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Abstract  This chapter is concerned with an axiomatic approach to input demand 
theory.  By help of general production possibility sets, we intend to derive 
decomposition equations in input demand theory, which have been rather neglected so 
far in the economics literature.  Special attention is paid to important comparison 
between the firm's expansion effect and the consumer's income effect.  We discuss the 
question how and to what extent the expansion effect is distinct from the income effect.   
In this connection, the LeChatelier -Samuelson principle is also discussed,  
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I  The Firm's Expansion Effect versus the Consumer's Income Effect 
 
The purpose of this chapter is to rigorously analyze producer decision and production 
possibility sets, thus exploring the axiomatic foundations of production theory.   In 
older days, Hicks (1946, 1953), Samuelson (1947), Morishima (1953a, 1953b), and 
others, elaborated upon the well-established analysis of profit-maximizing firm's 
demand for inputs.  Their main mathematical tools were classical differential calculus.  
In more recent times, however, there have emerged a series of papers which bravely 
study the axiomatic foundations of production theory on the basis of more modern 
topological tools.   For this point, see Scott (1962), Bear (1965), Ferguson (1966, 1868, 
1969), Rader (1968), Basett and Borcherding (1969), Hirota & Sakai (1969), Syrquin 
(1970), Shephard (1970),  Arrow & Hahn (1971), Sakai (1973, 1974, 1975),  and 
Malinvaud (1985).   After the 1990s until the present day, unifying the axiomatic 
foundations of both consumption and production theories, brand new approaches named 
duality approaches to microeconomic theory have emerged and widely flourished , with 
Diewert (1982, 2018), Varian (1999, 2009),  and McKenzie (2002) being  eminent 
accomplishments.     

      A number of those economists above mentioned have bravely attempted to clear 
up a matter of long-standing confusion concerning the analogy between consumer's 
income effect and producer's expansion effect.  While consumer demand theory and 
input demand theory appear to be analogous, there are not the same at all.   Even a 
small difference at start may produce a big distinction at goal.  The question how and 
to what extent they are really different is our main concern here.   1)  

       As was independently shown by Hirota & Sakai (1969) and also by Syrquin (1970) , 
the effect of a change in the price of a certain input on the demand for another input can 
be divided into the following two separate effects.  They are a substitution effect along 
the old isoquant  and an expansion effect along the new expansion path.  
Unfortunately, the mathematical tool they employed was simple calculus, thus lacking 
mathematical rigor and fineness.  The main purpose of this paper is to make our input 
demand theory mathematically more sophisticated than the previous attempts, yet 
developing it in many possible applications to economic reality.  
     As will be seen below, we obtain a sort of decomposition equation in input demand 
theory which appears to correspond well to the famous Slutsky equation in consumer 
demand theory.   The correspondence between the two decomposition equations, 
however, is not quite exact:  indeed, they look similar but are not identical.  We must 
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pay special attention to the critical difference between the word " similar " and the word 
"identical."   2)   
      In this paper, we want to widely apply the powerful method of McKenzie (1957), 
which was originally used for the development of consumption theory, to the new area of 
input demand theory.   Then, we can successfully derive various kinds of 
decomposition equations.  And in so doing. we develop the new idea of a compensated 
change in output price when a certain input price varies.  This idea is seemingly 
analogous to, but not exactly the same as,  the familiar concept of a compensated 
change in income when a certain commodity price varies in the traditional consumption 
theory a la Hicks (1946).   
      So far, input demand theory has been developed in connection with the problem 
of inferior inputs.  An input is called normal (or inferior) if a rise in output price causes 
an increase (or a decrease) in the demand in that input.  We can obtain the following 
results.  (i)  While it is possible that all inputs are normal, it is not possible that they 
are all inferior.  (ii)  In case a certain input is inferior, it is not possible that all other 
inputs are gross complements with it although it is possible that they are all gross 
substitute for it.   
     The contents of this paper are as follows.  Section 2 is addressed to a system or a 
production technology.  In Section 3, the definition of cost and profit functions will be 
given, with a careful discussion of their properties.  The topological approach of 
Shephard (1970) to the duality principle between cost and production is developed in 
these two sections.  The total effect of a change in the price of a certain input on the 
demand for another input is decomposed into substitution and scale effects.  In Section 
4, we are first concerned with the properties of substitution and total effects, and 
examine the question how and to what extent they are similar to, or different from, 
those of substitution and total effects in consumption theory.  The problems of inferior 
inputs and of net and gross substitutability are also discussed.  Section 5 is devoted to 
various types of decomposition equations in input demand theory ― one finite 
increment and two differential versions.  It is rigorously shown that the demand curve 
of an input is not positively sloping, and the substitution and expansion effects always 
go in the same direction.  In Section 6, we will apply our analysis to show the validity 
of the LeChatelier-Samuelson principle in input demand theory.    
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II  Production Possibility Sets 
 
We are concerned with a firm that is faced with the problem of producing a single 
output from a combination of a finite number of inputs subject to a production 
technology.  Let us suppose that there are  n  inputs and that input-output prices are 
competitively determined in the market, being independent of the firm's individual 
behavior.  
     In what follows, we will make full use of a powerful topological method.  For this 
method, see McFadden (1966), Malinvaud (1985), Mas-Colell & Whinston & Green 
(1995). McKenzie (2002), and Mitra & Nishimura (2009). 
     Let us denote an input bundle is denoted by  x  =  (x 1 , x 2, ... , x n ) .  The set of 
all conceivable input bundles is denoted by  X .  X  is the set of all nonnegative n - 
vectors :    

 
     X  =  { x  =  (x 1 , x 2, ... , x n )  :  x  ≧  0 }  .                      (1) 
 
     Let us assume that for any  x ∈ X , the largest output is conceivable and 
conveniently denoted by a  production function  f ( x ) .   Let  Y  be the range of the 
production function : 
 
    Y  =  {  y  :  y  ≧  0  and y  =  f ( x )   for some x ∈ X  }        (2)   
 
 
 
 

                
 
             Fig. 1  A simple case of a single input and a single output.       
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     We assume that  Y  is nonempty, convex, and open above.   Y  need not be the 
nonnegative real line.   For a simple case with a single input and a single output,  X  
and   Y  are illustrated in Fig. 1.   
    We now let define the following sets: 
 
       W  =  { w  =  (w 1 , w 2, ... , w n )  :  w  ＞  0 }  ,                   (3)  
 
       P  =  { p  :  p ＞  0 }  .                                           (4) 
 
     Evidently,  W  is the input price space or the set of all input vectors, and  P  is 
the output price space or the set of all conceivable output prices.   
     There is an alternative useful description of the production function  f ( x ) .   To 
show this, let us define the following production possibility sets : 
 
         Ā (y )  =  { x  :  x ∈ X  and  f ( x ) ≧  y  }  ,                  (5) 
  
        A( y )  =  { x  :  x ∈ X  and  f ( x ) ≦  y  }  ,                  (6) 
 
 
         I ( y )  =  Ā (y ) ∩ A( y )                         
                =  { x  :  x ∈ X  and  f ( x )  =  y  }  .                  (7) 
 
     It is noted that the upper possibility set Ā (y )  is the set of all input vectors which 
are capable of producing at least  the output  y , whereas the lower possibility set  
A( y )  is the set of all input vectors which are capable of producing at most  the output  
y .   The set I ( y )  , which is the intersection of Ā (y ) and  A( y ) , is clearly the 
familiar isoquant frontier corresponding to  y  .   2) 

     For a simple case with two inputs, x 1  and x 2 , those three production possibility 
sets, Ā (y ) , A( y )  and I ( y ) , are well-illustrated in Fig. 2 .   
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      Fig.  2   Three production possibility sets:  Ā (y ) , A( y ) , and I ( y )  .   

 

 

 

 

     We are ready to define a production technology as a family of those production 
possibility sets satisfying the following four assumptions:  3) 

 
  Assumption (A1)   If  0 ∈ I ( y ) , then  y  =  0 . 
 
  Assumption (A2)   For each y ∈ Y ,  Ā (y ) and  A ( y ) are nonempty and closed 
in  X .  
  
  Assumption (A3)   Let us take  x 0  ∈ Ā (y 0 )  and x 1 ∈ Ā (y 1 ) where x 0 ≠ x 1  .  
For any  t ∈ (0, 1), if we put x t  = (1 — t ) x 0  +  t x 1  and y t  = (1 — t ) y 0  + t y 1 , 
then we must find  x t  ∈ Int Ā (y t ) or the interior of the set Ā (y t ) .   . 
 
  Assumption (A4)   If  x １ ≧ x 0  and  x 0   ∈ Ā (y ) , then  x 1 ∈ Ā (y ) . 
 
