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A TERM STRUCTURE INTEREST RATE MODEL WITH THE
BROWNIAN BRIDGE LOWER BOUND

KENTARO KIKUCHI
SHIGA UNIVERSITY

Abstract. We propose a new short rate model with a stochastic lower bound, defined
as the sum of a quadratic function of Gaussian state variables and a Brownian bridge
that starts and ends at zero with a random interval. The start and end times of the
bridge correspond to the start and end dates of a negative interest rate environment.
Our model captures time series of the yield curve, including a negative interest rate
environment. Within this framework, we derive the zero coupon pricing formula in a
semi-analytical form and estimate the model using time series data on the Japanese
government bond yield curve. Our estimation results indicate a good fit of the model
to the observations. We also compute the expected excess returns on bonds and
the posterior distribution of the duration of the negative interest rate environment,
providing insights into the market’s views on monetary policy developments.

Keywords– No-arbitrage condition, Quadratic Gaussian term structure model, Brownian bridge

Negative interest rate policy.

JEL Classification– E43, E52, G12

1. Introduction

Numerous studies have attempted to estimate the term structure model of interest
rates using historical yield curve data to extract market participants’ expectations. The
affine Gaussian term structure model (ATSM) is the most popular model due to its
analytical simplicity and ease of estimation. For example, Ang and Piazzesi (2003) and
Kim and Orphanides (2012) use the ATSM to extract market expectations from U.S.
Treasury yield data. However, in the low-interest-rate environment that followed the
global financial crisis of 2007–2008, the ATSM is inappropriate for time-series analysis
of the yield curve because it is likely to overestimate the probability of negative future
interest rates. Therefore, an alternative model, such as the Shadow Rate Model (SRM)
or the Quadratic Gaussian Term Structure Model (QTSM), is needed for time-series
analyses of the yield curve, including a low-interest-rate environment in the sample
period.

In the SRM, the short rate is defined as the greater of a latent variable called the
shadow rate and a threshold, where the threshold serves as a lower bound on interest
rates. This model was introduced by Black (1995) and further developed by Gorovoi
and Linetsky (2004). Empirical studies using the SRM include Kim and Singleton
(2012), Krippner (2013), Bauer and Rudebusch (2016), Wu and Xia (2016), Kortela
(2016), Lemke and Vladu (2017), Ueno (2017), and Wu and Xia (2020). These studies
examine time-series data from the United States, Europe, or Japan, including periods of
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quantitative easing, in which a central bank purchases financial assets from the financial
market to provide more liquidity and stimulate the economy.

The QTSM, studied by Ahn et al. (2002) and Leippold and Wu (2002), is another
alternative to the ATSM. In the QTSM, the short rate is defined as a quadratic function
of state variables, generating a term structure of interest rates with a lower bound.
Nyholm and Vidova-Koleva (2012) estimate the QTSM using US yield curve data, while
Kim and Singleton (2012) compare the QTSM and the SRM using Japanese yield curve
data. Although Nyholm and Vidova-Koleva (2012) and Kim and Singleton (2012) set
the lower bound of interest rates at zero, allowing a negative lower bound could result
in a term structure model that allows negative interest rates.

Previous empirical studies utilizing the SRM and QTSM have made significant con-
tributions to the time-series analysis of the yield curve in low-interest-rate environments
that include negative interest rates. However, most of these studies, except for Kortela
(2016), Lemke and Vladu (2017), Ueno (2017), and Wu and Xia (2020), use a constant
lower bound of interest rates. One problem with this approach is that it fails to capture
changes in the future interest rate probability distribution due to shifts in monetary
policy, such as unconventional monetary policy strengthening or tapering. Thus, it is
insufficient to extract market information using a term structure model with a constant
negative lower bound for interest rates under a negative interest rate environment. To
overcome this issue, a better approach is to incorporate a stochastic lower bound of
interest rates, which can extract more accurate market information. Accordingly, this
study aims to construct a new term structure model with a stochastic lower bound of
interest rates.

Consider a hypothetical country that has adopted a negative interest rate policy
(NIRP) but is now planning to exit from it1. In such a case, the lower bound on
interest rates would gradually approach zero towards the end of NIRP. With this in
mind, we model the lower bound on interest rates as a Brownian bridge. The initial
time of the Brownian bridge used in the model corresponds to the introduction of
NIRP (or the first observation of negative interest rates in the market). The end time
of the Brownian bridge corresponds to the end of NIRP (or the time when negative
interest rates are no longer observed in the market). During the NIRP period, people
do not know the policy’s end date. Hence, our model assumes that the final time of the
Brownian bridge representing the lower bound of interest rates is a random variable.
In other words, the duration of NIRP is treated as random2. It should be noted that
while a Brownian bridge generally has a fixed interval, the Brownian bridge with a
random interval is studied in detail in Bedini et al. (2017). The work of Ajevskis
and Vitola (2010) inspires our modeling of the lower bound of interest rates. They
use a Brownian bridge to model the spread of short-term interest rates between the
European Monetary Union (EMU)’s candidate and member countries. The final time
of their Brownian bridge corresponds to the date when the candidate countries officially
join the EMU, and their spreads converge to zero as the final time approaches.

In this study, we construct a term structure model where the short rate is defined
as the sum of positive parts representing a quadratic function of state variables and a

1In this study, we use the term ”NIRP” to refer to the situation where some interest rates become
negative under unconventional monetary policies, even after the end of a negative interest rate policy,
as other policies such as QE or zero interest rate policy may still be in effect.

2This assumption is similar to that of Marumo et al. (2003), who assume that the short rate remains
at zero until the end of a central bank’s zero interest rate policy (ZIRP) and follows the Vasicek model
once ZIRP ends. Additionally, they model the exit time from ZIRP as a random variable and derive
the bond pricing formula under the no-arbitrage condition.
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stochastic lower bound provided by a Brownian bridge, as explained above. In other
words, we build a QTSM-based term structure model with a Brownian bridge lower
bound on rates. We then derive the zero coupon bond pricing formula under the no-
arbitrage condition. One advantage associated with the QTSM-based model is that it
can represent stochastic volatilities of bond prices through changes in state variables.

