

′

I

)′(
JWW JWX

JXW JXX

)]

− θ

2(1− γ)J

∣∣∣∣∣
(
W̄tς̄

′
t

I

)′(
JW
JX

)∣∣∣∣∣
2

=
1

2
tr [JXX ]−

θ

2(1− γ)J
|JX |2 −

(
W̄ ∗2
t JWW − θ(W ∗

t JW )2

(1− γ)J

)−1

|πt|2, (92)
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where πt is given by eq.(3).
Substituting the optimal control (37) and (38) into the HJB eq.(90) and

using eqs.(91) and (92), we obtain the PDE (39).

B Proof of Proposition 1

B.1 Proof for the Unit EIS Case

The optimal consumption (52) immediately follows from eq.(37). Eq.(3) is
rewritten as

πt = J

(
(γ − 1)λ̄t + (γ + θ − 1)

GX
G

)
. (93)

Inserting eqs.(47) and the derivatives of J into eq.(38), we obtain the optimal
investment (53). The first to third terms in the PDE (39) are calculated
from eq.(93) and the derivatives of J as follows:

1

2
tr [JXX ]−

θ

2(1− γ)J
|JX |2 −

|πt|2

2W̄ ∗2
t

(
JWW −

θJ2
W

(1− γ)J

)
=
1

2
J

(
tr

[
GX
G

G′
X

G
+
GXX
G

]
+

θ

γ − 1

∣∣∣∣GXG
∣∣∣∣2 − 1

(γ − 1)(γ + θ)

∣∣∣∣(γ − 1)λ̄t + (γ + θ − 1)
GX
G

∣∣∣∣2)
=
1

2
J

(
tr

[
GXX
G

]
− γ − 1

γ + θ
|λ̄t|2 −

2(γ + θ − 1)

γ + θ
λ̄′t
GX
G

+

(
1 +

θ

γ − 1
− (γ + θ − 1)2

(γ − 1)(γ + θ)

) ∣∣∣∣GXG
∣∣∣∣2)

=J

(
1

2
tr

[
GXX
G

]
− γ − 1

2(γ + θ)
|λ̄t|2 −

γ + θ − 1

γ + θ
λ̄′t
GX
G

+
θ

2(γ − 1)(γ + θ)

∣∣∣∣GXG
∣∣∣∣2).

(94)

The fourth and fifth terms in the PDE (39) is computed as

r̄tW̄
∗
t JW − (KXt)

′JX = J

(
−(γ − 1)r̄t − (KXt)

′GX
G

)
. (95)

The sixth term in the PDE (39) is calculated from eq.(52) as follows:

βJ
{
(1− γ)(log c∗t − 1)− log

(
(1− γ)J

)}
=βJ

{
(1− γ)(log β + log W̄ ∗

t − 1)−
(
(1− γ) log W̄ ∗

t + logG
)}

=βJ
(
(1− γ)(log β − 1)− logG

)
.

(96)

Substituting eqs.(94)–(96) into eq.(39) and dividing by J yields the PDE
(54).
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B.2 Proof for the General Case

The optimal consumption (52) follows from eq.(37):

c∗t = βψ
(
(1− γ)J

W̄ ∗
t

)−ψ (
(1−γ)J

) γψ−1
γ−1 = βψW̄ ∗ψ

t

(
W̄ ∗1−γ
t G

1−γ
ψ−1

)ψ−1
γ−1

= βψ
W̄ ∗
t

G
.

(97)
Eq.(3) is rewritten as

πt = (γ − 1)J

(
λ̄t +

γ + θ − 1

1− ψ

GX
G

)
. (98)

Inserting eq.(47) and the derivatives of J into eq.(38), we obtain the optimal
investment (53). The first to third terms in the PDE (39) are calculated
from eq.(98) and the derivatives of J as follows:

1

2
tr [JXX ]−

θ

2(1− γ)J
|JX |2 −

1

2

(
W̄ ∗2
t JWW − θ(W ∗

t JW )2

(1− γ)J

)−1

|πt|2

=J

{
1− γ

2(ψ − 1)
tr

[
2− γ − ψ

ψ − 1

GX
G

G′
X

G
+
GXX
G

]
− (1− γ)θ

2(ψ − 1)2

∣∣∣∣GXG
∣∣∣∣2

+
1− γ

2(ψ − 1)2(γ + θ)

∣∣∣∣(ψ − 1)λ̄t − (γ + θ − 1)
GX
G

∣∣∣∣2}
=
1− γ

ψ − 1
J

{
1

2
tr

[
2− γ − ψ

ψ − 1

GX
G

G′
X

G
+
GXX
G

]
− θ

2(ψ − 1)

∣∣∣∣GXG
∣∣∣∣2

+
1

2(ψ − 1)(γ + θ)

∣∣∣∣(ψ − 1)λ̄t − (γ + θ − 1)
GX
G

∣∣∣∣2}
(99)

=
1− γ

ψ − 1
J

{
1

2
tr

[
GXX
G

]
+

ψ − 1

2(γ + θ)
|λ̄t|2 −

(
1− (γ + θ)−1

)
λ̄′t
GX
G

− 1

2(ψ − 1)

(
γ + ψ − 2 + θ −

(
1− (γ + θ)−1

)
(γ + θ − 1)

) ∣∣∣∣GXG
∣∣∣∣2}

=
1− γ

ψ − 1
J

{
1

2
tr

[
GXX
G

]
+
ψ − 1

2
(γ + θ)−1|λ̄t|2 −

(
1− (γ + θ)−1

)
λ̄′t
GX
G

− 1

2(ψ − 1)

(
ψ − (γ + θ)−1

) ∣∣∣∣GXG
∣∣∣∣2}.

The fourth and fifth terms in the PDE (39) are computed as follows:

r̄tW̄
∗
t JW − (KXt)

′JX =
1− γ

ψ − 1
J

(
−Gτ
G

+ (ψ − 1)r̄t − (KXt)
′GX
G

)
. (100)

The sixth and seventh terms in the PDE (39) are calculated from eq.(52) as
follows:

1

ψ − 1
c∗tJW−β(1− γ)

1− ψ−1
J =

1

ψ − 1

(
βψ

W̄t

G

(1− γ)J

W̄t
+β(γ−1)ψJ

)
=

1− γ

ψ − 1
J

(
βψ

G
− βψ

)
.

(101)
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Substituting eqs.(99)–(101) into eq.(39) and dividing by
1− γ

ψ − 1
J yields the

PDE (55).
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