     Those assumptions require detailed explanations.  (A1) states that a positive 
output cannot be obtained from a null input bundle.  In short, nothing comes from 
nothing.  (A2) asserts that any output level  y  is attainable for some input bundle  
x  , and that the production function  f ( x )  is continuous.  Therefore, there should 
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exist neither gaps nor jumps on the production curve .   
     Remarkably,  (A3) together with (A2) clearly implies that the set Ā (y ) is a 
"strictly convex set,"  meaning that for any two points, x 0  and  x 1 , of Ā (y ) ,  if  x t  = 
(1 — t ) x 0  +  t x 1 ,  then  x t  must belong to the interior of the set  Ā (y ) , not to the     
boundary  I ( y ) .   The essence of (A3) is well-illustrated in Fig 6.3.   In terms of the 
production function f  ( x ) , the production curve is  a "strictly concave curve," with   
" no flat boundary."  
     And finally,  (A4)  insures that free disposal of inputs is possible.  In other 
words,  the producer can dispose of any extra inputs with no costs.  Although this may 
not necessarily reflect the reality, it is theoretically a very convenient assumption.   
 
 

          

 
          Fig. 3   The strict convexity of the upper production set  Ā ( y )   .   

                     It is noted that  x t  belongs to the interior of  Ā ( y ) .   

 

 

III  The Cost and Profit Functions:  Definitions and Properties 
 
In what follows,. we assume that Assumptions (A1) — (A4) are met for the production 
technology.  In this section, the definition of cost and profit functions will be given and 
their properties will carefully be investigated.   
     First of all, for any  (w, y ) ∈ W ×Y , we define a cost function as follows: 
 
       c (w, y )  =  Min  { w x  :  x  ∈ Ā ( y ) }  .                        (8) 
 
     To see that the cost function  c (w, y )  is well-defined, we take any arbitrary  x * 
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 ∈ Ā ( y )  and let  H ( w ) =  { x  :  x  ∈ X  and  w x ≦ w x * ｝.  Since  Ā ( y )  
is closed by (A2)  and  H ( w )  is clearly compact, it follows that  Ā ( y ) ∩ H ( w ) is  
compact as well.   Therefore, as is seen in Fig. 6.4 , the continuous function  w x  
takes on a minimum on  Ā ( y ) ∩ H ( w ) .  Note that for any  x  ∈ Ā ( y ) — H ( w ) , 
we have w x  > w x * .  Hence, the function  w x  attains a minimum on Ā ( y ) .   
     In connection with the cost function  c (w, y ) , we define a compensated input 
function as follows: 
 
    u (w , y )  =  { x  :  x  ∈ Ā ( y )  and  w x  = c (w, y ) } .             (9) 
  
 
 

                  
 

                  Fig. 6.4   The cost function is illustrated here 

 
 
     The newly-defined function  u (w , y )  indicates the input bundle demanded by 
the firm when input prices are  w  and output is to be  y .  Under Assumptions (A1) 
— (A4),  u (w , y )  is the unique element of  X  minimizing  w x   subject to x  ∈ 
Ā ( y ) .  Consequently, we should have the following equation: 
 
            c (w, y )  =  w ・u (w , y ) .                                  (10) 
 
     The relation between c (w, y ) and u (w, y )  is very important and clearly seen in 
Fig. 6.5.   We are now in a position to establish the following useful lemma: 
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LEMMA  1.  ( Properties of  c ( w , y )  and  u (w , y )  ) 
   For all  ( w , y )  ∈  W ×Y  ,  we have the following properties: 
   (1)  c (w , y ) is continuous in  ( w , y ) . 
   (2)  c (w , y ) is differentiable in  w , and 
 
         ∂c ( w , y ) / ∂w i  =  u i  (w , y ) .      i  =  1,2, ..., n . 
 
   (3)  c (w , y ) is homogeneous of degree one in  w  . 
   (4)  c (w , y ) is concave in w  .   
   (5)  c (w , y ) is strictly convex in y  . 
   (6)  If  y 0  >  y 1 ,  y 0 , y 1 ∈ Y  , then  c ( w , y 0 )  >  c ( w , y 1 )  . 
   (7)  u (w , y ) is continuous in  ( w , y ) . 
   (8)  u (w , y ) is homogeneous of degree zero in  w  . 
  
Proof.    We note that the present assumptions (A1) — (A4) are slightly  stronger 
than the assumptions used by Uzawa (1964), and also by Friedman (1972) :  They did 
not assume the strict concavity of the production function  f (x ), but merely the 
concavity of the upper production set  Ā ( y ) .   Since the proof of Properties (3), (4), 
and (6) is found in the Uzawa (1964), and the proof of Property (1) is found in Friedman 
(1972), the proof of those properties are omitted here. 
     We will first prove Property (2).  Let us pay attention to a small change of the 
input price vector Δw .  For instance, if we have  Δw  =  (Δw 1 , 0, ..., 0 ) , then 
we must have  w  +  Δw  =  ( w 1 +Δw 1 , w 2 , ..., w n  ) .    In the light of Eq. (7.10) 
above, it is noted that we clearly have the following set of equations: 
 
   c (w +Δw , y ) — c (w , y ) 
   =  （w +Δw ) u (w +Δw , y ) — w ・u (w , y ) .  
   =  w 【 u (w +Δw , y ) — u (w , y ) 】+ Δw ・ u (w +Δw , y ) .               (11) 
 
   c (w, y )  =  w ・u (w , y )   ＜ w ・ u (w +Δw , y ) .                      (12) 
 
   c (w +Δw , y )  =  (w +Δw ) u (w +Δw , y ) 
    ≦ (w +Δw ) u (w , y ) =  c (w, y )  +  Δw ・u (w , y ) .                   (13) 
                      
     Note here that for the simple case of two inputs, the validity of Eq. (12) is 
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graphically illustrated in Fig. 5. 
     Taking advantage of Eqs. (11) and (12), we can derive the following: 
 
         【 c (w +Δw , y ) — c (w , y ) 】 /  |Δw |  
          =  w 【 u (w +Δw , y ) — u (w , y ) 】 /  |Δw |  
             + Δw ・ u (w +Δw , y )  /  |Δw |                  
          ≧ Δw ・ u (w +Δw , y )  /  |Δw |  .                      (14) 
           
     In the light of Eq. (6.13), we find the following: 
 
      【 c (w +Δw , y )  — c (w , y ) 】 /  |Δw | 
        ≦  Δw ・u (w , y )  /  |Δw |.                             (15) 
 
    Now, if we take care of Eqs. (14) and (13), then we obtain the following: 
 
   0  ≦ 【 c (w +Δw , y ) — c (w, y ) — Δw・u (w +Δw , y ) 】/  |Δw | 
         ≦    Δw 【u ( w , y ) —  u (w +Δw , y ) 】/  |Δw |.            (16) 
 
     Since  u ( w , y )  is continuous by Property (1), we can see that u ( w , y ) —   
u (w +Δw , y )  → 0  as Δw  → 0 .  Because  Δw / |Δw |  is clearly bounded,  
the right-hand side of Eq. (6,16) goes to zero asΔw  → 0 .  Therefore, we must have 
the following: 
  
 

         

        Fig.  5.   For the simple case of two inputs, we clearly have the following :   

           c (w1, w 2, y )  = w 1 u 1 (w 1 , w 2 , y )  + w 1 u 2 (w 1 , w 2 , y )  
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           ≦  w 1 u 1 (w 1 +Δw 1 , w 2 , y )  + w 1 u 2 (w 1 +Δw 1  , w 2 , y )  

           A' B '  lies above AB , so that we find  w ・u (w , y )  ＜ w ・u (w +Δw , y ) .         

  
 
   Lim  【 c (w +Δw , y ) — c (w, y ) — Δw・u (w , y ) 】 /  |Δw |.  
    Δw→0                                 
 
  =  Lim 【 c (w +Δw , y ) — c (w, y ) — Δw・u (w +Δw , y ) 】 /  |Δw |.  
       Δw→0                       
   

   =   0  .                                                                (17) 
 
     This clearly shows differentiability of  c (w , y )  with respect to  w .   Now, let 
us specify Δw = (0, ..., 0, Δw i  , 0, ..., 0).  Then, it is easily seen that the  following 
equation holds: 
 
         ∂c ( w , y ) / ∂w i  =  u i  (w , y ) ,      i  =  1,2, ..., n .           (18) 
  
    To prove Property (5),  let us take  y 0 ,  y 1  ∈ Y ,  y 0  ≠  y 1 , and let  y t  =  
(1 — t ) y 0  +  t y 1 ,  t  ∈ (0, 1) .   In the light of Assumptions (A2) and (A3), we find 
 (1 — t ) u (w , y 0 ) + t u (w , y 1 )  ∈ Int Ā (y t ) .  Hence, we must have the following: 
 
     (1 — t ) c (w , y 0 ) + t c (w , y 1 ) 
     = w 【(1 — t )u (w , y 0 ) + t u (w , y 1 ) 】 ＞ c (w , y t ) .              (19) 
 
    To show Property (7),  let us take a sequence  { (w k , y k ) }  in  W ×Y  such 
that 
 
           Lim  k→∞ (w k , y k )  =  (w , y ) ∈  W ×Y  .                 (20) 
 
    Then, by definition, we have c (w k , y k ) = w k ・ u (w k , y k ) .  Since  c (w k , y k )  is 
continuous by Property (1), letting  k→∞ yields the following: 
 
   c (w, y )  =  Lim  k→∞   c (w k , y k ) =  w ・ Lim  k→∞ u (w k , y k ) .      (21) 
 
Since  u (w , y )  is uniquely determined for  (w , y ) , we must obtain the following: 
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          Lim  k→∞  u (w k , y k )  =  u (w , y ) .                            (22) 
 
     This clearly shows that  u (w , y )  is continuous in   (w , y ) . 
     Finally,, to see Property (8), let λ ＞ 0.  Since  c (w, y )  is homogenous of 
degree one in  w  by Property (3) , we must have the following: 
 
   λw ・u (λw , y ) =  c (λw , y ) =  λ・c (w, y ) =  λw・u (w, y ) .        (23) 
 
     Thus,  we must obtain   u (λw , y ) =  u (w, y ) , showing that u (w , y ) is 
homogenous of degree zero in w .                                           Q.E.D.   
 