Since our proposed model is formulated in both risk-neutral and physical probability
measures, it enables us to perform a time-series analysis of yield curves that include
periods when negative interest rates have been observed in the market, such as in
Europe and Japan. By using time-series data on the yield curve, we can estimate the
state variables and parameters of our model, allowing us to estimate the lower bound
of interest rates that can not be directly observable in the market. Additionally, we
can obtain the posterior probability distribution of the number of years during which
a negative interest rate environment will persist. These implications are valuable for
monetary policy and investor portfolio management.

The paper is organized as follows. Section 2 presents the model setup. Section 3 and
4 provide the derivation of the zero coupon bond pricing formula for the cases where
the end date of NIRP is deterministic or random, respectively. Section 5 describes the
estimation methodology, including the state space representation, parameter setting,
data set, and formulation of the posterior distribution of the NIRP duration. Section
6 presents the estimation results, and Section 7 concludes the paper.

2. Setup

We define a filtered probability space (Ω,F , (Ft)0≤t,P) where the filtration (Ft)0≤t

satisfies the usual conditions of right-continuity and completeness and is the natural
filtration generated by two stochastic processes Xt and yτt as defined below. P denotes
the physical measure. W P

t,x ∈ Rn and W P
t,y ∈ R1 are independent standard Brownian

motions under P.
We assume that the market is complete and has no-arbitrage opportunities. This

implies the existence of the unique risk-neutral measure Q.
The state variable Xt satisfies the following stochastic differential equation under P:

(1) dXt = KP
X(θ

P −Xt)dt+ ΣXdW
P
t,x,

where all eigenvalues of the mean reversion coefficient matrix KP
X ∈ Rn×n are assumed

to be positive.
We assume that the risk-free short rate rt is the sum of a quadratic function of Xt

and yτt :

(2) rt = X ′
tΨXt + yτt ,

where X ′
t represents the transposition of Xt and Ψ is positive–definite. Since X ′

tΨXt >
0, Eq.(2) implies that yτt is the lower bound of rt.

We define yτt by the Brownian bridge process with yτ0 = 0, yττ = 0, and yτt = 0 for
t ≥ τ . yτt can be represented as

(3) yτt = σyW
P
t,y −

σyt

τ ∨ t
W P

τ∨t,y,

where τ ∨ t = max(τ, t). Since W P
t,x and W P

t,y are independent as described above, yτt
is independent from Xt. For the time being, we assume that τ is a strictly positive
constant value. Eq.(3) is equivalent to the following Eq.(4) in the stochastic differential
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equation form:

(4) dyτt = 1{t≤τ}

(
− yτt
τ − t

dt+ σydW
P
t,y

)
.

Since Eq.(2) indicates that the short rate will always become positive after time τ , we
can interpret τ as the date when the unconventional monetary policy ends and interest
rates with all maturities become positive. Therefore, in this study, we refer to this date
as the end date of NIRP.

The stochastic differential equation of Xt under Q is supposed to be

(5) dXt = KQ
X(θ

Q −Xt)dt+ ΣXdW
Q
t,x,

where WQ
t,x ∈ Rn is a standard Brownian motion under Q and KQ

X ∈ Rn×n is a matrix
with all eigenvalues being positive.

From Eqs.(1) and (5), we have the following relationship between WQ
t,x and W P

t,x:

(6) dWQ
t,x = dW P

t,x + Λ(Xt)dt,

where Λ(Xt) = (KP
Xθ

P − KQ
Xθ

Q) − (KP
X − KQ

X)Xt. Λ(Xt) can be interpreted as the
market price of factor risks. This affine form was first introduced in Duffee (2002) as
the essentially affine market price of risk.

We assume that the market price of risk for yτt is zero. While it is possible to set the
market price of risk for yτt to a non-zero value, doing so would result in yτt at time τ
not being able to take the value zero under Q, making the interpretation of yτt difficult.
Therefore, the dynamics of yτt under Q follows

(7) dyτt = 1{t≤τ}

(
− yτt
τ − t

dt+ σydW
Q
t,y

)
.

3. Bond pricing in the case where τ is deterministic

In this section, we derive a bond pricing formula in the case where τ is deterministic.
We assume that τ is a strictly positive constant. Hereinafter, we denote a normal policy
period, τ ≤ t (the post-NIRP period) with a superscript of ‘n’ and an unconventional
policy period, t < τ (the NIRP period) with a superscript of ‘unc’.

3.1. Bond pricing in a normal policy period, the post-NIRP. In this subsection,
we derive a zero coupon bond pricing formula in a normal policy period, τ ≤ t. This
period corresponds to the post-NIRP period.

An infinitesimal generator of Xt for τ ≤ t is provided as

(8) Dn
t = (KQ

X(θ
Q −Xt))

′ ∂

∂Xt

+
1

2
Tr

(
ΣXΣ

′
X

∂2

∂Xt∂X ′
t

)
.

Applying the Feynman–Kac theorem to the zero coupon bond price P n
t,u with maturity

date T = t+ u leads to the following partial differential equation (PDE):

(9)

[
∂

∂t
+ Dn

t

]
P n
t,u = rtP

n
t,u, P n

t,0 = 1.

We guess the solution form of Eq.(9) as follows:

(10) P n
t,u = exp(X ′

tA
n
uXt + (bnu)

′Xt + cnu).
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Substituting Eq.(10) into Eq.(9), we obtain the following system of ordinary differential
equations (ODEs) for An

u, b
n
u, and cnu.