     At first glance, the contents of Lemma 6.1 appear to be rather technical and even 
too mathematical.   It should be noticed, however, that it discusses many important 
properties of the cost and compensated input functions which play critical roles in the 
theory of cost and production.   According to Properties (1), the cost function c (w, y )  
is continuous in (w, y ), so that the cost curve as a graphical expression of the cost 
function is overall smooth and has neither gaps nor jumps throughout.  Property (2) 
tells us that focusing on w  only , c (w, y ) is extremely smooth, having no kinks at all.  
Moreover, it also indicates a very nice bridge between the two functions, namely the cost 
function c (w , y ) and the compensated input function  u  (w , y ) .   Exactly speaking,  
For any i , we should have ∂c ( w , y ) / ∂w i  =  u i  (w , y ) , demonstrating that the 
rate of change of total cost when the price of an input changes is equal to the amount of 
compensated demand for that input.  This delicate relation between the two functions 
is well-illustrated in Fig. 6.   
     According to Properties (3), (4), (5) and (6),  while the cost function  c (w, y )  is 
homogeneous one and concave in w , it is strictly convex in  y  and also strictly 
increasing.   Such concave and convex relations should be worthy of attention.   
Finally, in the light of Properties (7) and (8),  whereas the compensated input demand 
function u (w , y )  is continuous in  ( w , y ) , it is homogeneous of degree zero in  w  
only.  This teaches us that u (w , y )  reflects the nice properties of  u (w , y )  . 
     In addition to Assumptions (A1) — (A4), we are now ready to postulate the 
following assumption. 
 
Assumption (A5)   Y is bounded from above.  4) 
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      Fig.  6   A nice relation between  c  and  u  :  ∂c / ∂w i  =  u i      

 
 
 
 
       As will be seen later, the purpose of Assumption (A5) is to force the profit 
function to be defined later for any (w,  p ) ∈   W ×P  .   The newly added 
Assumption (A5) together with the previous assumptions on  Y  implies that  Y  =  
[ 0, y* )  for some  y*  ＜ +∞ .   Let  E ( w, p ) =  { x  :  x ∈ X and  p f ( x ) 
— w x  ≧ ０ } . 
Then, under Assumptions (A1) — (A5) , the newly defined set  E ( w, p )  is clearly 
bounded and closed; therefore, the continuous function  p f (x)  — w x  takes on     
maximum on  E ( w, p ) .   Note that by  Assumption (A1),  p f ( x ) — w x  =  0  for  
x  =  0 , and   maximum on  E ( w, p ) .   Note that by Assumption (A1),  p f ( x ) — 
w x  =  0  for  x  =  0 ;  p f ( x ) — w x  ＜ 0  for any x ∈  X — E ( w, p ) .   
Thus, the maximum attained on E ( w, p ) is actually the maximum on the whole  X . 
Fig.  7  clearly illustrates the relation between the set E ( w , p )  and  X . 
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               Fig. 7   The relationship between  E ( w , p )  and  X . 

  
 
 
 
    Now, for any  ( w , p ) ∈ W × P  , let us define a profit function  π( w , p ) as 
follows:   
 
   π( w , p ) =   Max  { p f ( x ) —  w x  :  x ∈ X } .                (24) 
 
     Clearly, for any given price vector ( w , p ) ,  π( w , p ) stands for the maximum 
profit which can be obtained from the production technology.  Since  f ( x ) is strictly 
concave by Assumption (A3), it is clear that π( w , p ) is positive for some  ( w , p ) ∈ 

W × P  .    An optimum input function and  x ( w , p )  and an optimum output 
function  y ( w , p ) ∈ W × P  are defined for all     Evidently,  x ( w , p )  and  
y ( w , p )  respectively indicate the input bundle as follows. 
 
  x ( w , p )  =  { x  :  x ∈ X  and π( w , p ) =  p f ( x ) — w x  } .      (25) 
  
  y( w , p )  =  f  ( x (w , p ) ) .                                           (26) 
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     Evidently,  x ( w , p )  and  y ( w , p )  respectively indicate the input bundle 
demanded by the firm, and the output bundle supplied by the firm.  It is noted that  
the input-output vector  ( x ( w , p ) ,  y ( w , p ) ) is uniquely determined for each        
price vector  ( w , p ) ∈W × P  since the profit  π( w , p ) is strictly concave in  x .             
     The properties of the profit function along with those of the optimum input-output 
function will be seen in the following lemma. 
 
LEMMA  6.2.  (Properties of π( w , p ) )  . 
For all ( w , p )  ∈ W × P , we have following properties: 
 ⑴  π( w , p ) is differentiable in ( w , p ) , and  
 
         ∂π ( w , p ) / ∂w i  =  — ｘi  (w , y ) .   i  =  1,2, ..., n .     
        ∂π ( w , p ) / ∂p   =  y  (w , y ) .   
 
 ⑵ π( w , p ) is homogeneous of degree one in ( w , p ) . 
 ⑶ π( w , p ) is convex in ( w , p ) . 
 ⑷ If w 0 ≧ w 1 ＞ 0 , then  π(w 0 , p ) ≦ π(w 1 , p ) , with strict inequality if 
     x (w 0 , p ) ＞ 0 . 
 ⑸ If p 0 ＞ p 1 ＞ 0 , then  π(w , p 0 ) ＞ π(w , p 1 ) , with strict inequality if 
     y (w 0 , p 1 ) ＞ 0 . 
 ⑹ x ( w , p )  and  y ( w , p )  are continuous in  ( w , p ) .  
 ⑺  x ( w , p )  and  y ( w , p )  are homogeneous of degree zero in  ( w , p ) .  
 
Proof.    (a)  For convenience, let us first show that  π( w , p ) , x ( w , p ),  and 
y ( w , p ) are all continuous in  ( w , p ) .  
      To this end, take a sequence  { ( w k ,  p k ) }  in  W × P  such that the 
following equation holds:  
 
          Lim  k→∞ ( w k, p k ) =  ( w , p ) ∈ W × P  .  
 
   In the light of Eq. (6.24), we should have the following: 
 
       π( w , p ) =   p  y ( w , p ) — w x (w , p ) 
       ≧  p  y ( w k , p k ) — w x (w k , p k ) ;                          (27) 
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       π( w k , p k )  =   p k  y ( w k, p k ) — w k x (w k , p k ) 
       ≧  p k  y ( w , p ) — w k x (w , p k ) .                            (28) 
      
     Because of Assumption  (A5) ,  it is clear that the sequences  { π( w , p ) } ,  
{ x ( w , p ) } ,  and { y ( w , p ) } are all bounded, and contain convergent subsequences. 
Without loss of generality, we may assume that the original sequences themselves are 
convergent.  By Eqs.  (27)  and  (28) , we derive the following: 
 
  π( w , p ) =   p  y( w , p ) — w x (w , p ) 
   ≧  p  Lim k→∞  y ( w k , p k ) — w  Lim k→∞ x (w k , p k )  
   =   Lim k→∞ p k  Lim k→∞  y ( w k , p k ) — Lim k→∞ w k  Lim k→∞ x (w k , p k )  
   =   Lim k→∞   π( w k , p k )    
   ≧  Lim k→∞ p k y( w , p ) —  Lim k→∞ w k x (w , p k )  
   =   p  y( w , p ) — w x (w , p ) .                                      (29) 
  
     Therefore, we find  Lim k→∞ π( w k , p k )  =  π( w , p ) ,  showing continuity of 
π( w , p ) .  Further, in the light of  Eq. (6.29), we also obtain the following: 
 
   p  Lim k→∞  y ( w k , p k ) — w  Lim k→∞ x (w k , p k )  
   =   p  y( w , p ) — w x (w , p ) .                                      (30) 
 
     By the uniqueness property of  x ( w , p )  and  y ( w ,) ,  it follows from 
Eq. (6.29)  that  Lim k→∞  y ( w k , p k ) =  ( w , p )  and  Lim k→∞ x (w k , p k ) = 
x (w , p ) , thus assuring Property (6) .   
     (b)   By help of (a) , we will next prove Property ⑴,   In the light of Eqs. (28) 
and (6.29), we find , for any change  ( Δw , Δp ) in the price vector, we obtain the 
following equations. 
 
  π(w , p ) ≧  p ・ y(w +Δw, p +Δp ) — w ・ x (w +Δw, p +Δp )  
    =  π( w + Δw, p +Δp )  + Δw・ x (w +Δw, p +Δp )  
        —Δp・ y (w +Δw, p +Δp ) ,                                        (31)                                      
                           
  π(w , p ) ≧ (p +Δp ) y(w, p ) — (w +Δw ) x (w, p )            
    =  π( w , p )  —  Δw・ x (w , p )  +  Δp・y ( w , p ) .                   (32) 
 
     In the light of Eqs. (6.31) and (6.32),  we can easily find the following: 
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   — Δw・x (w , p )  +  Δp・ y ( w , p ) .       
   ≦ π( w + Δｗ, p  + Δp )  —  π(w , p ) 
   ≦  —  Δw・ x (w + Δw , p + Δp )  + Δp・y ( w +Δw , p + Δp ) . 
 
     Therefore, we can derive the following inequalities.   5) 

 

                π( w + Δｗ, p  + Δp )  —  π(w , p ) 
                      + Δw・x (w , p )  —  Δp・y ( w , p ) .       
  0  ≦   ――ｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰ                                   
          | (Δｗ , Δp ) | 
 
             — Δｗ【 x ( w + Δｗ, p  + Δp )  —  x (w , p ) 】 
               + Δp【 y ( w + Δｗ, p  + Δp )  —  y (w , p ) 】 
     ≦   ――ｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰ            (33)                                  
          | (Δｗ , Δp ) | 
       
      In the light of (a) above,  【 x ( w + Δｗ, p  + Δp )  —  x (w , p ) 】 → 0  and 
 【 y ( w + Δｗ, p  + Δp )  — y (w , p ) 】 → 0  as  ( Δw , Δp ) → 0  .  Since 
 Δw  / | (Δｗ , Δp ) | and  Δp  / |(Δｗ , Δp ) |  are bounded, the extreme 
right-hand side of  Eq. (6.33)  goes to zero as  ( Δw , Δp ) → 0  .  Therefore, we 
can derive the following. 
 
                 π( w + Δｗ, p  + Δp )  —  π(w , p ) 
                    + Δw・x (w , p )  —  Δp・y ( w , p ) .       
     Lim      ――ｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰｰ   =   0 ,       (34)                               
 (Δw ,Δp )→0         | (Δｗ , Δp ) | 
    
assuring differentiability of π(w , p ) .   
     Now, letting (Δｗ , Δp ) = ( 0, ... , Δw i ,0, ... , 0 ),  Eq. (6.34) yields the following. 
    
         ∂π ( w , p ) / ∂w i  =  — ｘi  (w , p ) .      i  =  1,2, ..., n . 
 
     Similarly, letting  (Δｗ , Δp ) = ( 0, ... , Δp ) ,  it yields the following. 
  
        ∂π ( w , p ) / ∂p   =  y  (w , p ) .   
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  (c)  To see Properties (2) and (7) together, let  π  ＞ 0.  Then, we find the 
following : 
 
      λp・y (λw , λp ) — λw・x (λw , λp ) =  π( λw , λp ) 
    =   Max  { λp  f ( x ) — λw x  :  x ∈ X  } 
        =   λ Max  { p  f ( x ) — w x  :  x ∈ X  } 
        =   λπ ( w , p )  = λp・y ( w , p ) — λw・x (w , p ) .   
 
     By the uniqueness property of x (w , p ) and y ( w , p ) , we find  x (λw , λp ) = 
x (w , p )  and  y (λw , λp ) =  y ( w , p ) , thus assuring  (7) .  We also have     
π( λw , λp ) =  λπ ( w , p ) , thereby assuring  (2) . 
  (d)  To see (3), select  ( w 0 , p 0 ) , ( w 1 , p 1 ) ∈ W × P ,  ( w 0 , p 0 ) ≠ ( w 1 , p 1 ) . 
Let  ( w t , p t )  =  (1—t) ( w 0 , p 0 )  +  t  ( w 0 , p 0 ) ,  t  ∈  (0, 1) .  Then, we have 
the following. 
 . 
     π( w t , p t )  =  p t y ( w t , p t ) — w t x (w t, p t ) 
      =   (1 — t) { p 0y ( w t , p t ) — w 0 x (w t, p t ) } 
           +   t  { p 1y ( w t , p t ) — w1 x (w t, p t ) } 
      ≦  (1 — t) π( w0 , p 0 )  +  t  π( w1 , p 1 )  
  
   Clearly, this assures Property (3). 
 
   (c)  To see Property (4),  let w 0, w 1   ∈ W ,  w 0  ≥ w 1 、and  p  ∈ P .  Then, 
we have the following. 
 
     π( w 0, pt )  =  p・y ( w 0 , p ) — w0・x (w0 , p ) 
               ≦ p・y ( w 0 , p ) — w 1・x (w0 , p ) , 
 
with strict inequality if  x (w0 , p ) ＞ 0 .  This assures Property (4).   The proof of 
Property (3) should be parallel to the above.                             Q.E.D. 
 
     Lemma 6.2 is quite interesting in making a bridge between the profit function and 
the optimum input-output function.  The essence of Property (1) is expressed by the 
two equations;  ∂π / ∂w i  =  — ｘi  (w , p )  and  ∂π/ ∂p   =  y  (w , y ) .   
Graphically, it can easily be seen in Fig. 8. 
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     In plain English, on the one hand, the rate of change of total profit when the price 
of an input price changes is equal to the amount of the input demanded by the firm, 
multiplied by ( —1 ) .  On the other hand, the rate of change of total profit when the  
 
 

               
 
                Fig. 8   Nice relationship between profit and input-output :      

                          ∂π / ∂w i  =  — ｘi   and  ∂π/ ∂p   =  y  .   . 

  
 
 
 
price of an output changes is equal to the amount of the output supplied by the firm.   
     According to Property (1), the profit function π(w , p )  is not only continuous but 
also differentiable in (w , p ), so that the profit curve as a graphical expression of the 
profit function is overall very smooth, with no kinks, having neither gaps nor jumps 
throughout.  Property (2) implies that when  (w , p ) doubles, π also doubles.  It 
follows from Property (3) that for any  (w , p )  ∈ W × P , and  for any fraction  t 
∈ ( 0, 1) , the following inequality holds: 
 
    (1—t) π(w 0 , p 0 ) +  t π(w 1 , p 1 )   
    ＞  π (  (1—t)w 0 + t w 1 , (1—t)p 0 + t p 1  ) .                           (35) 
 
     According to Properties (3) and (4), while  π  tends to decrease as  w  rises, but 
it tends to increase as  p  rises, thus agreeing with common sense.   

   Finally, by help of Properties (6) , inputs and outputs continuously change in 
response to a small change in  (w , p ) .  And Property (7) shows us that when all input 
prices and all output prices change in the same proportion, all inputs and all output are  
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expected to remain unaffected, agreeing our common sense.   
     Now, we are ready to establish the following interesting lemma. 
 
LEMMA 6.3.  (Marginal cost and output price) 
 
 For all  (w , p ) ∈ W × P ,  we obtain the following : 
 
      ∂c ( w , y (w , p ) )  / ∂y   =   p  ,    almost everywhere . 
 
Proof.   By the definition of  c ( w , y (w , p ) ) ,  we note that the following inequality 
must hold: 
 
     p・y (w , p ）— c  ( w , y ( w , p ）)   
     ≧  p  y   —  c ( w , y )   for  all  (w , y ) ∈ W × Y  .          (36) 
          
     Since  c ( w , y )  is concave in  y  by Lemma 7.1 (4) , it must be almost 
everywhere differentiable in  y  .  6)  
     Further, Eq. (36) asserts that the function  p  y   —  c ( w , y )  is maximized at  
y  =  y (w , p ) .   Therefore, the first-order characterization for the maximum yields 
the following : 
 
      ∂ ( p y  — c ( w , y ) )  / ∂y   =   0 ,      almost everywhere . 
  
     This implies that  p  —  ∂c ( w , y ) / ∂y   =   0   at  y  =  y (w , p )  
almost everywhere , from which immediately  ∂c ( w , y (w , p ) )  / ∂y   =   p      
almost everywhere .                                                 Q.E.D. 
 
     Lemma 6.3 is an important lemma, saying that the marginal cost of an output is 
equal to output price   Surely, it demonstrates profit-maximizing behavior of the firm 
from a different angle.   The essence of Lemma 6.3 is graphically illustrated in Fig. 9 . 
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        Fig. 9    At equilibrium, the following relation holds almost everywhere: 
                      ∂c ( w , y )  / ∂y   =   p    at   y  =  y (w , p ) .   
 
 
 
     We are now in a position to discuss how the optimum and compensated input 
functions are related with each other.   
 