Ȧn
u = −2KQ

X

′
An

u + 2An
uΣXΣ

′
XA

n
u −Ψ,

(ḃnu)
′ = 2(KQ

Xθ
Q)′An

u − bnu
′KQ

X + 2bnu
′ΣXΣ

′
XA

n
u,

ċnu = (KQ
Xθ

Q)′bnu + Trace

(
ΣXΣ

′
X

(
An

u +
1

2
bnu(b

n
u)

′
))

,

(11)

where Ȧn
u, ḃ

n
u, and ċnu represent the derivatives of An

u, b
n
u, and cnu with respect to the

variable u and the boundary conditions are An
0 = 0, bn0 = 0, and cn0 = 0.

3.2. Bond pricing under a negative interest rate policy. In this subsection, we
derive a zero coupon bond pricing formula in the case where t < τ . This corresponds
to the period when a central bank is conducting NIRP.

First, we deal with the bond price with the maturity date T which arrives before
the end date of NIRP τ . Let us denote the zero coupon bond price by P unc,1

t,u,w where

u = T − t and w = τ − T . The price P unc,1
t,u,w is provided as follows:

P unc,1
t,u,w = EQ

[
exp

(
−
∫ T

t

rsds

)
|Ft

]
= EQ

[
exp

(
−
∫ T

t

(X ′
sΨXs + yτs )ds

)
|Ft

]
= EQ

[
exp

(
−
∫ T

t

X ′
sΨXsds

)
|Ft

]
EQ

[
exp

(
−
∫ T

t

yτsds

)
|Ft

]
= P n

t,uE
Q
[
exp

(
−
∫ T

t

yτsds

)
|Ft

]
,

(12)

where EQ[ ] is the expectation operator under Q. The third equality in Eq.(12) holds
true by the independence between Xt and yτt .
Since P n

t,u in the right-hand side of Eq.(12) is obtained from Eqs.(10) and (11), cal-
culating the left-hand side of Eq.(12) reduces to the calculation of P y

t,u,w defined below

(13) P y
t,u,w = EQ

[
exp

(
−
∫ T

t

yτsds

)
|Ft

]
.

An infinitesimal generator of yτt over t < τ for Eq.(7) is provided as

(14) Dunc
t = − yτt

τ − t

∂

∂yτt
+

1

2
σ2
y

∂2

∂y2t
= − yτt

u+ w

∂

∂yτt
+

1

2
σ2
y

∂2

∂y2t
.

Applying the Feynman–Kac theorem to P y
t,u,w in Eq.(13), we obtain the following PDE:

(15)

[
∂

∂t
+ Dunc

t

]
P y
t,u,w = yτt P

y
t,u,w, P y

t,0,w = 1.

We guess the solution of Eq.(15) as being in the following form:

(16) P y
t,u,w = exp(dunc,1u,w yτt + func,1

u,w ).

Substituting Eq.(16) into Eq.(15), we obtain the following ODEs.

ḋunc,1u,w +
dunc,1u,w

u+ w
+ 1 = 0,

ḟunc,1
u,w =

1

2
σ2
y(d

unc,1
u,w )2,

(17)
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where the boundary conditions are dunc,10,w = 0 and func,1
0,w = 0, and ḋunc,1u,w and ḟunc,1

u,w

represent the derivatives of dunc,1u,w and func,1
u,w with respect to the variable u, respectively.

The first equation in Eq.(17) is known as d’Alembert’s equation, and its solution is
given as follows:

(18) dunc,1u,w = −u(u+ 2w)

2(u+ w)
.

Eq.(18) and the second equation in Eq.(17) lead to the solution of func,1
u,w :

func,1
u,w =

∫ u

0

1

2
σ2
y(d

unc,1
v,w )2dv =

σ2
y

2

∫ u

0

v2(v + 2w)2

4(v + w)2
dv

=
σ2
y

24

(
(u+ w)3 − 6w2u+ 2w3 − 3w4

u+ w

)
.

(19)

Next, we calculate the price of a zero coupon bond with a maturity date on or after
the end date of NIRP, i.e., t < τ ≤ T . In this case, we denote the zero coupon bond
price with P unc,2

t,u,w , where u = T − t and w = τ − T . Then, P unc,2
t,u,w is given by:

P unc,2
t,u,w = EQ

[
exp

(
−
∫ T

t

rsds

)
|Ft

]
= EQ

[
exp

(
−
∫ T

t

(X ′
sΨXs + yτs )ds

)
|Ft

]
= EQ

[
exp

(
−
∫ T

t

X ′
sΨXsds

)
|Ft

]
EQ

[
exp

(
−
∫ T

t

yτsds

)
|Ft

]
= EQ

[
exp

(
−
∫ T

t

X ′
sΨXsds

)
|Ft

]
EQ

[
exp

(
−
∫ τ

t

yτsds

)
|Ft

]
= P n

t,uP
y
t,u+w,0.

(20)

Here, one should note that P y
t,u,w = P y

t,u+w,0 when w ≤ 0.
P y
t,u+w,0 in Eq.(20) is calculated from Eqs.(16), (18), and (19) as follows:

(21) P y
t,u+w,0 = exp(dunc,1u+w,0y

τ
t + func,1

u+w,0) = exp

(
−u+ w

2
yτt +

σ2
y

24
(u+ w)3

)
.

4. Bond pricing in the case where τ is random

In this section, we derive a zero coupon bond pricing formula in the case where the
end date of NIRP τ is random. Instead of Eq.(2), we define the risk-free short rate rt
as rt = X ′

tΨXt + yt. By this definition, yt becomes the lower bound of interest rates.
In this section, we model the lower bound of interest rates yt as the Brownian bridge
with a random time interval τ , which is studied in Bedini et al. (2017).