LEMMA  4.  ( Properties of x (w , p ) and  y (w , p )  ) 
 For all  ( w , p ) ∈ W × P ,  we obtain the following equations : 
 
  (1)   x (w , p )  =  u ( w ,  y (w , p ) ) .              
  (2)   c ( w , y (w , p ) )  =  w ・ x (w , p )  .    
  (3)   π( w , p )  =   p ・ y ( w , p ) —  c ( w , y (w , p ) ) .    .    
    
Proof.  To see Property (1), we first note ｘ (w , p ) ∈ Ā ( y ( w , p ) ) .  Let us next 
take ｘs  ∈ Ā (y (w , p ) ) , and ｘs ≠ x (w , p ).   This is possible by Assumptions   
(A2), and (A4).  Now, let a "middle point" ｘt  = (1 — t) ｘ(w , p ) +ｘs  ,  t ∈ ( 0, 1) .  
Then, by means of Assumptions (A2) and (A3), we obtain ｘt  ∈  Int Ā (y (w , p ) ) , so 
that  wｘt ＞ w・ x (w , p )  as is well-illustrated in Fig. 10.  
     Letting  t  →  0  yields  ｘt  → x ( w , p ) ,   and  w x ≧ w・ x (w , p ) .  
Since  x (w , p ) ∈  Ā ( y ( w , p ) ) , and u ( w , y (w ,p ) ) is uniquely determined for 
each  (w , p ) , it must follows that   u ( w ,  y (w , p ) )  = x (w , p ) .   This proves 
Property (1).    
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    From (1), we find c (w , y (w , p ) ) = w・x (w , p ) = u ( w , y (w , p ) ) , and π( w , p ) 
 = p・y(w ,p) — c (w, y(w, p)), assuring Properties (2) and (3).                 Q.E.D. 
 .                                                                 
     From this lemma, the economic significance of  u  ( w , y (w , p ) )  is quite clear,  
For an arbitrary price vector ( w , p ) , the optimum input-output combination ( x (w ,p) ) 
is uniquely determined from the production technology.  Then,  c ( w , y (w , p ) )  
denotes the cost level which governs the output level y (w , p ) , and u ( w , y (w , p ) )  is  
the corresponding input bundle.  It is also seen that the profit gained by the firm is 
equal to the difference between  p ・ y (w , p )  and  c ( w , y (w , p ) ) .     

  
 
 

              
 

       Fig. 10   The proof of Lemma 6.10 (1) is graphically illustrated here. 

  
   
6. 4  Properties of the Substitution and Total Effects 
 
In the last section, we sought the information about conditions governing inputs 
demanded by the firm at given input-output prices.  In this section, we are now ready 
to use it to discover how the inputs will change when these prices vary.   
    Now, let us consider a change in w j .  Then, we will see that its impact on x i    can 
be divided into the following two effects:  a substitution effect along the old isoquant 
and an expansion effect (or a scale effect)  along the new expansion path (or scale path).     
Although the naming of the first effect is fairly traditional, that of the second effect 
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might be quite new.   The composition of the total effect into the substitution and the 
expansion (or scale) effect in production theory was first noticed by Hirota and Sakai 
(1969), and later developed by Sakai (1973), Sakai (1974), and others.  Such 
composition in production seems to be similar to, yet not as the same as the composition 
into the substitution and income effects in consumption theory.   How and to what 
extent the expansion effect differs from the income effect is a very important question, 
thus composing the main theme of the present chapter.   A detailed discussion on this 
point will be made in the next section.  Although "the expansion effect" has been  
frequently used in the previous literature and also in present paper, we would like to 
say that "the scale effect" may be an equally appealing name because it deals with 
"contraction" (larger scale) as well as "expansion" (smaller scale). 
     The properties of the substitution effect can be summarized in the following 
theorem. 
 
THEOREM  5.  ( Differential properties of  u (w , y ) ) 
 
 For all  ( w , y ) ∈ W × Y ,  we have the following properties :  
 
   (1)  (∂u i /∂w 1 ) w 1  + ... +  (∂u i /∂w n ) w n  =  0  for any i , almost everywhere. 
   (2)  w 1 (∂u 1 /∂w j )  + ..  + w n  (∂u n /∂w j )  = 0  for any j , almost everywhere. 
   (3)  ∂u i /∂w j   = ∂u j /∂w i   for any  i, j  ,  almost everywhere.   
   (4)  The following matrix is negative semi-definite, almost everywhere.   
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Proof.  Recalling that  c ( w , y )  is concave in w  by Lemma 1 (4) , it should be  
almost everywhere twice differentiable in w .  Note that by Lemma 1 (2) ,  we find that   
∂c ( w , y ) / ∂w i  =  u i  (w , y )  for all  i .   Therefore, it follows that for any  i ,   
u i  (w , y )  is almost everywhere differentiable in  w .  7)         
    With those preparations in mind, we also recall that  u (w , y ) is homogeneous of 
degree zero in  w  by Lemma 6.1 (8).  Here, if we apply the famous Euler theorem on 
homogeneous equations. we immediately find the following equation. 
 
   (∂u i /∂w 1 ) w 1  +  ...  +  (∂u i /∂w n ) w n  = 0  for any i ,  almost everywhere ,.  
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assuring Property (1).  
     To prove Property (2), it is noted that by definition of the compensated function  
u ,  the following inequality holds : 
 
        w ・u (w s , y )  ≧ w ・u ( w , y )   for all  w s  ∈ W  .    (37) 
 
     Note that the validity of Eq. (7.37)  is well-illustrated in Fig. 11.   Eq. (37) tells 
us that the function  w ・u ( w , y )  attains minimum among all the functions of the 
form  w ・u (w s , y )  at  w s  =  w  .  
     Hence, the first order characterization for the minimum yields the following . 
 
       ∂(w ・u (w s , y ) ) / ∂w sj    =   0   at   w s  =  w ,  j  =  1, ... , n , 
 
almost everywhere, from which Property (2) follows. 
     To see Property (3), we recall the well-known Young theorem on differential  
calculus, which says that whenever a function is twice differentiable, the order of 
differentiation is not important.  8)                                   
    Therefore, by Lemma 1 (2) above, we obtain the following. 
 
    ∂u i /∂w j   =   ∂2 c / ∂w j∂w i   = ∂2 c / ∂w i∂w j   =  ∂u j /∂w i  

                                                        for any  i, j  ,   almost everywhere, 
 
which proves Property (3). 
     Finally, since the Hessian matrix of the concave function  c ( w , y )  with respect 
to  w   is almost everywhere negative semi-definite,  Property (4) is easily derived 
from Lemma 1 (2).                                                      Q.E.D. 
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           Fig. 6.11.    w ・u (w s , y )  ≧ w ・u ( w , y )   for all  w s  ∈ W  . 

  
     We are in a position to discuss a new concept of net substitution and  net 
complementarity  in contrast to a more traditional concept of gross substitution and 
gross complementarity .  We say that the input  i  is a net substitute for the input  j  
if  ∂u i /∂w j   ＞ 0 , and  a net complement for it if  ∂u i /∂w j  ＜ 0 .   Possibly 
as a rare case, we could have the special situation in which  ∂u i /∂w j  ≦ 0  for all  
i  .   Generally speaking, when the price of a certain input price rises, the demand for 
that input tends to decrease if output is to be constant.  In other words, the 
compensated demand curve tends to be negatively sloping.  Coupled with this result, 
Property (1) of Theorem 6.5 implies that whereas it is possible that all other inputs are 
net substitutes for an input, it is not possible that they are net complements for it.  In 
short, although net substitutability can be seen everywhere, net complementarity is a 
rare phenomenon.  Property (2) also shows further limits on the possibility of net 
complementarity.  Property (3) asserts that the substitution effect should be 
symmetrical between two inputs.  Naturally, this agrees with common sense. 
     The properties of the total effect will be summarized in the following theorem. 
 
Theorem  6 .  (Differential properties of  x (w , p ) and y (w , p )  )  
 
For all  ( w , p ) ∈ W × P ,  we have the following properties :  
 
  (1)  (∂x i /∂w 1 )w 1 +  ...  + (∂x i /∂w n ) w n +  (∂x i /∂p ) p  = 0  for any  i ,  
     almost everywhere .  
  (2)   (∂y /∂w 1 ) w 1 + ... + (∂y /∂w n ) w n + (∂y /∂p ) p  =  0 ,  almost everywhere. 
  (3)   ∂x i  / ∂w j   =  ∂x j / ∂w i    for all  i  , j ,  almost everywhere. 
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  (4)   ∂x i / ∂p   +  ∂y / ∂w i  =  0  for all  i ,  almost everywhere. 
  (5)  The following matrix is positive semi-definite, almost everywhere. 
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 Proof.   We first note that the profit function π( w , p ) is almost everywhere twice 
differentiable since it is convex by Lemma 2 (3).  Since ∂π/ ∂w i  =  — ｘi   for 
any i  , and ∂π/ ∂p  =  y  ,  this obviously implies that both input function  
x (w , p ) and the output function  y ( w , p ) are almost everywhere differentiable.  
Such differential properties are quite important for further derivations. 
     From Lemma 2 (7),  we see that x (w , p )  and  y ( w , p ) are homogeneous of 
degree one.  Therefore, by applying the famous Euler theorem on homogenous 
functions here , we can immediately obtain Properties (1) and (2). 
     Next, Let us recall the famous Young theorem, which says that if a function is 
twice differentiable, the order of differentiation does not matter, leading to the same 
result.  So, if we apply the Young theorem to the profit functionπ( w , p ) which is 
convex by Lemma 2 (7) , then we can obtain the following equations . 
 