To price the zero coupon bonds, we need the probability distribution of τ under Q.
Thus, we focus on τ under Q rather than P in this section. Let τ : Ω → (0,+∞) be
a strictly positive random variable whose distribution function is denoted with F (t) =
Q(τ ≤ t). We assume that τ is independent of WQ

t,x and WQ
t,y. F

y
t denotes the completed

natural filtration generated by yt; that is, Fy
t = σ(ys; 0 ≤ s ≤ t) ∨N where N denotes

the collection of Q-null sets. When we denote (C,C) as the space of continuous real-
valued functions on R+ endowed with the σ-algebra generated by the canonical process,
we define a Brownian bridge with a random time interval τ as the map from (Ω,F) to
(C,C) as follows:
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Definition 1. The process yt(ω) given by

yt(ω) = y
τ(ω)
t (ω),

is the Brownian bridge with a random interval τ , where yrt is the Brownian bridge with
a deterministic time interval r as defined in Eq.(3).

Bedini et al. (2017) prove that the mapping y : (Ω,F) → (C,C) is measurable,
{yt = 0} = {τ ≤ t} for any t > 0, Q-a.s., and the process y is a Markov process with
respect to the natural filtration generated by y. We present their lemmas which are
useful for deriving the zero coupon bond pricing formula in our setting below.

Lemma 1. Let σ(τ) denote the σ-algebra generated by τ and B(A) denote the Borel
set of A.

If h : ((0,+∞)×C,B((0,+∞))⊗C) → (R,B(R)) is a measurable function such that
E[|h(τ, y)|] < +∞, then E[h(τ, y)|σ(τ)](ω) = E[h(r, yr)]|r=τ(ω), Q-a.s.

Lemma 2. Let 0 ≤ t ≤ u and g(τ, yu) be a σ(ys; s ≥ t) measurable nonnegative function
under Q where σ(ys; s ≥ t) is a sigma algebra generated by the future evolution of the
process y. Then,

EQ[g(τ, yu)|Fy
t ] = EQ[g(τ, yu)|yt], Q-a.s.

Let fQ(x) be the prior density function of τ under Q. We define GQ(t, yt) as follows:

(22) GQ(t, yt) =

∫ ∞

t

φQ
t (v, yt)f

Q(v)dv,

where φQ
t (r, y) represents the density of yrt as provided in Eq.(7). In the appendix, we

prove that φQ
t (r, y) is calculated as follows:

(23) φQ
t (r, y) =

√
r

2πt(r − t)σ2
y

exp

(
− y2

2t(r − t)σ2
y

)
.

We present another lemma that was proved in Bedini et al. (2017) to use for the
derivation of the zero coupon bond price representation:

Lemma 3. Let t > 0 and g(τ, yt) be a measurable function such that g(τ, yt) is inte-
grable. Then, Q-a.s.

(24) EQ[g(τ, yt)|Fy
t ] = g(τ, 0)1{τ≤t} +

∫ ∞

t

g(r, yt)
φQ
t (r, y)f

Q(r)

GQ(t, yt)
dr1{t<τ}.

Note that Bayes’ theorem implies that the expression
φQ
t (r,yt)f

Q(r)
GQ(t,yt)

in Eq. (24) can be

interpreted as the posterior density of τ conditioned on yt, while fQ(r) represents its
prior density.

We derive the pricing formula for the zero-coupon bond price Pt,T−t with a maturity
date of T at time t during a NIRP period.

Proposition 4. The following equation holds Q-a.s.:

1{t<τ}Pt,T−t = P n
t,T−tE

Q
[
exp

(
−
∫ T

t

ysds

)
1{t<τ}|Fy

t

]
=

1{t<τ}

GQ(t, yt)

(∫ +∞

T

P unc,1
t,T−t,v−Tφ

Q
t (v, yt)f

Q(v)dv +

∫ T

t

P unc,2
t,T−t,v−Tφ

Q
t (v, yt)f

Q(v)dv

)
.
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Proof. The first equality holds true due to the independence between Xt and yt. The
term excluing P n

t,T−t on the right-hand side of the first equality is calculated Q-a.s. as
follows:

EQ
[
exp

(
−
∫ T

t

ysds

)
1{t<τ}|Fy

t

]
= EQ

[
exp

(
−
∫ T

t

ysds

)
|yt

]
1{t<τ}

= EQ
[
EQ

[
exp

(
−
∫ T

t

yrsds

)
|yrt

]
r=τ

|yt
]
1{t<τ}

= EQ [
P y
t,T−t,τ−T (y

r
t )|yt

]
1{t<τ}.

(25)

Since exp
(
−
∫ T

t
ysds

)
1{t<τ} is a σ(ys; s ≥ t) measurable nonnegative function, we

obtain the first equality by applying Lemma 2. The second equality in Eq.(25) holds
true due to Lemma 1. Third equality is given by Eqs.(13), (16), (20), and (21). Lemma
3 introduces the right-hand side of the final equality in the above equation into the
following representation:

EQ [
P y
t,T−t,τ−T (yt)|yt

]
1{t<τ} =

1

GQ(t, yt)

(∫ +∞

T

P y
t,T−t,v−Tφ

Q
t (v, yt)f

Q(v)dv +

∫ T

t

P y
t,T−t,v−Tφ

Q
t (v, yt)f

Q(v)dv

)
1{t<τ}.

Thus, Eqs.(12), (20), and (25) lead to the conclusion of this proposition. □

We obtain the following pricing formula for Pt,T−t by Proposition 4.

Theorem 5. The following equation holds Q-a.s.:

Pt,T−t = Pn
t,T−t1{τ≤t}

+
1{t<τ}

GQ(t, yt)

(∫ +∞

T
P unc,1
t,T−t,v−Tφ

Q
t (v, yt)f

Q(v)dv +

∫ T

t
P unc,2
t,T−t,v−Tφ

Q
t (v, yt)f

Q(v)dv

)
.

(26)

The first integrand of the right-hand side of Eq.(26) can be computed by applying
the Gauss-Laguerre quadrature rule:∫ +∞

T

P unc,1
t,T−t,v−Tφ

Q
t (v, yt)f

Q(v)dv

=
n∑

i=1

wGLa
i P unc,1

t,T−t,vGLa
i

φQ
t (v

GLa
i + T, yt)f

Q(vGLa
i + T )ev

GLa
i ,

(27)

where vGLa
i and wGLa

i are nodes ad weights of the Gauss-Laguerre quadrature, respec-
tively.

The Gauss-Legendre quadrature rule is applied in the second integrand on the right-
hand side of Eq.(26) as follows:∫ T

t

P unc,2
t,T−t,v−Tφ

Q
t (v, yt)f

Q(v)dv

=
T − t

2

n∑
i=1

wGLe
i P unc,2

t,T−t,vGLe
i −T

φQ
t (v

GLe
i , yt)f

Q(vGLe
i ),

(28)

where vGLe
i and wGLe

i are nodes ad weights of the Gauss-Legendre quadrature, respec-
tively.

Eqs.(27) and (28) contribute to efficient computation of bond prices.
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5. Estimation methodology

In this section, we first present a state space representation of our proposed model.
Next, we explain the assumptions made for model parameters and the Japanese yield
curve historical data used in estimating the model. Additionally, we formulate the
posterior distributions of the NIRP duration, which are plotted using the estimated
state variables in the next section.

5.1. State space model representation. To esimate latent factors Xt and yt of our
model, we apply a filtering method to a state space representation of the model. In this
subsection, we formulate our model as a state space model.

The invariant transforms of Dai and Singleton (2000), Ahn et al. (2002), and Leippold
and Wu (2002) are applicable to our model. This allows us to have the assumption that
θP is a zero vector, ΣX is the identity matrix, and KP

X is the lower triangular matrix with
positive diagonal elements. After applying the invariant transformation, we estimate
the model.

The state equation of Xt describes the dynamics of Xt under the physical measure
P, as shown in Eq.(1). Replacing Eq.(1) with the discrete time representation under
the time step ∆t, we obtain the following equation:

(29) Xt+∆t = exp(−KP
X∆t)Xt + wX,t+∆t,

where wX,t+∆t ∼ N(0, V ) and V is provided as follows:

(KP
X + (KP

X)
′)−1(I − exp(−(KP

X + (KP
X)

′)∆t)).

According to a theorem shown in Bedini et al. (2017), yt for t < τ satisfies the
following equation:

yt = y0 +

∫ t

0

EP
[
ys1{s<τ}

τ − s

∣∣∣∣ ys] ds+ ∫ t

0

σydW
P
s,y

= y0 −
∫ t

0

ds ys

∫ ∞

s

dr
φP
s (r, ys)

(r − s)GP(t, yt)
fP(r)1{s<τ} +

∫ t

0

σydW
P
s,y,

(30)

where fP(v) is the prior density function of the end date τ of NIRP under P. φP
t (v, yt)

is the density function of yτt under P. We now assume that the market price of risk for y
is zero; hence, φP

t (v, yt) = φQ
t (v, yt), whose representation is given in Eq.(23). GP(t, yt)

is the distribution function of yτt under P provided as

(31) GP(t, yt) =

∫ ∞

t

φP
t (v, yt)f

P(v)dv.

Let us denote
∫∞
s

dr
φP
s (r, ys)

(r − s)GP(t, yt)
fP(r)1{s<τ} by g(s). Eq.(30) is rewritten by the

following discrete time form:

(32) yt+∆t = e−
∫ t+∆t
t g(s)dsyt + wy,t+∆t,

where wy,t+∆t ∼ N(0, Vy) and Vy is σ2
y

∫ t+∆t

t
e−2

∫ t+∆t
u g(s)dsdu.

Let Y ieldui
t be the zero coupon yield with the time to maturity ui at time t observed

in a bond market. The vectors Y o
t = (Y ieldu1

t , . . . , Y ieldum
t )′ and

Yt(Xt, yt) =

(
− 1

u1

logP u1
t (Xt, yt), . . . ,−

1

um

logP um
t (Xt, yt)

)′
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computed from Eq.(26) constitute the observation equation of a state space model:

(33) Y o
t = Yt(Xt, yt) + ηt, ηt ∼ N(0, η2Im),

where Im is the identity matrix of sizem. Errors in the observation equation are assumed
to follow a normal distribution with a zero mean vector and a diagonal covariance matrix
η2Im, and are assumed to be independent of other random variables.

Our state space model has a nonlinear observation equation; thus, we estimate model
parameters and latent factors Xt and yt using the unscented Kalman filter (UKF) pro-
posed by Julier and Uhlmann (1997). The extended Kalman filter (EKF) is a well-
known filter that relies on the Taylor expansion of the nonlinear function. While the
EKF is a derivative-based method, the UKF is a derivative-free method. Therefore,
in cases where the nonlinear function is challenging to differentiate analytically, the
UKF has an advantage over the EKF. In our case, taking derivatives of the observa-
tion equations is challenging; thus, we use the UKF to estimate model parameters,
while simultaneously using the quasi-maximum likelihood method with latent factor
estimates.5

5.2. Parameter setting. We estimate the model using interest rates in the Japanese
government bond (JGB) market. In this subsection, we present the parameter setup
for this purpose.

Zero coupon interest rates with maturities of less than one year, estimated from JGB
price data, frequently became negative starting in October 2015. With this in mind,
we set the initial point of the model to September 30, 2015.

The time it takes for an event to occur is often modeled using an exponential distri-
bution. For example, in Ajevskis and Vitola (2010), the time it takes for a country to
join the EMU is assumed to follow an exponential distribution. One characteristic of
the exponential distribution is that the random variable obtained from the distribution
has the highest probability of being zero, as shown by the solid blue line in Fig. 1.
However, this feature is inconsistent with our study since many market participants
believed that the Bank of Japan’s (BOJ’s) unconventional monetary policy would not
end soon when negative interest rates on JGBs began to be observed.