   ∂x i  /∂w j  =  — ∂2π/∂w j ∂w i   =  — ∂2π/∂w i∂w j  

        =  ∂x j  / ∂w i      for all  i  , j ,  almost everywhere., 
  
   ∂x i /∂p  + ∂y /∂w i  =   — ∂2π/∂p ∂w i  + ∂2π/∂w i ∂p     

         =   — ∂2π/∂w i ∂p  + ∂2π/∂w i ∂p  =  0  for all  i  , almost everywhere . 
 
     Therefore,  Properties (3) and (4) are surely assured. 
  .   Finally, since the risk function π( w , p )  is convex, its Hessian matrix must be 
positive semi-definite, almost everywhere.   We note that the following set of equations 
hold. 
 
        ∂2π/∂w j ∂w i  = ∂x i  /∂w j  ,   ∂2π/∂p ∂w i  = ∂x i  /∂p  ,   
        ∂2π/∂w j ∂p  =  ∂y  /∂w j   ,    ∂2π/∂p 2   =  ∂y /∂p  . 
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    Hence, Property (5) is definitely assured.                             Q.E.D. 
 
     To see the economic significance of Theorem 7.6, let us introduce several useful 
concepts here.  We say that the input  i  is a gross substitute for the input  j  if  
∂x i  /∂w j  ＞ 0  ;  a gross complement for it if  ∂x i  /∂w j  ＜ 0 .   We also 
say that the input  i  is  a normal input  if  ∂x i  /∂p  ＞ 0 ;  an inferior input  
if  ∂x i  /∂p  ＜ 0  .   If we employ these concepts, we can give new light on the 
relationship between inputs and outputs on the one hand and input prices and output 
prices on the other hand.   
     First of all, Property (4) of Theorem 6.4 tells us that the "supposedly normal 
situation" under which ∂x i  /∂w i  ≦ 0 for any  i  and  ∂y  /∂p   ≧ 0  is 
certainly plausible but not inevitable.   As can easily be expected, while the input 
demand curve tends to be negatively sloping, the output supply curve tends to e 
positively sloping.  Property (4) means that ∂x i /∂p  ＞  0  ( or  ＜0 ) if and only if  
∂y / ∂w i  ＜  0   (or  ＞ 0 ) .  In plain English, thus means that the input  i  is a 
normal input (or am inferior input) if and only if a fall in the price of the input leads to 
an increase (or a decrease) in output.    
     In the light of Property (5), we find  ∂y /∂p  ≧ 0  .  So, Property (2) implies 
that although it is likely that all of inputs are normal, it is a mission impossible that 
they are all inferior.  Now suppose that a certain input, say  x i  ,  is an inferior input, 
so that  ∂x i /∂p  ＜ 0  .  It follows from Property (1) that, in such a case, it is not 
possible at all that all other inputs are gross complements for the input  i  although it 
is truly possible that they are all gross substitutes for it.   Because of Property (3), the 
total effect is symmetrical between two inputs.  However, we already know from 
Theorem 6.5 (3) above that the substitution effect is symmetrical between them.  
Therefore, the expansion effect, as the difference of the total and substitution effects, 
must be symmetrical as well.   9)  
     Finally, in the light of Properties (3) and (5), we obtain the following inequalities. 
 
   (∂x i  /∂w i ) (∂x j /∂w j ) ≧  (∂x i  /∂w j )  2      for all  i ≠ j  .  

 

   ( —∂x i  /∂w i ) (∂y /∂p ) ≧  (∂x i  /∂p ) (—∂y /∂w 1 )    for all  i ≠ j  . 
 
  Clearly, these inequalities indicate dominance of the own effects  over the cross 
effects.  Summing up, the differential properties of  x (w , p ) and y (w , p )  are so 
important that they will be utilized for further discussions on input demand theory . 
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V  Decomposition Equations in Input Demand Theory 
 
As stated above, the total effect of a change in the price of an input on the demand for 
another input can be split up into the two separate effects, namely the substitution and 
scale effects.   The purpose of this section is to use the previous results to derive 
various types of decomposition equations in input demand theory .   Our attention will 
be mainly devoted to seeing how and to what extent they are analogous to , or distinct 
from, the famous Slutsky equations in consumer demand theory (see Slutsky (1915) and 
McKenzie (1957) ).  
     Let us attempt to decompose the change of the demand for the input  i  
responding to a change in the price of the input  j  .  For that purpose, let us １
consider the following increment . 
 
     Δx i  ( w , p )  =  x i  ( w + Δj w , p  )  —  x i  ( w , p )  , 
 
where  Δj w  is defined as follows .  
          
     Δj w   =   (0, ... , 0, Δw j , 0, ... , 0 ) .      
 
     Then, by Lemma 6.4 (1) above, we obtain the following. 
 
  Δx i ( w , p ) =  u i ( w +Δj w ,  y (w +Δj w , p ) )  — u i ( w , y (w , p ) ) .              
   =  u i ( w +Δj w ,  y (w , p ) )  — u i ( w , y (w , p ) ) .              
      +  u i ( w +Δj w , y (w +Δj w , p ) )  —  u i ( w +Δj w ,  y (w , p ) ) .      (38) 
 
     Now, let us newly define the quantities  SE i j  and  EE i j  as follows.    
 
     SE i j  = 【 u i ( w +Δj w ,  y (w , p ) )  — u i ( w , y (w , p ) ) 】/ Δw j   .   
             
    EE i j  =【 u i ( w +Δjw , y (w +Δjw ,p ) ) — u i (w +Δjw , y (w , p ) ) 】/ Δw j .    
                        
      Then, it is easily seen from Eq. (6.38) that the following equation holds. 
 
         Δx i / Δw j   =   SE i j  +  EE i j  .                          (39) 
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     In our opinion, Eq. (6.39) has very important implications.  It is noted that  SE i j  
and  EE i j  respectively show the substitution effect and the expansion effect.  At first 
appearance, it seems to be the finite increment version of the famous Slutsky equation 
in consumer demand theory.  In fact, a change  Δw j  in the price of the input  j  
affects the behavior of the firm in two different ways.  While it causes a change in 
input price ratios which induces technical substitution among inputs along the old 
isoquant , it entails a change in the profit maximizing output along the new scale path.     
     On the one hand, the first substitution effect stands for the variation in the 
optimum combination of inputs within the isoquant class to which the original x (w , p )  
belongs.  Then, c ( w +Δj w ,  y (w , p ) ) represents the corresponding level of cost 
which keeps the firm within the same isoquant class as before the input price change, 
even in the new input price situation  w + Δj w .    On the other hand, the scale 
effect represents the shift of the optimum input combination in the new input price 
situation  w + Δj w , responding to the change of output level from the old level  w + 
Δj w  to the new level  y ( w +Δj w , p ) .      
     These two distinct effects are well-illustrated in Fig. 12.  There, the movement 
from Point A  to Point B  indicates the substitution effect, and the movement from 
Point B  to Point  C  demonstrates the expansion effect.           
  
 
 
 

                 
 
               Fig. 12.  The substitution and expansion effects graphically illustrated 

  
 
     It is recalled that Eq. (6.39) merely stands for the difference version of the 
decomposition equation.  We are now ready to derive its differential version, which is 
perhaps more interesting than the difference version.   To this end, it is necessary to 
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make an additional assumption as follows. 
 
Assumption (A6).   For all  ( w , p ) ∈ W × P ,  x ( w , p )  and  y ( w , p )  are 
   differentiable in  ( w , p ) .  
 
     This newly added assumption (A6) is not so far from the previous assumptions  
(A1) —  (A5).  In fact, as was seen above, the latter ones already assure almost 
everywhere differentiability of  x ( w , p )  and  y ( w , p ) .   The only difference 
between the previous assumptions and the newly added assumption comes down to the 
difference between  " almost everywhere "  and  " everywhere ."   Moreover, when  
(A6)  is assumed, it is not hard to see from Lemma 6.4 that  u ( w , y ) and  c ( w , y ) 
are also differentiable.     
     Now, we are in a position to establish and prove one of the most important 
theorems in this chapter. 
 
THEOREM  7  ( The first kind of decomposition equations ) 
                   
For all  ( w , p ) ∈ W × P ,  we have the following equations. 
 
  (1)  ∂x i /∂w j   =  ∂u i /∂w j  + (∂u i /∂ｙ) (∂y / ∂w j  )     for all  i  , j . 
  