Fig. 1 shows the density function of a gamma distribution with the shape parameter
α = 3 and the scale parameter β = 3 in the solid red line. The density peaks at a point
away from zero, and its expectation is αβ.

For this reason, we prefer a gamma distribution to an exponential distribution as the
prior distribution of τ , denoted as fP(τ). We assume that the prior distribution of τ
follows a gamma distribution with the shape parameter α = 3 and the scale parameter
β = 3, reflecting the expectations that the Japanese unconventional monetary policy
will continue for prolonged periods. Its density function is provided as follows:

(34) fP(τ) =
τα−1e−

1
β
τ

βαΓ(α)
=

τ 2e−
1
3
τ

27Γ(3)
.

To maintain simplicity in estimation, we assume that fQ(τ) = fP(τ) and that KQ
X is

the lower triangular matrix with positive diagonal elements as with KP
X .

We also assume that Xt is a three-dimensional latent state variable.

5The UKF is used to estimate latent factors in many finance literatures (e.g., Leippold and Wu
(2007), Christoffersen et al. (2014), Filipović et al. (2016), Branger et al. (2021)).
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Figure 1. Probability density functions of exponential distribution and

gamma distribution

5.3. Data. In estimating the model, we utilize market data for zero coupon yields of
Japanese government bonds with maturities of 6 months and 1, 2, 3, 5, 7, 10, and
20 years. The data covers the period from October 1st, 2015, to June 8th, 2022,
with a frequency of every five business days from October 1st, 2015. These yields
are estimated based on B-spline regression, as outlined in Steeley (1991) and Kikuchi
and Shintani (2012), using Japanese government bond prices from the Japan Securities
Dealers Association.

Table 1 displays the summary statistics of the Japanese government bond yields
used for our estimation. According to the table, the mean term structure is upward
sloping, the yields are negatively skewed except for the 20-year rate, and the medium
and long-term rates exhibit thicker tails than the normal distribution.

Maturity Mean Std. Dev. Skew Kurt Auto. Correl.
0.5 -0.166 0.0852 -0.697 -0.139 0.962
1 -0.159 0.0729 -0.640 0.114 0.953
2 -0.147 0.0652 -0.207 0.898 0.931
3 -0.138 0.0685 -0.254 1.230 0.926
5 -0.126 0.0876 -0.608 0.905 0.939
7 -0.0864 0.106 -0.420 0.751 0.949
10 0.0423 0.119 -0.0867 0.932 0.964
20 0.532 0.213 0.901 1.841 0.982

Table 1. Summary statistics of bond yields: The data are JGB yields ex-
pressed as annual percentages. Maturity is indicated in year. Mean is the
sample mean, Std. Dev. is the standard deviation, Skew is the skewness, Kurt
is the excess kurtosis, and Auto. Correl. is the first order autocorrelation.

5.4. Expected excess returns and posterior distribution of the NIRP dura-
tion. Once all parameters and state variables are estimated using the UKF and quasi-
maximum likelihood methods, various useful measures of bonds can be computed. In
particular, the next section presents estimates of bonds’ expected excess returns and
the posterior distributions of the duration of NIRP (or time until exit from NIRP).
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Therefore, this subsection provides mathematical expressions for the bonds’ expected
excess returns and the posterior distribution of the NIRP duration.

First, we provide the formula for the excess rate of return on the bond. The volatility
matrix of a zero-coupon bond with a maturity date of T at time t for the Brownian
motions W P

t and WQ
t is given by:

1

P n
t,T−t

∂P n
t,T−t

∂X ′
t

ΣX =
(
(An

T−t + (An
T−t)

′)Xt + bnT−t

)′
ΣX .

Given the above equation and Eq.(6), we obtain the representation of the excess
return on the bond as follows:

(35)
(
(An

T−t + (An
T−t)

′)Xt + bnT−t

)′
ΣXΛ(Xt),

where Λ(Xt) is defined in Eq.(6).
Essentially, the expected excess rate of return is obtained by taking the expected

value under the physical probability measure in Eq.(35). However, for the sake of
computational simplicity, we prioritize an approximation where we substitute Xt|t, the
filtered value of X, for X in Eq.(35). In other words, in the next section, we will
compute the expected excess returns of bonds as follows:

(36)
(
(An

T−t + (An
T−t)

′)Xt|t + bnT−t

)′
ΣXΛ(Xt|t).

The density functions of the posterior distribution of τ under P and Q are provided
as

(37)
φP
t (τ, yt)f

P(τ)∫∞
t

φP
t (v, yt)f

P(v)dv
=

φQ
t (τ, yt)f

Q(τ)∫∞
t

φQ
t (v, yt)f

Q(v)dv
,

where φP
t (τ, yt) is equal to φQ

t (τ, yt) and is provided as Eq.(23). In addition, we assume
that fP(τ) = fQ and they are Eq.(34) as we explained in Sect.5.2.

Thus, when t < τ , Eq.(37) leads to the following density of the posterior distribution
of the duration s = τ − t of NIRP,

(38)
φP
t (t+ s, yt)f

P(t+ s)∫∞
0

φP
t (t+ s′, yt)fP(t+ s′)ds′

.

By denoting estimates of yt by ỹt, we can compute the posterior densities of the
time to exit from NIRP under P (the same as under Q) for each of the dates, using
the estimates of model parameters and ỹt. From Eq.(38), these densities at time t are
provided as:

(39)
φP
t (t+ τ̃ , ỹt)f

P(t+ τ̃)∫∞
0

φP
t (t+ τ̃ , ỹt)fP(t+ τ̃)dτ̃

.

6. Estimation results

This section presents the results estimated using the methodology described in the
previous section. First, we present the estimates of the model parameters, followed by
the estimates of the latent variable Xt and the lower bound of the interest rate yt. The
estimated value of y can provide an idea of how the market perceived the change in the
BOJ’s stance toward unconventional monetary policy.