  (2)  ∂x i /∂p   =  (∂u i /∂y ) (∂y /∂p )        for all  i  . 
 
Proof.   In the light of Lemma 4 (1), the proof of (1) and (2) is easy and straightforward.   
Indeed, we know that the following equation holds. . 
 
              x (w , p )  =  u ( w ,  y (w , p ) ) .              
  
     If we apply the well-known rule on the differentiation of a composite function, 
then we can immediately obtain the desired Properties (1) and (2).          Q.E.D.        
 
     Property (1) indicates the first version of decomposition equation in input demand 
theory in differential terms .  Exactly speaking, we find that  ∂x i /∂w j  =   
∂u i /∂w j  + (∂u i /∂ｙ) (∂y / ∂w j ) .  The first term  (∂u i /∂w j )  on the 
right-hand side tells us to what extent a change in w j  influences u i  .  And, the 
second term (∂u i /∂ｙ  ) (∂y / ∂w j  )  on the right-hand , representing the 
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remarkable scale effect term, shows the composite effect containing the following two 
partial derivative terms :    . 
  
   (i)  The partial derivative term  ( ∂y / ∂w j  )  , representing the change in the 
optimum output corresponding to the change in the price of the input  j  , 
  (ii)  The partial derivative term    (∂u i /∂ｙ ),  showing the change in the 
optimum input responding to the variation in the output above mentioned .  10) 

  

     Property (2)  demonstrates that the total effect of a change in input price on the 
input i  can be decomposed into the following two partial derivative terms : 
 
  (i)   The partial derivative term  ( ∂y /∂p  ) , representing the change in the 
optimum output as a result of the change in output price, 
  (ii)   The partial derivative term  ( ∂u i /∂y ) , showing that the change in the 
optimum input corresponding to the variation in output above mentioned.    
 
     At first appearance, the combination of the firm's substitution and expansion 
effects seems to be analogous that of the consumer's well-known substitution and 
income effects.   We must say, however, that they are not exactly the same .    
     Whereas in consumption theory we have simply to consider the relations between 
those commodities which can be regarded as being essentially similar, in production 
theory we have two different kinds of commodities  to consider ｰｰｰ inputs and 
outputs.   Therefore, their mutual relations and their cross-relations take a little more 
disentangling.  We remind readers that, to obtain a decomposition equation in 
consumption theory, it is necessary to imagine a compensated change in consumer's 
income so as to keep the same preference level as before, in spite of a change in the price 
of a certain commodity.  In contrast to such a compensated change in income in 
consumption theory, in production theory we have to introduce the idea of a 
compensated change in output price, which was first introduced by Hirota & Sakai 
(1969) and later developed by Sakai ( 1973 ), Otani (1982), Diewert (1993), and others.   
More exactly speaking, when the price of a certain input price varies, we imagine such a 
compensated change in output price as would induce the firm to maintain the output 
level as before the input price change.   
     The similarity and difference between decomposition in consumer demand and 
that in input demand are well-illustrated in Fig. 13.  In Panel (A) , the movement of 
point from A to B , and that from B to C respectively indicate the substitution effect and 
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the income effect in consumer demand decomposition.  In Panel (B), similar 
movements A* → B* and  B* → C*  respectively show the substitution effect and 
the expansion effect in input demand decomposition.  On one hand, in Panel (A), when 
p 1 falls, consumer's budget line twists from  a 1 a 2  to  c 1 c 2 .   Since consumer's 
income stays fixed in spite of a fall in p 1 , the two point a 2  and c 2  on the vertical axis 
must coincide.   On the other hand. in Panel (B), when w 1 falls, producer's cost line 
shifts from   a 1 * a 2 *  to  c 1 * c 2 *.   Note that there are no fixed budget lines in 
input demand.  Since producer's cost has to change responding to a fall in w 1 , the two 
points a 2 * and c 2 *  must be apart, and indeed   c 2 * lies above  c 2 * .     
  
 
 
 
 

              
 
 Fig. 13.  Decomposition in consumer demand  vs.  decomposition in input demand : 

          Namely,   ( A → B → C )  vs.    ( A* → B* → C* )   

 

 

 

 

 

 

 

 

     By making use of the above-mentioned idea peculiar to production theory, we can 
now derive the second version of decomposition equation.  Compared with the first 
version, this second one will turn out to be more analogous to the decomposition 



 33 

equation in consumption theory.   For that purpose, Assumption (A6) needs to be a bit 
strengthened to the following assumption. 
 
Assumption  (A6 ' ).   For all  ( w , p ) ∈ W × P ,  x ( w , p )  and  y ( w , p )  are 
  twice differentiable in  ( w , p ) .  
  
     When Assumption (A6 ' ) is made, it is obvious by Lemmas 4 that  u (w , p )  and 
c ( w , y ) are also twice differentiable.   We are now ready to derive the following 
theorem. 
 
 
THEOREM  8.  (The second kind of decomposition equations) 
 

For all  ( w , p ) ∈ W × P ,  we have the following equations. 
 
   ∂x i /∂w j   =  ∂u i /∂w j   — (∂x i /∂p ) (∂p / ∂w j )      for all  i  , j  , 
 
where     ∂p /∂w j    ≡  ［ d p / d w j ］dw i = 0 (i ≠j) , dy = 0   . 
 
Proof.   We first note that under Assumption (A6 ' ), c ( w , y ) is now twice 
differentiable.   Then, by help of Lemma 6.3 above, we find the following. 
 
      ∂c / ∂y   =   p   .                                            (40) 
 
      Total differentiation of this equation yields the following. 
 
      ∑ i (∂2 c /∂w i∂y ) d w i  +  (∂2 c / ∂y 2 ) d y   =  d p   , 
 
in which we have  
 
      d y  =  ∑ i (∂y /∂w i ) d w i  +  (∂y / ∂p ) d p   . 
 
    In particular, let d w i = 0  for i ≠ j  , and  d y  =  0 .  Then, we obtain the 
following. 
 
            (∂2 c /∂w j∂y ) d w j   =  d p   ,                        (41) 
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  ,          (∂y /∂w j ) d w j  +  (∂y /∂p ) d p  =  0 .              (42) . 
 
     If we differentiate Eq. (40) with respect to p only, we must have the following. 
 
                  (∂c 2 / ∂y 2 )  (∂y /∂p ) =   1   , 
 
which must imply the following. 
 
                  (∂y /∂p )  ≠   0   . 
 
     Therefore, it is clearly seen by Eq. (42) that for an arbitrary change  d w j  , a 
compensated change  d p  , making d y = 0 , is uniquely determined as the following 
quantity. 
 
          d p  =  —  d w j  (∂y /∂w j ) /  (∂y /∂p )  .                   (43) 
   
     If we take account of Eqs. (43) and (41), then we can thus derive the following 
equation .  
 
   ∂p /∂w j    ≡  ［ d p / d w j ］dw i = 0 (i ≠j) , dy = 0    
               =  —  (∂y /∂w j ) /  (∂y /∂p )  . 
        =    ∂2 c /∂w j∂y  .                                    (6.44)  
  
     In the light of Theorems 6 (3) and 7 (1), we obtain the following. 
 
     ∂x i  / ∂w j   =  ∂x j / ∂w i  . 
        =  ∂u j /∂w i  + (∂u j /∂ｙ) (∂y / ∂w i )  .                          (6.45) 
 
     Note that by Theorem 5 (3), we have ∂u j /∂w i  =  ∂u i /∂w j .   Moreover, 
taking advantage of Lemma 1 (2), Theorem 6 (4) and Eq. (44), we can derive the 
following. 
 
        
     (∂u j / ∂y ) (∂y / ∂w i )  =   —  ( ∂2 c /∂y ∂wj ) (∂x i / ∂p )  
       —  (∂x i / ∂p ) ( ∂2 c /∂w j∂y )  =   —  (∂x i / ∂p ) (∂p /∂w j ) . 
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     Therefore, in the light of Eq. (45),  we obtain the following. 
 
           ∂x i  / ∂w j   =  ∂u j /∂w i  —  (∂x i / ∂p ) (∂p /∂w j ) . 
 
      Thus, we have derived the desired result.                         Q.E.D. 
 
     Theorem 8 gives us the second version of decomposition equations in input 
demand theory.  The scale effect here is meant to represent the composite effect of the 
following two terms: 
 
  (i)   The change in output price so as to maintain the same output level as before, in 
spite of the change in the price of the input j  .      
  .    
  (ii)  The change in the input i  corresponding to the variation in output price above 
mentioned.   11) 

 

    This second version of decomposition equations are as important as the first version, 
presumably being even more comparable to the famous Slutsky equations in 
consumption theory (see Slutsky (1915) ).   As an immediate result of this theorem, we 
can finally derive the following. 
 
THEOREM  9.  ( Property of the expansion effect ) 
 
  For all  ( w , p ) ∈ W × P ,  we have the following property. 
 
     EE i i   ≡  — (∂x i /∂p ) (∂p / ∂w i )   ≦  0  ,  i  = 1, ... , n  .   (46) 
 
 
Proof.   By making use of Eq. (44) , Theorem 7 (2), and Lemma 1 (2), we can obtain the 
following sequence of equations.. 
 
   — (∂x i /∂p ) (∂p / ∂w i )  = . — (∂x i /∂p ) ( ∂2 c /∂y ∂wi )  
  =   — (∂u i /∂y ) (∂y /∂p ) (∂u i /∂y )  =  —  (∂y /∂p )  (∂u i /∂y ) 2  , 

 

which should be non-positive by Theorem 6 (5) .                        Q.E.D. 
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     The economic significance of this theorem is quite clear.  It is recalled by Theorem 
5 (4) that the following inequality holds. 
 
          SE i i  ≡  ∂u i /∂w i  ≦ 0 .                                                (47),      

 

   In the light of Eqs. (46) and (47), we find that the substitution effect  SE i j   and 
the scale effect  EE i i  should always go in the same direction.  Surely, this is also a 
remarkable contrast to consumption theory a la Hicks (1946), in which the substitution 
and income effects may go in opposite directions.   
     In short, input demand theory is input demand theory, thus being distinct from 
consumer demand theory.  Although those two theories look somewhat similar, they 
are definitely different.  We have to understand exactly how and to what extent they 
are analogous or distinct.   
 
6.6  Final Remarks on the LeChatelier - Samuelson Principle 
 
In this chapter, we have been manly concerned with the axiomatic foundations of input 
demand theory.  While the approach taken here looks mathematical and rigorous, it 
has useful economic implications.  In particular, it is noted that the total effect of a 
change in an input can be decomposed into the substitution and expansion effect.  How 
and to what extent such decomposition in input demand is comparable to that in 
consumer demand is certainly a very important question to ask.  To our surprise, such 
comparison has been rather neglected for long time in the economics literature.  We do 
believe, however, that as the saying goes, it is better late than never.   
     We are ready here to do some economic applications and make final remarks.  
First, we note that our decomposition in input demand is closely related to the famous 
LeChatelier -Samuelson principle.  Although this connection was pointed out by our 
friend Yoshihiko Otani (1982), we are going our own way to confirm it below.   
    Henri Louis LeChatelier (1850-1936) was a noted French scientist.  He was best 
known for his work on his chemical equilibrium, which was to be called leChatelier 
principle in the academia.  In his classical work contained in Samuelson (1947, 
enlarged edition 1983), Samuelson boldly applied the principle to economic equilibrium, 
so that naming of the LeChatelier - Samuelson principle has been so popular in the 
academic world, especially in the economic profession (see Stiglitz (1966) ) .  12) 

     Seeing is believing !  Samuelson (1947) once remarked as follows. 
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           We have the following general theorem: 

 

            (dx i / dαi ) 0   ≦  (dx i / dαi ) 1  ≦ ... ≦  (dx i / dαi ) n—1  ≦ 0 . 

     

        While the change in an  x  with respect to its own parameter is always negative 

        regardless of the number of constraints, it is most negative when there are no 

        constraints, only less so when there is a single constraint, and so forth, until the 

       number of auxiliary constraints reaches the maximum possible, namely (n — 1). 

                                          (Samuelson 1947 & revised 1987, p. 38) 

 
    In our setting of input demand theory discussed so far, we have only to compare 
the case with no isoquant constraint and the one with a single constraint, namely the 
constraint that output y  remains constant regardless a change in w i  .  So, in terms 
of the input demand setting, we must have the following inequality. 
 
            (dx i / dw i ) 0  ≦ (dx i / dw i ) 1 ≦ 0 .                        (48) 
      

    If we rather want to follow the decomposition equation formula (6.45) above 
mentioned, then in the light of Eq. (45), (46) and (47) , we must find the following set of 
inequalities. 
 
          ∂x i  / ∂w i  =  ∂u i / ∂w i  —  (∂x i / ∂p ) (∂p /∂w i ) , 
 
or equivalently 
 
            TE  i i   =   SE  i i   +   EE  i i    . 

 

     Since the terms TE  i i , SE  i i , and EE  i i  are all non-positive, we must have the 
following. 
 
             TE  i i   ≦  SE  i i   ≦ 0  .                           (49) 
 
    Needless to say, this equation clearly demonstrates the validity of the famous 
LeChatelier - Samuelson principle in input demand equilibrium.   For this point, also 
refer to Rader (1968).   . 
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      We now turn to the application of our input demand theory to some numerical 
examples.  Hopefully, the following example will be helpful in understanding the 
fundamental difference between the net effect and the gross effect in input demand 
theory. 
     Let us consider the following production function of Cobb-Douglas type :. 
 

      y  =  f  ( x 1 , x 2 , x 3 )  =   x 1 
α1 x 2α2   x 3 

α3    ,  α1 +α2 +α3  ＜ 0 . 

  
    Let  X  and  Y  be the domain and range of f , respectively.  If we assume that  
X  is bounded above, so is  Y  , assuring assumption (A5).  It can be proved that 
Assumptions (A1-A4) and (A6 ') are also satisfied.  It can be shown without difficulty 
that the matrix of the total effect terms is given as follows. 
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    It is clearly seen from matrix  G  that any two inputs are gross complements.   
    Now, turning our attention to the matrix of substitution effects , we can easily 
derive the following.           
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where   
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    It is evidently seen that any two inputs are net substitutes .   
    Finally, in the light of Eqs. (6.50) and (6.51) , we can show that the matrix of the 
expansion effect terms is provided as follow.  
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  =   1 / [(α1 +α2 +α3 ) (1—α1—α2 —α3 ) p y ]   × J  ,                (6.52) 
  
 where 

        J   =    
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     Let us compare the corresponding diagonal elements of the matrix G  and the 
matrix J  .   Then, we will immediately find that the substitution and expansion 
effects of the price of an input on the demand of the same input must go in the same 
direction, thus intensifying each other. The famous the LeChatelier-Samuelson 
principle is surely valid as expected. 
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     The name of Chemist LeChatelier is brilliantly shining not only in the chemical 
world but also in the economic world as well.  Life may be short, but science is long and 
spreading indeed !   
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Footnotes 

 

  1)  In the 1960s and the 1970s, I myself was a graduate student at the University of Rochester.  

And completing my Ph.D. thesis, I became an assistant professor at the University of Pittsburgh.   In 

hindsight, I was so fortunate to be surrounded by many outstanding professors such as Lionel 

McKenzie, Edward Zabel, Ronald Jones, Hugh Rose, James Friedman, and Akira Takayama, and by 

many brilliant students including Jerry Green, Jose Sheinkman, Masayoshi Hirota, and Michihiro 

Ohyama.   Though perhaps too late, I would like to say my sincere thanks to all of them.   

  2)  Historically speaking, the fundamental difference between consumer demand theory and input  

demand theory was first noticed by Hicks (1946), Chapter 7, and mathematically sophisticated by 

Samuelson (1947), Chapter 4.  It seems, however, that the similarity between them was not fully 

developed by these authors, resulting later development of input demand theory.   

  3)  For a topological and convex approach to production theory, see Uzawa (1964), Nikaido (1968), 

Shephard (1970), and others.  .    

  4) The purpose of Assumption (A5) is to force the profit function π( w, p )  =  { p・f ( x ) — w x  :  

x ∈ X }  to be defined for any  ( w , p ) ∈ W × P .   

  5)  According to the definition of the length of a vector, we find the following: 

        | ( Δw , Δp ) | =  【 ∑ i  (Δw i ) 2  + (Δｐ ) 2 】1/2  .   

  6)  For the properties of convex and concave functions, see Fenchel (1953) , Rockafellar (1970),  

Shephard (1979) and Varian (1999, 2009).. 

  7)  Note that any concave or convex function is almost everywhere twice differentiable.   See 

Alexandroff (1939). 
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  8)  See Takagi (1961), pp. 57-58.    

  9)  This markedly contrasts with the income effect in consumption theory since the latter may be 

non-symmetrical. 

  10)  The first version of decomposition equation was merely referred to by Basett & Borcherding 

(1969) without any proof, and later was given a formal proof by Hirota & Sakai (1969) and Syrquin 

(1970) by using simple calculus.  It is noted that the most exact form of decomposition equations in 

input demand theory is given here in terms of the compensated input functions.  

  11)  By relying on the traditional calculus method, Hirota & Sakai (1969) succeeded in deriving the 

second version of decomposition equations.  To our regret, however, their proof was rather sketchy 

and based on the Hessian matrix of the production function per se.  We believe that a topological 

approach taken here is more general, and more elegant, than the previous method.  This may look a 

small step, but surely a giant jump indeed.   

  12)  According to Samuelson (1972), the LeChatelier Principle was discovered more than one 

hundred years ago by LeChatelier, French chemist.  Samuelson found, however, that it was a rather 

vaguely stated principle.  So, he decided to make it more perfect, and boldly applied to economic 

theory.  This is the reason why this principle is now called the LeChatellier-Samuelson principle.  

Also see Dietzenbacher (1992) and Alexandrov & Bedre-Defolie(2017).   
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