Furthermore, we assess the fitting accuracy of the estimates through the root mean
square errors (RMSE) and the evolution of the observed and estimated values. Finally,
we present the estimates of the posterior probability distributions for the excess return
on JGBs and the duration of NIRP based on the estimated values of Xt and yt.
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6.1. Parameter and latent factor estimates. The estimates of the model parame-
ters are presented in Table 2.

Ψ is a parameter that affects the nonlinearity of the interest rates through X. Ψ2,3 and
Ψ3,3 are significant at the two-sided 95% confidence interval. This finding implies that
modeling based on a quadratic Gaussian rather than an affine model has successfully
captured the nonlinearity of interest rates in Japan. Moreover, several elements of KQ

X

and θQ become statistically significant, indicating that the market price of X is time-
varying. The volatility term σy of the stochastic lower bound yt of interest rates is also
statistically significant. This result confirms the validity of introducing a stochastically
varying factor rather than a constant in the QTSM.

Ψ =

 6.77× 10−9 (0.369) −4.98× 10−10 (0.0355) −5.34× 10−9 (0.421)
−4.98× 10−10 (0.0355) 3.41× 10−5 (1.77) 4.95× 10−5 (2.82)
−5.34× 10−9 (0.421) 4.95× 10−5 (2.82) 5.03× 10−4 (2.03)

 ,

KP
X =

 0.0227 (0.126) 0 0
0.265 (1.83) 2.06× 10−5 (0.0972) 0

0.000766 (0.0349) −0.0591 (0.0593) 4.17× 10−6 (0.196)

 ,

KQ
X =

1.71× 10−9 (0.0837) 0 0
−0.191 (1.91) 0.204 (6.54) 0
0.0362 (0.179) −0.266 (2.84) 0.289 (7.87)

 , θQ =

 9.38 (1.70)
−1.55 (2.84)
0.860 (0.194)

 ,

σy = 0.00174 (2.22), η = 0.01258%, L = 18361.2.

Table 2. Estimates of the model parameters and optimal value of log-
likelihood: The absolute magnitude of the t-statistics computed using the
BHHH estimator are indicated in parentheses. L is the optimal log-likelihood.
η is defined as Eq.(33).

Fig.2 shows the filtered value of X, or EP
t [Xt|Y o

t ]. In a later subsection, we plot the
evolution of the expected excess rate of return on bonds with various maturities using
this filtered value, EP

t [Xt|Y o
t ].
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Figure 2. Estimates of X, or EP
t [Xt|Y o

t ], with the first, second, and third
elements of X denoted as x1”, x2”, and “x3”, respectively.
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Fig.3 displays the estimated values of the stochastic lower bound, y. As shown in
Fig.3, y shows a significant decline during the summers of 2016 and 2019. The decline
in the level during the summer of 2016 is attributed to the growing belief that the BOJ
would deepen its NIRP during this period. Similarly, the decline in the level during the
summer of 2019 is due to the BOJ’s forward guidance for policy rates at the Monetary
Policy Meeting held in April 2019. The Bank’s decision to clarify its forward guidance
for policy rates and implement several policy actions to continue its strong monetary
easing, as discussed in Bank of Japan (2020), likely drove the decline in the level during
the summer of 2019.
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Figure 3. Estimates of the stochastic lower bound y, EP
t [yt|Y o

t ].

6.2. Fitting results. Table 3 shows the root mean squared errors for the estimated
yields and demonstrates good in-sample performance. For all time-to-maturities, the
root mean squared errors are within two basis points.

Maturity 0.5 1 2 3 5 7 10 20
RMSE 0.0115 0.00726 0.00857 0.00954 0.0106 0.0154 0.0141 0.00860

Table 3. The root mean squared errors (RMSE) for estimated yields are
reported as annual percentages, with maturity indicated in years.

Table 4 shows the descriptive statistics of the estimation errors. The absolute values
of the fitting errors are confirmed to be at most 10 basis points.

Maturity 0.5 1 2 3 5 7 10 20
Mean 0.00316 −0.00243 −0.00104 0.00436 0.00124 −0.00501 0.00249 −0.000182
Std 0.0111 0.00684 0.00851 0.00848 0.0105 0.0145 0.0139 0.00860
Min −0.0540 −0.0459 −0.0308 −0.0197 −0.0511 −0.0638 −0.0462 −0.0614
25% −0.00193 −0.00409 −0.00746 −0.00197 −0.00558 −0.0143 −0.00879 −0.00309
50% 0.00312 −0.00157 −0.00128 0.00440 0.00117 −0.00505 0.00302 0.000768
75% 0.00840 0.000400 0.00531 0.00987 0.00901 0.00467 0.0110 0.00380
Max 0.0500 0.0212 0.0367 0.0382 0.0300 0.0347 0.0714 0.0338

Table 4. Fitting errors are reported as annual percentages, with maturity
indicated in years. The mean represents the sample average of fitting errors,
the standard deviation is denoted by Std, the minimum and maximum values
are denoted by Min and Max, respectively. The fitting errors’ quartiles are
presented as 25%, 50%, and 75%.
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Figure 4. Comparison between observed and estimated values of yields with
short-term maturities. The figure on the left shows the 6-month maturity, while
the one on the right shows the 20-year maturity.
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Figure 5. Comparison between observed and estimated values of yields with
medium-term maturities. The figure on the left shows the 5-year maturity,
while the one on the right shows the 7-year maturity.
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Figure 6. Comparison between observed and estimated values of yields with
long-term maturities. The figure on the left shows the 10-year maturity, while
the one on the right shows the 20-year maturity.

Figs.4, 5, and 6 compare the time series of observed and estimated yields, providing
comparisons of short-, medium-, and long-term interest rates. These figures demon-
strate the high accuracy of our estimates.

6.3. Expected excess returns on some bonds. Once we have estimated the state
variables X, we can calculate informative indicators. In this subsection, we estimate
the expected excess returns on one-, two-, five-, ten-, and twenty-year bonds.
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As shown in Fig.7, the expected excess returns on bonds of all maturities remained
consistently low throughout the sample period, with most values being negative. This
result can be attributed to the significant monetary easing that has been implemented
during this period.
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Figure 7. Expected excess returns on some bonds

6.4. Implied posterior distribution of the NIRP duration. Market participants
are very interested in when NIRP will end. To shed light on this issue, we present how
market participants’ perceptions of the duration of NIRP have changed over time based
on the posterior distributions of the duration of NIRP provided in Eq.(39).

Fig.8 shows the changes in the posterior distribution of the duration of NIRP over
time. It can be seen that the posterior distribution changes towards shorter NIRP
durations at the end of the sample period.

Fig.9 shows the expected values and modes of the NIRP duration that we computed
from the distributions in Fig.8. The expected values and modes in Fig.9 show a reversal
compared to Fig.3. They have shown a decreasing trend since the fall of 2019. In
particular, it can be seen that the decrease is significant and marked since the beginning
of 2022.
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Figure 8. Changes in the distribution of NIRP duration over time
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Figure 9. Estimated values and modes computed from implied posterior
distributions of NIRP duration
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Figure 10. Implied posterior distributions of NIRP duration

Fig.10 displays a side-by-side comparison of the implied posterior distributions for
the duration of NIRP on four selected days from the sample. The BOJ introduced
NIRP in January 2016, and by the summer of that year, market speculation that the
policy would be deepened was growing. Therefore, the peak of the distribution in
Fig.10 on June 28, 2016, may have shifted to the right relative to that in October 2015.
However, the BOJ did not deepen NIRP and instead introduced a yield curve control
(YCC) policy in September 2016. Fig.10 suggests that this action by the BOJ led to a
shortening of the forecasts for the duration of NIRP. In early 2022, the market became
more aware of the possibility of a revision to the YCC, and the implied distribution in
June 2022 shifted to the left relative to the rest of the chart. As of 2023, the market’s
interest in the possibility of a BOJ YCC revision has become even stronger. Therefore,
if we extend the sample period to 2023 and estimate the model, the resulting posterior
probability distribution may differ from the one obtained in 2022.

7. Conclusion

This study introduces a novel model of the term structure of interest rates to analyze
time series data of yield curves, including the period of negative interest rate policy in
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the sample. The proposed model represents the short rate as the sum of a quadratic
function of Gaussian state variables and a stochastic lower bound on interest rates
modeled by a Brownian bridge starting and ending at zero. This Brownian bridge is
intended to represent a lower bound on interest rates and is characterized by a random
time interval corresponding to the duration of the negative interest rate policy period.
The introduction of this Brownian bridge lower bound allows the interest rate term
structure in the model to flexibly capture the actual yield curves corresponding to both
the tightening and loosening of unconventional monetary policy. Under the no-arbitrage
condition, we derive a pricing formula for zero coupon bonds.

To demonstrate the effectiveness of the proposed model, we estimate the state vari-
ables and parameters using time series data on the Japanese yield curve. The results
show that the model fits the data well, with very small root mean squared errors between
the estimated and observed yield curves. Moreover, the lower bound of the interest rate,
which is the latent variable resulting from the estimation, shows a significant decline
in the summer of 2016 and the fall of 2019. This result is consistent with the fact that
speculation about the strengthening of the negative interest rate policy spread in the
financial market in the summer of 2016, and the observation of a prolonged period of
monetary easing strengthened in the fall of 2019.

After estimating the model parameters and state variables, we compute the expected
excess returns of bonds with different maturities as financial market indicators of inter-
est. The results show that the expected excess returns on bonds have been consistently
low throughout the sample period, with many remaining negative. This can be attrib-
uted to the continuation of a large monetary easing policy. Furthermore, we compute
posterior probability distributions for the duration of NIRP based on the estimated
values of the parameters and state variables to shed light on the formation of finan-
cial market participants’ expectations of NIRP. Our results show that financial market
participants expected a longer duration of NIRP in the summer of 2016 and the fall of
2019, but the duration shortened rapidly from the beginning of 2022.

While we demonstrated the application of our proposed model using time series data
of the Japanese yield curve, we believe it could also be applied to analyze the yield
curves of European countries that have experienced negative interest rates. Although
Europe returned to positive interest rates in 2022, it has experienced negative interest
rates in the past. Therefore, investigating the model’s performance using time series
data that includes both periods of negative and positive interest rates in Europe would
be a valuable topic for future research.
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Appendix

A proof of Eq.(23). Eq.(23) represents the density of yrt as defined in Eq.(7). Specif-
ically, the following equation holds on {t < τ}:

φQ
t (r, y) =

√
r

2πt(r − t)σ2
y

exp

(
− y2

2t(r − t)σ2
y

)
,

where we denote the density of yrt in Eq.(7) by φQ
t (r, y).
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We provide the proof of the above equation. We first carry out the Ito derivative for
yrt

r − t
as follows:

d

(
yrt

r − t

)
=

dyrt
r − t

+
yrt dt

(r − t)2
= − yrt

(r − t)2
dt+

σydW
Q
t,y

r − t
+

yrt dt

(r − t)2
=

σydW
Q
t,y

r − t
.

The second equality holds due to Eq.(7).
Integrating both sides of the above equation from 0 to t, we obtain the following

equation: ∫ t

0

d

(
yrs

r − s

)
=

yrt
r − t

− yr0
r

=

∫ t

0

σydW
Q
s,y

r − s

Since yr0 = 0, we have

yrt = σy(r − t)

∫ t

0

dWQ
s,y

r − s
.

Hence, yrt follows a normal distribution with expectation E[yrt ] = 0 and variance

V ar[yrt ] = σ2
y(r − t)2

∫ t

0

ds

(r − s)2
=

σ2
yt(r − t)

r
.

This means that Eq.(23) holds.
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